1
|
Igarashi Y. Development of a drug discovery approach from microbes with a special focus on isolation sources and taxonomy. J Antibiot (Tokyo) 2023:10.1038/s41429-023-00625-y. [PMID: 37188757 DOI: 10.1038/s41429-023-00625-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023]
Abstract
After the successful discoveries of numerous antibiotics from microorganisms, frequent reisolation of known compounds becomes an obstacle in further development of new drugs from natural products. Exploration of biological sources that can provide novel scaffolds is thus an urgent matter in drug lead screening. As an alternative source to the conventionally used soil microorganisms, we selected endophytic actinomycetes, marine actinomycetes, and actinomycetes in tropical areas for investigation and found an array of new bioactive compounds. Furthermore, based on the analysis of the distribution pattern of biosynthetic gene clusters in bacteria together with available genomic data, we speculated that biosynthetic gene clusters for secondary metabolites are specific to each genus. Based on this assumption, we investigated actinomycetal and marine bacterial genera from which no compounds have been reported, which led to the discovery of a variety of skeletally novel bioactive compounds. These findings suggest that consideration of environmental factor and taxonomic position is critically effective in the selection of potential strains producing structurally unique compounds.
Collapse
Affiliation(s)
- Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.
| |
Collapse
|
2
|
Ginsenoside Rb1 from Panax notoginseng Suppressed TNF-α-Induced Matrix Metalloproteinase-9 via the Suppression of Double-Strand RNA-Dependent Protein Kinase (PKR)/NF-κB Pathway. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228050. [PMID: 36432152 PMCID: PMC9692425 DOI: 10.3390/molecules27228050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
Chronic inflammation is commonly accompanied by the stimulation of matrix metalloproteinases (MMPs) production and the degradation of the extracellular matrix. The overexpression of MMP-9 (Gelatinase B) highly participates in the progression of pathetic cardiac remodeling and liver cancer metastasis. Panax notoginseng (Burkill) F. H. Chen (Sanqi), a widely used traditional Chinese medicinal herb, shows myocardial protective and anti-tumor effects. In this study, we examined the inhibitory effect of different PNG extracts on tumor necrosis factor (TNF)-α-induced MMP-9 expression in cardiac myoblast H9c2 cells. Using a bioassay-guided fractionation scheme, the most active extract was fractionated by silica gel column chromatography and high-performance liquid chromatography until an active compound was obtained. The compound was identified as Ginsenoside Rb1 by nuclear magnetic resonance. Ginsenoside Rb1 inhibited TNF-α-induced MMP-9 production in both H9c2 and liver carcinoma HepG-2 cells. Interestingly, it did not affect the MMP-2 (Gelatinase A) level and the cell proliferation of the two cell lines. The inhibitory effects of Ginsenoside Rb1 may be due to its modulation of double-strand RNA-dependent protein kinase and nuclear factor kappa B signaling pathways. The results reveal the potential use of Ginsenoside Rb1 for the treatment of inflammatory and MMP-9-related cardiac remodeling and metastasis of hepatocellular carcinomas.
Collapse
|
3
|
S N Chaitanya N, Devi A, Sahu S, Alugoju P. Molecular mechanisms of action of Trehalose in cancer: A comprehensive review. Life Sci 2021; 269:118968. [PMID: 33417959 DOI: 10.1016/j.lfs.2020.118968] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023]
Abstract
Cellular homeostasis maintained by several cellular processes such as autophagy, apoptosis, inflammation, oxidative stress, aging, and neurodegeneration, contribute to cell growth and development. Cancer cells undergo aberrant changes from a normal cell that show abnormal behaviour such as reduced apoptosis and autophagy, increased oxidative stress and inflammation. Various pharmacological and genetic inhibitors have been reported as drug candidates to control cancer cells, but the use of natural molecules as anti-cancer agents are limited. There is an emerging need for the development of alternative natural therapeutic agents that maintain cellular homeostasis without affecting cell viability and physiology. This review highlights the multifunctional roles of Trehalose, a natural disaccharide that can target various cellular processes in the cancer. Trehalose possessing an antioxidant activity also has effect on cancer, which is explained through targeting cell progression, angiogenesis and metastasis pathways at molecular level targeting EGFR, PI3K, Akt, VEGF and MMP 9 proteins inside the cell.
