1
|
Axentii M, Codină GG. Exploring the Nutritional Potential and Functionality of Hemp and Rapeseed Proteins: A Review on Unveiling Anti-Nutritional Factors, Bioactive Compounds, and Functional Attributes. PLANTS (BASEL, SWITZERLAND) 2024; 13:1195. [PMID: 38732410 PMCID: PMC11085551 DOI: 10.3390/plants13091195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Plant-based proteins, like those derived from hemp and rapeseed can contribute significantly to a balanced diet and meet human daily nutritional requirements by providing essential nutrients such as protein, fiber, vitamins, minerals, and antioxidants. According to numerous recent research papers, the consumption of plant-based proteins has been associated with numerous health benefits, including a reduced risk of chronic diseases such as heart disease, diabetes, and certain cancers. Plant-based diets are often lower in saturated fat and cholesterol and higher in fiber and phytonutrients, which can support overall health and well-being. Present research investigates the nutritional attributes, functional properties, and potential food applications of hemp and rapeseed protein for a potential use in new food-product development, with a certain focus on identifying anti-nutritional factors and bioactive compounds. Through comprehensive analysis, anti-nutritional factors and bioactive compounds were elucidated, shedding light on their impact on protein quality and digestibility. The study also delves into the functional properties of hemp and rapeseed protein, unveiling their versatility in various food applications. Insights from this research contribute to a deeper understanding of the nutritional value and functional potential of hemp and rapeseed protein, paving the way for their further utilization in innovative food products with enhanced nutritional value and notable health benefits.
Collapse
|
2
|
Shen J, Liu Y, Wang X, Bai J, Lin L, Luo F, Zhong H. A Comprehensive Review of Health-Benefiting Components in Rapeseed Oil. Nutrients 2023; 15:999. [PMID: 36839357 PMCID: PMC9962526 DOI: 10.3390/nu15040999] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Rapeseed oil is the third most consumed culinary oil in the world. It is well-known for its high content of unsaturated fatty acids, especially polyunsaturated fatty acids, which make it of great nutritional value. There is increasing evidence that a diet rich in unsaturated fatty acids offers health benefits. Although the consumption of rapeseed oil cuts across many areas around the world, the nutritional elements of rapeseed oil and the exact efficacy of the nutrients remain unclear. In this review, we systematically summarized the latest studies on functional rapeseed components to ascertain which component of canola oil contributes to its function. Apart from unsaturated fatty acids, there are nine functional components in rapeseed oil that contribute to its anti-microbial, anti-inflammatory, anti-obesity, anti-diabetic, anti-cancer, neuroprotective, and cardioprotective, among others. These nine functional components are vitamin E, flavonoids, squalene, carotenoids, glucoraphanin, indole-3-Carbinol, sterols, phospholipids, and ferulic acid, which themselves or their derivatives have health-benefiting properties. This review sheds light on the health-benefiting effects of rapeseed oil in the hope of further development of functional foods from rapeseed.
Collapse
Affiliation(s)
- Junjun Shen
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
- Faculty of Bioscience and Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China
- The Research and Development Department, Hunan Jinjian Cereals Industry, Changde 415001, China
| | - Yejia Liu
- The Research and Development Department, Hunan Jinjian Cereals Industry, Changde 415001, China
- Faculty of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415006, China
| | - Xiaoling Wang
- Faculty of Bioscience and Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jie Bai
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lizhong Lin
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
- The Research and Development Department, Hunan Jinjian Cereals Industry, Changde 415001, China
| | - Feijun Luo
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
| | - Haiyan Zhong
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
3
|
