1
|
Wu K, Ren C, Gong Y, Gao X, Rajput SA, Qi D, Wang S. The insensitive mechanism of poultry to zearalenone: A review. ACTA ACUST UNITED AC 2021; 7:587-594. [PMID: 34377845 PMCID: PMC8327487 DOI: 10.1016/j.aninu.2021.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/15/2020] [Accepted: 01/05/2021] [Indexed: 11/29/2022]
Abstract
Zearalenone (ZEN) is one of the most common contaminating mycotoxins and is mainly produced by Fusarium graminearum. ZEN and its metabolites can interfere with estrogen function and affect animals' reproductive ability. Pigs are most susceptible to ZEN, and ZEN is less harmful to poultry than to pigs. The exact mechanism for the difference in susceptibility remains unclear. In this review, we summarized some possible reasons for the relative insensitivity of poultry to ZEN, such as the lower total amount of α-zearalenol (α-ZOL) and the α-ZOL-to-β-ZOL ratio which reduce the toxicity of ZEN to poultry. The faster hepatic and enteric circulation, and excretion capacity in poultry can excrete more ZEN and its metabolites. There are other possible factors such as the transformation of intestinal microorganisms, differences in hydroxysteroid dehydrogenases' activity, high estrogen levels, and low estrogen receptors affinity which can also cause poultry to be relatively insensitive to ZEN. In this review, we summarized the hazards, pollution status, metabolic pathways, and some measures to mitigate ZEN's harmfulness. Specifically, we discussed the possible mechanisms of low reproductive toxicity by ZEN in poultry.
Collapse
Affiliation(s)
- Kuntan Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chenxi Ren
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yangfan Gong
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Gao
- Cargill Animal Nutrition Technology Application Center, Bazhou, 065000, China
| | - Shahid Ali Rajput
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuai Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
2
|
Zearalenone and Metabolites in Livers of Turkey Poults and Broiler Chickens Fed with Diets Containing Fusariotoxins. Toxins (Basel) 2020; 12:toxins12080525. [PMID: 32824220 PMCID: PMC7472091 DOI: 10.3390/toxins12080525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 11/17/2022] Open
Abstract
Zearalenone (ZEN) and metabolites were measured in livers of turkeys and broilers fed a control diet free of mycotoxins, a diet that contained 0.5 mg/kg ZEN (ZEN diet), and a diet that contained 0.5, 5, and 20 mg/kg of ZEN, fumonisins, and deoxynivalenol, respectively (ZENDONFB diet). The feed was individually distributed to male Grade Maker turkeys from the 55th to the 70th day of age and to male Ross chickens from the 1st to the 35th day of age, without any signs of toxicity. Together, the free and conjugated forms of ZEN, α- and β-zearalenols (ZOLs), zearalanone (ZAN), and α- and β-zearalanols (ZALs) were measured by UHPLC-MS/MS with [13C18]-ZEN as an internal standard and immunoaffinity clean-up of samples. ZAN and ZALs were not detected. ZEN and ZOLs were mainly found in their conjugated forms. α-ZOL was the most abundant and was found at a mean concentration of 2.23 and 1.56 ng/g in turkeys and chickens, respectively. Consuming the ZENDONFB diet significantly increased the level of total metabolites in the livers of chickens. Furthermore, this increase was more pronounced for the free forms of α-ZOL than for the conjugated forms. An investigation of the presence of ZEN and metabolites in muscle with the methods validated for the liver failed to reveal any traces of these contaminants in this tissue. These results suggest that concomitant dietary exposure to deoxynivalenol (DON) and fumonisins (FB) may alter the metabolism and persistence of ZEN and its metabolites in the liver.