Collapse
Affiliation(s)
- Nyshadham S N Chaitanya
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Telangana State 500046, India
| | - Arpita Devi
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Sibani Sahu
- Department of Human Genetics, Andhra University, Visakhapatnam, Andhra Pradesh 530001, India
| | - Phaniendra Alugoju
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
4
|
Nandy S, Dey A. Bibenzyls and bisbybenzyls of bryophytic origin as promising source of novel therapeutics: pharmacology, synthesis and structure-activity. Daru 2020; 28:701-734. [PMID: 32803687 PMCID: PMC7429097 DOI: 10.1007/s40199-020-00341-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The amphibian, non-vascular, gametophyte-dominant, bio-indicator class, bryophytes; with their wide ranges of habitat have attained importance due to their promising medicinal attributions and therapeutic role; mostly aided by presence of aromatic bibenzyl and bisbybenzyl class of compounds. Bibenzyls are steroidal ethane derivatives, resembling the structural moiety of bioactive dihydro-stilbenoids or iso-quinoline alkaloids. These stress triggered secondary metabolites are the by-products of the flavonoid biosynthetic pathway. Different classes of bryophytes (Bryophyta, Marchantiophyta and Anthocerotophyta) possess different subtypes of bibenzyls and dimeric bisbibenzyls. Among the liverwort, hornwort and mosses, former one is mostly enriched with bibenzyl type constituents as per the extensive study conducted for phytochemical deposit. Considering macrocyclic and acyclic group of bibenzyls and bisbybenzyls, generally marchantin type compounds are reported vividly for significant biological activity that includes neuro-nephro-cardio-protection besides anti-allergic, anti-microbial, anti-apoptotic and cytotoxic activities studied on in-vitro and in-vivo models or on cell lines. RESULT The critical analysis of reported chemical and pharmaceutical attributions of bibenzyls and bis-bibenzyls yielded detailed report on this compound class along with their application, mode of action, natural source, techniques of synthesis, extraction procedure, isolation and characterization. Further, the structure activity relationship studies and bioactivity of bibenzyls derived from non-bryophytic origin were also summarized. CONCLUSION This review encompasses prospective biological application of botanical reservoir of this primarily ignored, primeval land plant group where recent technical advances has paved the way for qualitative and quantitative isolation and estimation of novel compounds as well as marker components to study their impact on environment, as bio-control agents and as key leads in future drug designing. Graphical abstract.
Collapse
Affiliation(s)
- Samapika Nandy
- Research Scholar, Department of Life Sciences, Presidency University, Kolkata, 700073 India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, 700073 India
| |
Collapse
|
5
|
Khajeh E, Rasmi Y, Kheradmand F, Malekinejad H, Aramwit P, Saboory E, Daeihassani B, Nasirzadeh M. Crocetin suppresses the growth and migration in HCT-116 human colorectal cancer cells by activating the p-38 MAPK signaling pathway. Res Pharm Sci 2020; 15:592-601. [PMID: 33828602 PMCID: PMC8020854 DOI: 10.4103/1735-5362.301344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 05/09/2020] [Accepted: 11/14/2020] [Indexed: 11/08/2022] Open
Abstract
Background and purpose: Crocetin is a natural antioxidant that is found in the crocus flower and Gardenia jasminoides (fruit). Previous studies have reported its anticancer activity both in vivo and in vitro. In addition, crocetin suppresses the growth and migration of human colorectal cancer cells, however, its mechanism of action remains to be elucidated. Therefore, the present study investigated the molecular mechanism of crocetin effect on colorectal cancer cells (HCT-116) in vitro. Experimental approach: HCT-116 cells were treated with different concentrations (0, 200, 400, 600, and 800 μM) of crocetin for 24 h. The cell survival rate was measured by MTT assay. Cell migration capacity was evaluated using the wound healing assay. The expression levels of vascular endothelial growth factor (VEGF) and matrix metalloproteinase (MMP-9) was monitored by RT-PCR. Phosphorylation of focal adhesion kinase (FAK) and p38 mitogen-activated protein kinase (MAPK) was determined using western blot. Findings/Results: The proliferation of HCT-116 was inhibited by crocetin at 800 μM (P < 0.001). Crocetin prevented migration of HCT-116 cells (P < 0.05) and suppressed VEGF and MMP-9 mRNA expression (P < 0.001) and increased phosphorylation of p38 (MAPK; P < 0.001). However, no significant change in the phosphorylation of FAK was observed. Conclusion and implication: These data suggested that crocetin-induced growth- and migration- suppressing effects on HCT-116 cells may partially depend on the regulation of the p38 (MAPK) signaling pathway.