Sesquiterpenoids from the Florets of Carthamus tinctorius (Safflower) and Their Anti-Atherosclerotic Activity. Nutrients 2022; 14:nu14245348. [PMID: 36558507 PMCID: PMC9783904 DOI: 10.3390/nu14245348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
(1) Background: The florets of Carthamus tinctorius L. are traditionally used as a blood-activating drug and can be used for the treatment of atherosclerosis, but no compounds with anti-atherosclerotic activity have been reported. (2) Methods: This study investigated the chemical compounds from the florets of C. tinctorius. Comprehensive spectroscopic techniques revealed their structures, and ECD calculations established their absolute configurations. Nile Red staining, Oil Red O staining, and cholesterol assessment were performed on these compounds and their aglycones for the inhibitory activity against the formation of foam cells induced by oxidized low-density lipoprotein (ox-LDL) in RAW264.7 macrophages. In addition, RAW264.7 macrophages were tested for their anti-inflammatory activity by measuring the inhibition of NO production caused by LPS. (3) Results: Five new sesquiterpenoids (1-5) isolated from the florets of C. tinctorius were identified as (-)-(1R,4S,9S,11R)-caryophyll-8(13)-en-14-ol-5-one (1), (+)-(1R,4R,9S,11R)-caryophyll-8(13)-en-14-ol-5-one (2), (-)-(3Z,1R,5S,8S,9S,11R)-5,8-epoxycaryophyll-3-en-14-O-β-D-glucopyranoside (3), (+)-(1S,7R,10S)-guai-4-en-3-one-11-O-β-D-fucopyranoside (4), and (-)-(2R,5R,10R)-vetispir-6-en-8-one-11-O-β-D-fucopyranoside (5). All compounds except for compound 3 reduced the lipid content in ox-LDL-treated RAW264.7 cells. Compounds 3 and 4 and their aglycones were found to reduce the level of total cholesterol (TC) and free cholesterol (FC) in ox-LDL-treated RAW264.7 cells. However, no compounds showed anti-inflammatory activity. (4) Conclusion: Sesquiterpenoids from C. tinctorius help to decrease the content of lipids, TC and FC in RAW264.7 cells, but they cannot inhibit NO production, which implies that their anti-atherogenic effects do not involve the inhibition of inflammation.
Collapse
|
4
|
Wójciak M, Mazurek B, Tyśkiewicz K, Kondracka M, Wójcicka G, Blicharski T, Sowa I. Blackcurrant ( Ribes nigrum L.) Seeds-A Valuable Byproduct for Further Processing. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248679. [PMID: 36557810 PMCID: PMC9781738 DOI: 10.3390/molecules27248679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
The rational exploitation of byproducts is important from the point of view of their potential applicability in various fields. In this study, the possibility of further processing of blackcurrant seeds (BCs), which are a byproduct of fruit processing, was investigated. BCs were used as a material for the extraction of oil on a semi-industrial scale, and the residues were assessed in terms of their potential application in skin care products. Supercritical fluid extraction (SFE) using CO2 at pressures of 230 and 330 bar and extraction temperature of 40 °C was exploited for isolation of oil, and the products were characterised taking into account lipophilic constituents. After 120 min, the oil yields were 19.67% and 20.94% using CO2 at 230 and 330 bar, respectively, which showed that SFE was an effective method on a semi-industrial scale, taking into account the extraction yield. The oils had similar fatty acid compositions with a high percentage of linoleic acid (ca. 43%); however, tocopherols and carotenoids were most abundant in the oil obtained at 230 bar. It was also found that the composition of the SFE oils was comparable with that of cold-pressed oil, which shows that supercritical fluid extraction provides a high-quality product; therefore, it can be an alternative to cold pressing. Furthermore, the chemical compositions of the extracts from the oil isolation residues were established using UPLC-MS, and the impact of the extracts on human skin fibroblasts was assessed using the MTT and NR assays. The quantitative analysis revealed that the residues contained high amounts of polyphenolic acids, including gallic, protocatechuic, and hydroxybenzoic acid derivatives, as well as flavonoids, especially quercetin and kaempferol glucoside. Moreover, it was found that the extracts were nontoxic and exerted a stimulatory effect on cell metabolism. Therefore, they can be a valuable additive to natural plant-based cosmetics. Our results showed that blackcurrant seeds, regarded as a byproduct, can be a valuable material for further use.