Collapse
|
3
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, Dall'Asta C, Dänicke S, Eriksen GS, Altieri A, Roldán-Torres R, Oswald IP. Risks for animal health related to the presence of zearalenone and its modified forms in feed. EFSA J 2017; 15:e04851. [PMID: 32625539 PMCID: PMC7009830 DOI: 10.2903/j.efsa.2017.4851] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Zearalenone (ZEN), a mycotoxin primarily produced by Fusarium fungi, occurs predominantly in cereal grains. The European Commission asked EFSA for a scientific opinion on the risk to animal health related to ZEN and its modified forms in feed. Modified forms of ZEN occurring in feed include phase I metabolites α‐zearalenol (α‐ZEL), β‐zearalenol (β‐ZEL), α‐zearalanol (α‐ZAL), β‐zearalanol (β‐ZAL), zearalanone (ZAN) and phase II conjugates. ZEN has oestrogenic activity and the oestrogenic activity of the modified forms of ZEN differs considerably. For ZEN, the EFSA Panel on Contaminants in the Food Chain (CONTAM) established no observed adverse effect levels (NOAELs) for pig (piglets and gilts), poultry (chicken and fattening turkeys), sheep and fish (extrapolated from carp) and lowest observed effect level (LOAEL) for dogs. No reference points could be established for cattle, ducks, goats, horses, rabbits, mink and cats. For modified forms, no reference points could be established for any animal species and relative potency factors previously established from rodents by the CONTAM Panel in 2016 were used. The dietary exposure was estimated on 17,706 analytical results with high proportions of left‐censored data (ZEN about 60%, ZAN about 70%, others close to 100%). Samples for ZEN were collected between 2001 and 2015 in 25 different European countries, whereas samples for the modified forms were collected mostly between 2013 and 2015 from three Member States. Based on exposure estimates, the risk of adverse health effects of feed containing ZEN was considered extremely low for poultry and low for sheep, dog, pig and fish. The same conclusions also apply to the sum of ZEN and its modified forms.
Collapse
|
4
|
Liu DW, Liu HY, Zhang HB, Cao MC, Sun Y, Wu WD, Lu CH. Potential natural exposure of endangered red-crowned crane (Grus japonensis) to mycotoxins aflatoxin B1, deoxynivalenol, zearalenone, T-2 toxin, and ochratoxin A. J Zhejiang Univ Sci B 2016; 17:158-68. [PMID: 26834016 DOI: 10.1631/jzus.b1500211] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A survey was conducted to determine whether mycotoxins were present in the foods consumed by red-crowned cranes (Grus japonensis) in the Yancheng Biosphere Reserve, China. Collected in the reserve's core, buffer, and experimental zones during overwintering periods of 2013 to 2015, a total of 113 food samples were analyzed for aflatoxin B1, deoxynivalenol, zearalenone, T-2 toxin, and ochratoxin A using high performance liquid chromatography (HPLC). The contamination incidences vary among different zones and the mycotoxins levels of different food samples also presented disparity. Average mycotoxin concentration from rice grain was greater than that from other food types. Among mycotoxin-positive samples, 59.3% were simultaneously contaminated with more than one toxin. This study demonstrated for the first time that red-crowned cranes were exposed to mycotoxins in the Yancheng Biosphere Reserve and suggested that artificial wetlands could not be considered good habitats for the birds in this reserve, especially rice fields.
Collapse
Affiliation(s)
- Da-wei Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.,Yancheng Biosphere Reserve, Yancheng 224057, China
| | - Hong-yi Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Hai-bin Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming-chang Cao
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of China, Nanjing 210042, China
| | - Yong Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Wen-da Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chang-hu Lu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
5
|
Fusariotoxins in Avian Species: Toxicokinetics, Metabolism and Persistence in Tissues. Toxins (Basel) 2015; 7:2289-305. [PMID: 26110506 PMCID: PMC4488703 DOI: 10.3390/toxins7062289] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 05/15/2015] [Accepted: 05/17/2015] [Indexed: 01/29/2023] Open
Abstract
Fusariotoxins are mycotoxins produced by different species of the genus Fusarium whose occurrence and toxicity vary considerably. Despite the fact avian species are highly exposed to fusariotoxins, the avian species are considered as resistant to their toxic effects, partly because of low absorption and rapid elimination, thereby reducing the risk of persistence of residues in tissues destined for human consumption. This review focuses on the main fusariotoxins deoxynivalenol, T-2 and HT-2 toxins, zearalenone and fumonisin B1 and B2. The key parameters used in the toxicokinetic studies are presented along with the factors responsible for their variations. Then, each toxin is analyzed separately. Results of studies conducted with radiolabelled toxins are compared with the more recent data obtained with HPLC/MS-MS detection. The metabolic pathways of deoxynivalenol, T-2 toxin, and zearalenone are described, with attention paid to the differences among the avian species. Although no metabolite of fumonisins has been reported in avian species, some differences in toxicokinetics have been observed. All the data reviewed suggest that the toxicokinetics of fusariotoxins in avian species differs from those in mammals, and that variations among the avian species themselves should be assessed.
Collapse
|