Collapse
Affiliation(s)
- Esmaeil Khajeh
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, I.R. Iran
| | - Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, I.R. Iran.,Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, I.R. Iran
| | - Fatemeh Kheradmand
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, I.R. Iran
| | - Hassan Malekinejad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, I.R. Iran
| | - Pornanong Aramwit
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Ehsan Saboory
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, I.R. Iran
| | | | - Mahdieh Nasirzadeh
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, I.R. Iran
| |
Collapse
|
6
|
Tao Z, Suo H, Zhang L, Jin Z, Wang Z, Wang D, Wu M, Peng N, Zhao Y, Chen B. MRPL13 is a Prognostic Cancer Biomarker and Correlates with Immune Infiltrates in Breast Cancer. Onco Targets Ther 2020; 13:12255-12268. [PMID: 33273831 PMCID: PMC7708783 DOI: 10.2147/ott.s263998] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/13/2020] [Indexed: 01/19/2023] Open
Abstract
Objective To study the expression of MRPL13 in breast cancer tissues using TCGA database, analyze the correlation between the expression and clinicopathological characteristics of patients, and explore the role of MRPL13 in the development of breast cancer (BC). Methods The BC mRNA data and clinical information were downloaded from TCGA database. The correlation between MRPL13 expression and clinicopathological parameters was analyzed. Cox regression multivariate analysis was used to explore the factors affecting the prognosis of BC patients. The UALCAN database was used to analyze the expression level of MRPL13 in BC and its relationship with clinical pathological factors. The GSEA method was used to predict the possible regulatory pathways of MRPL13. Immune responses of MRPL13 expression were analyzed using TISIDB and CIBERSORT. Additionally, GEPIA, K-M survival analysis and data from the HPA were used to validate the outcomes. Results The expression of MRPL13 in BC tissues was significantly higher than normal counterparts, patients with low MRPL13 expression had a better survival prognosis, also indicated an independent prognostic factor. GSEA analysis showed that the regulation of cell migration, positive regulation of endothelial cell migration, and Notch signaling pathway were enriched in tissues with low expression of MRPL13. Additionally, depleting MRPL13 expression inhibited invasion in MCF-10A and MCF-7 cells. Furthermore, PCR showed that MRPL13 affected VEGFA and MMP gene expression. CIBERSORT analysis revealed that the amount of NK cells decreased when MRPL13 expression was high. Conclusion The expression of MRPL13 mRNA is upregulated in BC tissues, and the expression level of MRPL13 is significantly related to the clinicopathological factors of patients. High MRPL13 expression is a poor prognostic factor for BC, and it can be used as a molecular marker for prognosis judgment and as a potential therapeutic target.