Collapse
Affiliation(s)
- Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Correspondence:
| | - Barbara Mazurek
- Analytical Department, Łukasiewicz Research Network—New Chemical Syntheses Institute, Aleja Tysiąclecia Państwa Polskiego 13a, 24-110 Pulawy, Poland
| | - Katarzyna Tyśkiewicz
- Analytical Department, Łukasiewicz Research Network—New Chemical Syntheses Institute, Aleja Tysiąclecia Państwa Polskiego 13a, 24-110 Pulawy, Poland
| | - Małgorzata Kondracka
- Analytical Department, Łukasiewicz Research Network—New Chemical Syntheses Institute, Aleja Tysiąclecia Państwa Polskiego 13a, 24-110 Pulawy, Poland
| | - Grażyna Wójcicka
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Tomasz Blicharski
- Department of Rehabilitation and Orthopaedics, Medical University of Lublin, 20-059 Lublin, Poland
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|
5
|
Spray dried nanoemulsions loaded with curcumin, resveratrol, and borage seed oil: The role of two different modified starches as encapsulating materials. Int J Biol Macromol 2021; 186:820-828. [PMID: 34280445 DOI: 10.1016/j.ijbiomac.2021.07.076] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/03/2021] [Accepted: 07/12/2021] [Indexed: 12/21/2022]
Abstract
Recently, food industries are directing on the promotion of innovative food matrices fortified with bioactive compounds in order to enhance the consumer's health. Octenyl succinic anhydride modified starches (OSA-MS) such as Hi-cap100 (HCP) and purity gum 2000 (PUG) were used to fabricate emulsions co-entrapped with borage seed oil (BSO), resveratrol (RES) and curcumin (CUR), which were further spray dried to obtain powders. The fabricated microcapsules loaded with BSO, RES, and CUR displayed excellent dissolution performance, high encapsulation efficiency (≈93.05%) as well as semi-spherical shape, revealed via scanning electron microscopy (SEM). We also evaluated the impact of storage time (4 weeks) and temperature (40 °C) on the physicochemical characterization of OSA-MS coated microcapsules. Microcapsules coated with HCP exhibited greater oxidative stability, lower water activity and moisture contents rather than PUG coated microcapsules during storage because of its good film-forming properties. Addition of CUR enhanced the oxidative stability and retention of bioactive compounds. HCP microcapsules loaded with BSO + RES + CUR presented supreme retention of RES (70.32%), CUR 81.6% and γ-linolenic acid (≈ 96%). Our findings showed that CUR acted as an antioxidant agent; also, lower molecular weight OSA-MS as wall material could be used for the entrapment of bioactive compounds and promotion of innovative food products.
Collapse
|
6
|
Lan X, Zhou T, Dong Y, Li Y, Liu X, Qiang W, Liu Y, Guo Y, Noman M, Li J, Du L, Li X, Yang J. Dermal toxicity, dermal irritation, and delayed contact sensitization evaluation of oil body linked oleosin-hEGF microgel emulsion via transdermal drug delivery for wound healing. Cutan Ocul Toxicol 2021; 40:45-53. [PMID: 33438439 DOI: 10.1080/15569527.2021.1874008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Objective: The expression of therapeutic proteins in plant oil body bioreactors has attracted much attention. But its safety is not yet clear. This article determines the risk of safety after using the drug. Methods: The oil body-linked oleosin-hEGF microgel emulsion (OBEME) was prepared by mixing the xanthan gum with suitable concentrations in an appropriate proportion. Skin irritation and sensitization reaction were investigated in rats and guinea pigs using OBEME as test article.Results: The OBEME did not produce dermal erythema/eschar or oedema responses. The dermal subacute and subchronic toxicity of OBEME were evaluated in accordance with OECD guidelines. Compared with the control group, the basic physical signs, such as weight, feed, drinking, excretion, and behaviour of experimental animals, were not abnormal. In addition, no abnormality was found in haematological parameters, biochemical indexes, relative organ weight, and histopathological observation of organs, and there was no significant difference compared with normal saline treatment group. Therefore, we conclude that OBEME has no toxic effects and is safe and reliable to be used for topical application.
Collapse
Affiliation(s)
- Xinxin Lan
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, PR China
| | - Tingting Zhou
- Jilin Kingmed for Clinical Laboratory Co., Ltd, Changchun, PR China
| | - Yue Dong
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, PR China
| | - Yuyan Li
- Jilin Kingmed for Clinical Laboratory Co., Ltd, Changchun, PR China
| | - Xinyu Liu
- Jilin Kingmed for Clinical Laboratory Co., Ltd, Changchun, PR China
| | - Weidong Qiang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, PR China
| | - Yan Liu
- Jilin Kingmed for Clinical Laboratory Co., Ltd, Changchun, PR China
| | - Yongxin Guo
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, PR China
| | - Muhammad Noman
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, PR China
| | - Jing Li
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, PR China
| | - Linna Du
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, PR China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, PR China
| | - Jing Yang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, PR China
| |
Collapse
|
7
|
Lyashenko S, González-Fernández MJ, Borisova S, Belarbi EH, Guil-Guerrero JL. Mertensia (Boraginaceae) seeds are new sources of γ-linolenic acid and minor functional compounds. Food Chem 2020; 350:128635. [PMID: 33317855 DOI: 10.1016/j.foodchem.2020.128635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 11/16/2022]
Abstract
In this work, seeds from selected Mertensia species were analyzed for γ-linolenic acid-rich oils and minor functional compounds. Fatty acids (FA) were analyzed by GC-FID; tocopherols, sterols, squalene, and phenolics compounds by HPLC-DAD, and the structures of the latter were confirmed by LC-MS. M. maritima spp. asiatica and M. sibirica showed the highest amounts of γ-linolenic acid (22.8 and 18.7%, respectively) and total FA (15.9 and 10.9 g/100 g seeds, respectively). M. sibirica had the greatest levels of sterols, phenolics and tocopherols (244.8, 243.9 and 66.3 mg/100 g, respectively), in which stigmasterol, rosmarinic acid and α-tocopherol (237.7, 180.1 and 53.6 mg/100 g, respectively) were the most abundant components. M. maritima spp. asiatica and M. arizonica showed the highest amounts of squalene (2.5 and 1.1 mg /100 g seeds). Mertensia species constitute a new source of GLA-rich oils, suitable to be marketed by the pharmaceutical and food industries.
Collapse
Affiliation(s)
| | | | - Sargilana Borisova
- Botanic Garden of North-Eastern Federal University, 677000 Yakutsk, Russia
| | | | | |
Collapse
|
8
|
Rehman A, Jafari SM, Tong Q, Karim A, Mahdi AA, Iqbal MW, Aadil RM, Ali A, Manzoor MF. Role of peppermint oil in improving the oxidative stability and antioxidant capacity of borage seed oil-loaded nanoemulsions fabricated by modified starch. Int J Biol Macromol 2020; 153:697-707. [DOI: 10.1016/j.ijbiomac.2020.02.292] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 11/17/2022]
|
9
|
Chew SC. Cold-pressed rapeseed (Brassica napus) oil: Chemistry and functionality. Food Res Int 2020; 131:108997. [DOI: 10.1016/j.foodres.2020.108997] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/03/2019] [Accepted: 01/08/2020] [Indexed: 01/22/2023]
|
10
|
Aranaz P, Zabala M, Romo-Hualde A, Navarro-Herrera D, López-Yoldi M, Vizmanos JL, Martínez JA, Milagro FI, González-Navarro CJ. A combination of borage seed oil and quercetin reduces fat accumulation and improves insulin sensitivity in obese rats. Food Funct 2020; 11:4512-4524. [PMID: 32391533 DOI: 10.1039/d0fo00504e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The metabolic properties of omega-6 fatty acid consumption are being increasingly accepted. We had previously observed that supplementation with a borage seed oil (BSO), as a source of linoleic (18:2n-6; LA) and gamma-linolenic (18:3n-6; GLA) acids, reduces body weight and visceral adiposity and improves insulin sensitivity in a diet-induced obesity model of Wistar rats. Here, it was investigated whether the anti-obesogenic properties of BSO could be maintained in a pre-obese model of rats, and if these effects are enhanced by a combination with low doses of quercetin, together with its potential role in the regulation of the adipocyte biology. The combination of BSO and quercetin during 8 weeks was able to ameliorate glucose intolerance and insulin resistance, and to improve liver steatosis. Although no effects were observed on body weight, animals supplemented with this combination exhibited a lower proportion of visceral adiposity. In addition, in vitro differentiation of epididymal adipose-precursor cells of the BSO-treated animals exhibited a down-regulation of Fasn, Glut4, Pparg and Srebp1 genes, in comparison with the control group. Finally, in vitro evaluation of the components of BSO demonstrated that the anti-adipogenic activity of quercetin was significantly potentiated by the combination with both LA and GLA through the down-regulation of different adipogenesis-key genes in 3T3-L1 cells. All these data suggest that omega-6 fatty acids LA and GLA, and their natural sources such as BSO, could be combined with quercetin to potentiate their effects in the prevention of the excess of adiposity and the insulin resistance.