Collapse
Affiliation(s)
- Zuo Tao
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Huandan Suo
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Lei Zhang
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Zining Jin
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Zhen Wang
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Danyu Wang
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Ming Wu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Nanxi Peng
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Yujie Zhao
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Bo Chen
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, People's Republic of China
| |
Collapse
|
7
|
Tahmasvand R, Bayat P, Vahdaniparast SM, Dehghani S, Kooshafar Z, Khaleghi S, Almasirad A, Salimi M. Design and synthesis of novel 4-thiazolidinone derivatives with promising anti-breast cancer activity: Synthesis, characterization, in vitro and in vivo results. Bioorg Chem 2020; 104:104276. [PMID: 32992280 DOI: 10.1016/j.bioorg.2020.104276] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/08/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
Novel lead compounds as anticancer agents with the ability to circumvent emerging drug resistance have recently gained a great deal of interest. Thiazolidinones are among such compounds with well-established biological activity in the field of oncology. Here, we designed, synthesized and characterized a series of thiazolidinone structures (8a-8k). The results of anti-proliferative assay led to the discovery of compound 8j with a high potent cytotoxic effect using colon, liver and breast cancer cells. Furthermore, MDA-MB-231 and 4T1 cell lines were used to represent triple negative breast cancer (TNBC). Next, a number of in vitro and in vivo evaluations were carried out to demonstrate the potential activity against TNBC and also elucidate the possible mechanism of cell death induction. Our in vitro outcomes exhibited an impressive anticancer activity for compound 8j toward MDA-MB-231 cells through inducing apoptosis and a remarkable anti-metastatic feature via suppressing MMP-9 expression as well. Consistently, the in vivo and immunohistopathologic evaluations demonstrated that this compound significantly inhibited the 4T1 induced tumor growth and its metastasis to the lung. Altogether, among numerous thiazolidinone derivatives, compound 8j might represent a promising anticancer agent for TNBC, which is a major concern in the developed and developing countries.
Collapse
Affiliation(s)
- Raheleh Tahmasvand
- Department of Medical Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Peyman Bayat
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyyed Mahmood Vahdaniparast
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Soudeh Dehghani
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Kooshafar
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Sepideh Khaleghi
- Department of Medical Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Almasirad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mona Salimi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
8
|
Anti-angiogenic effect of a chemically sulfated polysaccharide from Phellinus ribis by inhibiting VEGF/VEGFR pathway. Int J Biol Macromol 2020; 154:72-81. [DOI: 10.1016/j.ijbiomac.2020.03.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 01/01/2023]
|
9
|
Zhang Q, Zhou L, Guan Y, Cheng Y, Han X. BENC-511, a novel PI3K inhibitor, suppresses metastasis of non-small cell lung cancer cells by modulating β-catenin/ZEB1 regulatory loop. Chem Biol Interact 2018; 294:18-27. [PMID: 30125547 DOI: 10.1016/j.cbi.2018.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 07/31/2018] [Accepted: 08/15/2018] [Indexed: 01/19/2023]
Abstract
Non-small cell lung cancer (NSCLC) is known as highly metastatic disease because it is difficult to diagnose at early stage. More than 60% of NSCLC patients' overexpress receptor tyrosine kinase (RTK) such as EGFR that has been proved to display resistance to receptor tyrosine kinase inhibitor (TKI) through PI3K signaling, while single PI3K inhibitors increase RTK expression as feedback. So, to select the proper targeted agent or target an assortment of molecular subsets, such as EGFR mutations for different subgroups of patients with NSCLC is urgent. Compound BENC-511, a potent PI3K inhibitor, had effects on inhibiting cancer cell survival and delaying tumor growth, but the effects and mechanisms on cancer metastasis are not clear. Methods of Scratch assay, Transwell system, experimental metastasis mice models, plasmid transfection, quantitative real-time PCR and Western blot were used. Results showed that BENC-511 could significantly inhibit lung cancer cells invasion and metastasis both in vitro and in vivo. And it not only inhibited PI3K/Akt signal pathway, but also directly suppressed phosphorylation of EGFR and nuclear translocation of β-catenin. Moreover, our study firstly reported BENC-511 seemed more sensitive to NSCLC cells that highly expressed Zinc-finger E-box binding protein 1 (ZEB1), one of the epithelial-mesenchymal transition (EMT) inducer, and knockdown of ZEB1 could improve the effects of this compound. These findings suggested that BENC-511 should be a promising lead molecule for anti-metastasis therapy by targeting β-catenin/ZEB1 regulatory loop and serve as a therapeutic agent to inhibit metastasis of NSCLC.