Collapse
Affiliation(s)
- Paula Aranaz
- Center for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wang L, Chen Z, Han B, Wu W, Zhao Q, Wei C, Liu W. Comprehensive analysis of volatile compounds in cold-pressed safflower seed oil from Xinjiang, China. Food Sci Nutr 2020; 8:903-914. [PMID: 32148799 PMCID: PMC7020304 DOI: 10.1002/fsn3.1369] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/19/2019] [Accepted: 11/06/2019] [Indexed: 11/07/2022] Open
Abstract
Three varieties of safflower seed oil (SSO) from Xinjiang Autonomous Region, China, were analyzed by headspace solid-phase micro-extraction gas chromatography coupled with mass spectrometry (HS-SPME-GC-MS) to reveal volatile components. Overall, 67 volatile components were determined and four compounds including isoamyl alcohol, caproic acid, n-pentanal, and heptanal were newly identified in SSO as aroma-active components. Meanwhile, 16 compounds were selected by relative odor activity value (ROAV) to evaluate contributions of single compounds to the overall odor (ROAV > 1), in which nonanal, (Z)-6-nonenal, and (E)-2,4-decadienal were the top three contributed substances (ROAV > 70). The sensory panel was described as eight definition terms (grassy, fruity, almond, mushroom, fatty, sweet, paddy, and overall fragrance). Principal component analysis (PCA) revealed a significant separation of three cultivars with the first principal component (PC-1) and the second principal component (PC-2) expressing 73.9% and 23.1%, respectively. Both PCA and ROAV allowed identifying the compounds positively correlated to sensory evaluation.
Collapse
Affiliation(s)
- Lin Wang
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and UtilizationMinistry of EducationShihezi UniversityShiheziChina
| | - Zhuo Chen
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and UtilizationMinistry of EducationShihezi UniversityShiheziChina
| | - Bo Han
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of EducationShihezi UniversityShiheziChina
| | - Wenxia Wu
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and UtilizationMinistry of EducationShihezi UniversityShiheziChina
| | - Qiaoling Zhao
- Post‐Doctoral Research Station of Xinjiang Sailimu Modern Agriculture Co.BoleChina
| | - Changqing Wei
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and UtilizationMinistry of EducationShihezi UniversityShiheziChina
- Post‐Doctoral Research Station of Xinjiang Sailimu Modern Agriculture Co.BoleChina
| | - Wenyu Liu
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and UtilizationMinistry of EducationShihezi UniversityShiheziChina
| |
Collapse
|
12
|
Ribes taxa: A promising source of γ-linolenic acid-rich functional oils. Food Chem 2019; 301:125309. [DOI: 10.1016/j.foodchem.2019.125309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 11/24/2022]
|
13
|
Mosińska P, Martín-Ruiz M, González A, López-Miranda V, Herradón E, Uranga JA, Vera G, Sánchez-Yáñez A, Martín-Fontelles MI, Fichna J, Abalo R. Changes in the diet composition of fatty acids and fiber affect the lower gastrointestinal motility but have no impact on cardiovascular parameters: In vivo and in vitro studies. Neurogastroenterol Motil 2019; 31:e13651. [PMID: 31145538 DOI: 10.1111/nmo.13651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/30/2019] [Accepted: 05/17/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Food and diet are central issues for proper functioning of the cardiovascular (CV) system and gastrointestinal (GI) tract. We hypothesize that different types of dietary FAs affect CV parameters as well as GI motor function and visceral sensitivity. METHODS Male Wistar rats were fed with control diet (CTRL), diet supplemented with 7% soybean oil (SOY), SOY + 3.5% virgin coconut oil (COCO), and SOY + 3.5% evening primrose oil (EP) for 4 weeks. The content of insoluble fiber in CTRL was higher than in SOY, COCO, or EP. Body weight gain and food/water intake were measured. At day 28, biometric, biochemical, CV parameters, GI motor function (X-ray and colon bead expulsion test), and visceral sensitivity were evaluated. Changes in propulsive colonic activity were determined in vitro. The colon and adipose tissue were histologically studied; the number of mast cells (MCs) in the colon was calculated. RESULTS SOY, COCO, and EP had increased body weight gain but decreased food intake vs CTRL. Water consumption, biometric, biochemical, and CV parameters were comparable between groups. SOY increased the sensitivity to colonic distention. All groups maintained regular propulsive neurogenic contractions; EP delayed colonic motility (P < 0.01). SOY, COCO, and EP displayed decreased size of the cecum, lower number and size of fecal pellets, and higher infiltration of MCs to the colon (P < 0.001). CONCLUSIONS AND INFERENCES Dietary FAs supplementation and lower intake of insoluble fiber can induce changes in the motility of the lower GI tract, in vivo and in vitro, but CV function and visceral sensitivity are not generally affected.
Collapse
Affiliation(s)
- Paula Mosińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Marta Martín-Ruiz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio González
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Visitación López-Miranda
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada al Instituto de Química Medica (IQM) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Esperanza Herradón
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada al Instituto de Química Medica (IQM) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Spain
| | - José A Uranga
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Gema Vera
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada al Instituto de Química Medica (IQM) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Adrián Sánchez-Yáñez
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Mª Isabel Martín-Fontelles
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada al Instituto de Química Medica (IQM) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Raquel Abalo
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada al Instituto de Química Medica (IQM) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Spain
| |
Collapse
|
14
|
Sengupta S, Koley H, Dutta S, Bhowal J. Antioxidant and Hypocholesterolemic Properties of Functional Soy Yogurts Fortified with ω‐3 and ω‐6 Polyunsaturated Fatty Acids in Balb/c Mice. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Samadrita Sengupta
- School of Community Science and TechnologyIndian Institute of Engineering Science and TechnologyShibpurHowrah711103West BengalIndia
| | - Hemanta Koley
- Indian Council of Medical Research‐National Institute of Cholera and Enteric DiseasesP‐33, C.I.T. Road, Scheme XMBeliaghataKolkata700010West BengalIndia
| | - Shanta Dutta
- Indian Council of Medical Research‐National Institute of Cholera and Enteric DiseasesP‐33, C.I.T. Road, Scheme XMBeliaghataKolkata700010West BengalIndia
| | - Jayati Bhowal
- School of Community Science and TechnologyIndian Institute of Engineering Science and TechnologyShibpurHowrah711103West BengalIndia
| |
Collapse
|
15
|
Guil-Guerrero JL, Gómez-Mercado F, Ramos-Bueno RP, González-Fernández MJ, Urrestarazu M, Jiménez-Becker S, de Bélair G. Fatty acid profiles and sn -2 fatty acid distribution of γ-linolenic acid-rich Borago species. J Food Compost Anal 2018. [DOI: 10.1016/j.jfca.2017.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Li RY, Shi Y. Microencapsulation of borage oil with blends of milk protein, β-glucan and maltodextrin through spray drying: physicochemical characteristics and stability of the microcapsules. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:896-904. [PMID: 28686292 DOI: 10.1002/jsfa.8535] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 06/30/2017] [Accepted: 07/01/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Borage oil is a rich commercial source of γ-linolenic acid (18:3n-6). However, borage oil is rich in omega-6 polyunsaturated fatty acids and vulnerable to oxidation. Thus, selecting appropriate wall materials is critical to the encapsulation of borage oil. The present study investigated the influence of wall materials on the physicochemical characteristics and stability of microencapsulated borage oil by spray drying. Blends of milk protein [sodium caseinate (CAS) or whey protein concentrate], β-glucan (GLU) and maltodextrin (MD) were used as the wall materials for encapsulating borage oil. RESULTS The microencapsulation of borage oil with different wall materials attained high encapsulation efficiencies. The microencapsulated borage oil prepared with CAS-MD achieved the optimal encapsulation efficiency of 96.62%. The oxidative stabilities of borage oil and microencapsulated borage oil were measured by accelerated storage test at 45 °C and 33% relative humidity for 30 days. The microencapsulated borage oil presented lower peroxide values than those of borage oil, and the microcapsules prepared with CAS-10GLU-MD (consisting of CAS 50 g kg-1 , GLU 100 g kg-1 and MD 475 g kg-1 of microencapsulation) conferred borage oil with high protection against lipid oxidation. CONCLUSION The results of the present study demonstrate that the CAS-GLU-MD blend is appropriate for microencapsulating borage oil. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ru-Yi Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi, China
| | - Yan Shi
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi, China
| |
Collapse
|
17
|