Collapse
Affiliation(s)
- Qianyun Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Lichun Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Yanhui Guan
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Yanna Cheng
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Xiuzhen Han
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China.
| |
Collapse
|
10
|
Chen S, Zhou Y, Zhou L, Guan Y, Zhang Y, Han X. Anti-neovascularization effects of DMBT in age-related macular degeneration by inhibition of VEGF secretion through ROS-dependent signaling pathway. Mol Cell Biochem 2018; 448:225-235. [PMID: 29446046 DOI: 10.1007/s11010-018-3328-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/07/2018] [Indexed: 01/01/2023]
Abstract
Choroidal neovascularization (CNV) is the hallmark of late-staged wet age-related macular degeneration (AMD). Vascular endothelial growth factor (VEGF) is a key component in the development and progression of wet AMD. DMBT, 6,6'-bis(2,3-dimethoxybenzoyl)-α,α-D-trehalose, had been proved that it could suppress tumor angiogenesis and metastasis by inhibiting production of VEGF. But the effects of DMBT on CNV were not known. This study was to investigate effects and mechanisms of DMBT on CNV in vitro and in vivo. Results showed that DMBT could inhibit migration and tube formation of RF/6A cells under ARPE-19 hypoxia conditioned medium. DMBT could reduce lesion area in laser-induced CNV model mice. ELISA and Western blotting assay showed that DMBT markedly inhibited secretion of VEGF in vitro and in vivo. Furthermore, DMBT restrained ROS level under hypoxia via suppressing Nrf2/HO-1 pathway. DMBT effectively suppressed hypoxia-induced the up-regulation of p-Akt, p-NF-κB, and HIF-1α. These results suggest that DMBT can inhibit CNV by down-regulation of VEGF in retina through Akt/NF-κB/HIF-1α and ERK/Nrf2/HO-1/HIF-1α pathway. DMBT might be a promising lead molecule for anti-CNV and serve as a therapeutic agent to inhibit CNV.
Collapse
Affiliation(s)
- Shang Chen
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China.,Department of Ophthalmology, Graduate School of Medicine, Yamaguchi University, Minamikoguchi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | - Yue Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China.,Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Lichun Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Yanhui Guan
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Yu Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Xiuzhen Han
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China. .,Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, Jinan, China.
| |
Collapse
|
11
|
Li S, Zhang Q, Zhou L, Guan Y, Chen S, Zhang Y, Han X. Inhibitory effects of compound DMBT on hypoxia-induced vasculogenic mimicry in human breast cancer. Biomed Pharmacother 2017; 96:982-992. [DOI: 10.1016/j.biopha.2017.11.137] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/25/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022] Open
|
12
|
Liu Y, Xu J, Zong A, Wang J, Liu Y, Jia W, Jin J, Yan G, Zhang Y. Anti-angiogenic activity and mechanism of a chemically sulfated natural glucan from Phellinus ribis. Int J Biol Macromol 2017; 107:2475-2483. [PMID: 29074083 DOI: 10.1016/j.ijbiomac.2017.10.134] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/26/2017] [Accepted: 10/20/2017] [Indexed: 02/02/2023]
Abstract
A sulfated polysaccharide named PRP-S16 was obtained by sulfation of a glucan from Phellinus ribis using the chlorosulfonic acid method. PRP-S16 could significantly block the formation of new vessels in chicken chorioallantoic membrane (CAM). It could also inhibit the proliferation, migration, and tube formation and significantly reduced the mRNA expression of vascular endothelial growth factor (VEGF) in EA.hy926 endothelial cells. Western blotting indicated that PRP-S16 down regulated the protein expression of VEGF and VEGF receptor-1 (VEGFR-1), and inhibited the phosphorylation of VEGFR-2, protein kinase B (Akt) and extracellular signal-regulated kinase (ERK1/2) in EA.hy926 cells. These findings suggest that the mechanism of action of the anti-angiogenesis activity of PRP-S16 is related to the inhibition of VEGF-induced signaling pathway. PRP-S16 might be utilized as an effective antagonist in combating diseases associated with angiogenesis.