Ganesan K, Sukalingam K, Xu B. Impact of consumption and cooking manners of vegetable oils on cardiovascular diseases- A critical review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Oliván-Viguera A, Lozano-Gerona J, López de Frutos L, Cebolla JJ, Irún P, Abarca-Lachen E, García-Malinis AJ, García-Otín ÁL, Gilaberte Y, Giraldo P, Köhler R. Inhibition of Intermediate-Conductance Calcium-Activated K Channel (KCa3.1) and Fibroblast Mitogenesis by α-Linolenic Acid and Alterations of Channel Expression in the Lysosomal Storage Disorders, Fabry Disease, and Niemann Pick C. Front Physiol 2017; 8:39. [PMID: 28197106 PMCID: PMC5281581 DOI: 10.3389/fphys.2017.00039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/13/2017] [Indexed: 01/02/2023] Open
Abstract
The calcium/calmodulin-gated KCa3.1 channel regulates normal and abnormal mitogenesis by controlling K+-efflux, cell volume, and membrane hyperpolarization-driven calcium-entry. Recent studies suggest modulation of KCa3.1 by omega-3 fatty acids as negative modulators and impaired KCa3.1 functions in the inherited lysosomal storage disorder (LSD), Fabry disease (FD). In the first part of present study, we characterize KCa3.1 in murine and human fibroblasts and test the impact of omega-3 fatty acids on fibroblast proliferation. In the second, we study whether KCa3.1 is altered in the LSDs, FD, and Niemann-Pick disease type C (NPC). Our patch-clamp and mRNA-expression studies on murine and human fibroblasts show functional expression of KCa3.1. KCa currents display the typical pharmacological fingerprint of KCa3.1: Ca2+-activation, potentiation by the positive-gating modulators, SKA-31 and SKA-121, and inhibition by TRAM-34, Senicapoc (ICA-17043), and the negative-gating modulator, 13b. Considering modulation by omega-3 fatty acids we found that α-linolenic acid (α-LA) and docosahexanenoic acid (DHA) inhibit KCa3.1 currents and strongly reduce fibroblast growth. The α-LA-rich linseed oil and γ-LA-rich borage oil at 0.5% produce channel inhibition while α-LA/γ-LA-low oils has no anti-proliferative effect. Concerning KCa3.1 in LSD, mRNA expression studies, and patch-clamp on primary fibroblasts from FD and NPC patients reveal lower KCa3.1-gene expression and membrane expression than in control fibroblasts. In conclusion, the omega-3 fatty acid, α-LA, and α-LA/γ-LA-rich plant oils, inhibit fibroblast KCa3.1 channels and mitogenesis. Reduced fibroblast KCa3.1 functions are a feature and possible biomarker of cell dysfunction in FD and NPC and supports the concept that biased lipid metabolism is capable of negatively modulating KCa3.1 expression.
Collapse
Affiliation(s)
- Aida Oliván-Viguera
- Biomedical Signal Interpretation and Computational Simulation Group, Aragón Institute for Engineering Research (I3A), University of ZaragozaZaragoza, Spain; Instituto de Investigación Sanitaria AragónZaragoza, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and NanomedicineZaragoza, Spain
| | - Javier Lozano-Gerona
- Instituto de Investigación Sanitaria AragónZaragoza, Spain; Aragón Institute of Health SciencesZaragoza, Spain; Departamento de Bioquímica, Biología Molecular y Celular, Facultad de Ciencias, Universidad de ZaragozaZaragoza, Spain
| | - Laura López de Frutos
- Instituto de Investigación Sanitaria AragónZaragoza, Spain; Spanish Foundation for the Study and Treatment of Gaucher Disease and Other Lysosomal DisordersZaragoza, Spain
| | - Jorge J Cebolla
- Instituto de Investigación Sanitaria AragónZaragoza, Spain; Departamento de Bioquímica, Biología Molecular y Celular, Facultad de Ciencias, Universidad de ZaragozaZaragoza, Spain; Centro de Investigación Biomédica en Red de Enfermedades RarasZaragoza, Spain
| | - Pilar Irún
- Instituto de Investigación Sanitaria AragónZaragoza, Spain; Centro de Investigación Biomédica en Red de Enfermedades RarasZaragoza, Spain
| | - Edgar Abarca-Lachen
- Faculty of Health Sciences, Universidad San Jorge Villanueva de Gállego, Spain
| | | | - Ángel Luis García-Otín
- Instituto de Investigación Sanitaria AragónZaragoza, Spain; Aragón Institute of Health SciencesZaragoza, Spain
| | | | - Pilar Giraldo
- Instituto de Investigación Sanitaria AragónZaragoza, Spain; Aragón Institute of Health SciencesZaragoza, Spain; Spanish Foundation for the Study and Treatment of Gaucher Disease and Other Lysosomal DisordersZaragoza, Spain; Centro de Investigación Biomédica en Red de Enfermedades RarasZaragoza, Spain
| | - Ralf Köhler
- Instituto de Investigación Sanitaria AragónZaragoza, Spain; Aragón Institute of Health SciencesZaragoza, Spain; Centro de Investigación Biomédica en Red de Enfermedades RarasZaragoza, Spain; Aragón Agency for Research and DevelopmentZaragoza, Spain
| |
Collapse
|
19
|
Beneficial effects of enrichment of chicken meat with n-3 polyunsaturated fatty acids, vitamin E and selenium on health parameters: a study on male rats. Animal 2016; 11:1412-1420. [PMID: 27993178 DOI: 10.1017/s1751731116002652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Consumption of chicken meat enriched with bioactive compounds such as n-3 polyunsaturated fatty acids (PUFAn-3), vitamin E (vE) and selenium (Se) can help prevent many diseases and can be used to deliver those substances to humans. This might be of importance as chicken meat consumption is increasing worldwide. The effects of enriching chicken meat with PUFAn-3, vE and Se through dietary interventions were studied in rats. Four groups of Ross 308 female broilers from day 22 to day 35 of age were fed control diet (L) that contained lard and 80 mg vE and 0.3 mg Se/kg, or diets that contained rape seeds and fish oil with the same level of Se and vE as in the control diet, the same level of Se as in the control and 150 mg vE/kg, or 150 mg of vE and 0.7 mg Se/kg. Broiler carcasses were boiled, deboned, lyophilized and pooled by group. Boiled edible components of chicken carcass (BECC) were included (240 g/kg) in the diets fed to four groups of ten 10-week-old Wistar male rats for 8 weeks. Inclusion of BECCs modulated dietary fatty acid profile in the rat diets. Feeding these diets did not influence parameters related to growth or relative weights of internal organs in the rats. Feeding BECCs with lower PUFAn-6/n-3 decreased the n-6/n-3 ratio in the rat brain and liver, and increased the proportion of docosahexaenoic acid in the brain lipids. Liver cholesterol level was similar among the experimental groups, whereas the concentration of vE in the liver of rats fed BECC with increased vE levels was higher than that in the rats fed BECC with the basal vE level. Haematological and biochemical parameters in blood were within the normal range for rats, but a few rats showed a tendency towards increased levels because of the higher vE and Se level. The health-promoting effect of feeding rats PUFAn-3 enriched BECC was more pronounced when an increased dietary level of vE was used, but the increased level of Se did not provide the rats with additional benefits. Thus, the findings indicate that BECC enriched with PUFAn-3 and vE by a dietary intervention is a functional food with great potential of implementation.
Collapse
|
20
|
Guil-Guerrero JL, Gómez-Mercado F, Ramos-Bueno RP, González-Fernández MJ, Urrestarazu M, Rincón-Cervera MÁ. Sardinian Boraginaceae are new potential sources of gamma-linolenic acid. Food Chem 2016; 218:435-439. [PMID: 27719932 DOI: 10.1016/j.foodchem.2016.09.111] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 08/28/2016] [Accepted: 09/16/2016] [Indexed: 11/26/2022]
Abstract
The aim of this work was to establish the richness in γ-linolenic acid (GLA, 18:3n6) and stearidonic acid (SDA, 18:4n3) of several Sardinian Boraginaceae species. To this end, seeds of selected species were collected from their natural habitats and analysed. The highest GLA contents were found in the seed oils of two endemic Borago taxa, i.e. B. morisiana (24.4 and 24.6% GLA of total fatty acids for samples from San Pietro Island and Sardinia Island, respectively), and 22.9% GLA for B. pygmaea. Both Borago species contained more GLA than B. officinalis collected in the same ecosystems. SDA was found in significant amounts in Echium plantagineum seed oil from the Lattias Mountains (15% SDA of total fatty acids). It is notable that both Borago GLA-rich species are under threat of extinction, thus revealing the importance of the preservation of the natural Sardinian ecosystems for endangered species and human health.
Collapse
Affiliation(s)
- José Luis Guil-Guerrero
- Food Technology Division, University of Almería, La Cañada de San Urbano s/n, 04120 Almería, Spain.
| | | | - Rebeca Pilar Ramos-Bueno
- Food Technology Division, University of Almería, La Cañada de San Urbano s/n, 04120 Almería, Spain
| | | | - Miguel Urrestarazu
- Agronomy Division, University of Almería, La Cañada de San Urbano s/n, 04120 Almería, Spain
| | - Miguel Ángel Rincón-Cervera
- Food Technology Division, University of Almería, La Cañada de San Urbano s/n, 04120 Almería, Spain; Institute of Nutrition and Food Technology, University of Chile, El Líbano 5524, Macul, Santiago, Chile
| |
Collapse
|
21
|
Bialek A, Bialek M, Jelinska M, Tokarz A. Fatty acid composition and oxidative characteristics of novel edible oils in Poland. CYTA - JOURNAL OF FOOD 2016. [DOI: 10.1080/19476337.2016.1190406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|