Collapse
Affiliation(s)
- Yuhong Liu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, PR China.
| | - Jiazhen Xu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, PR China
| | - Aizhen Zong
- Institute of Agro-Food Science Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, PR China
| | - Jihui Wang
- Comprehensive Teaching Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, PR China
| | - Yuguo Liu
- Department of Pharmacy, Shandong Tumor Hospital, Jinan 250117, China
| | - Wei Jia
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, PR China
| | - Juan Jin
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, PR China
| | - Guangling Yan
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, PR China
| | - Yongqing Zhang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, PR China.
| |
Collapse
|
13
|
Zhang HH, Zhang Y, Cheng YN, Gong FL, Cao ZQ, Yu LG, Guo XL. Metformin incombination with curcumin inhibits the growth, metastasis, and angiogenesis of hepatocellular carcinoma in vitro and in vivo. Mol Carcinog 2017; 57:44-56. [PMID: 28833603 DOI: 10.1002/mc.22718] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 08/08/2017] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) has poor prognosis due to the advanced disease stages by the time it is diagnosed, high recurrence rates and metastasis. In the present study, we investigated the effects of metformin (a safe anti-diabetic drug) and curcumin (a turmeric polyphenol extracted from rhizome of Curcuma longa Linn.) on proliferation, apoptosis, invasion, metastasis, and angiogenesis of HCC in vitro and in vivo. It was found that co-treatment of metformin and curcumin could not only induce tumor cells into apoptosis through activating the mitochondria pathways, but also suppress the invasion, metastasis of HCC cells and angiogenesis of HUVECs. These effects were associated with downregulation of the expression of MMP2/9, VEGF, and VEGFR-2, up-regulation of PTEN, P53 and suppression of PI3K/Akt/mTOR/NF-κB and EGFR/STAT3 signaling. Co-administration of metformin and curcumin significantly inhibited HCC tumor growth than administration with metformin or curcumin alone in a xenograft mouse model. Thus, metformin and curcumin in combination showed a better anti-tumor effects in hepatoma cells than either metformin or curcumin presence alone and might represent an effective therapeutic strategy for HCC treatment.
Collapse
Affiliation(s)
- Hui-Hui Zhang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, P.R. China
| | - Ying Zhang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, P.R. China
| | - Yan-Na Cheng
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, P.R. China
| | - Fu-Lian Gong
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, P.R. China
| | - Zhan-Qi Cao
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, P.R. China
| | - Lu-Gang Yu
- Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Xiu-Li Guo
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, P.R. China
| |
Collapse
|
14
|
Demirci S, Doğan A, Türkmen NB, Telci D, Rizvanov AA, Şahin F. Schiff base-Poloxamer P85 combination demonstrates chemotherapeutic effect on prostate cancer cells in vitro. Biomed Pharmacother 2017; 86:492-501. [DOI: 10.1016/j.biopha.2016.11.101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 11/23/2016] [Accepted: 11/24/2016] [Indexed: 01/05/2023] Open
|
15
|
Sun Y, Wu C, Ma J, Yang Y, Man X, Wu H, Li S. Toll-like receptor 4 promotes angiogenesis in pancreatic cancer via PI3K/AKT signaling. Exp Cell Res 2016; 347:274-82. [PMID: 27426724 DOI: 10.1016/j.yexcr.2016.07.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/13/2016] [Indexed: 01/22/2023]
Abstract
Deregulation of Toll-like receptor 4 (TLR4) is closely associated with the progression of various types of cancers, but its role in pancreatic carcinogenesis is unclear. This study aimed to investigate the role of TLR4 in the angiogenesis of pancreatic cancer and the underlying molecular mechanisms. The culture supernatant (conditioned medium) of PANC-1 cells after appropriate treatment was used for the treatment of HUVECs. The proliferation, migration and tube formation of HUVECs were assessed by MTT, Transwell and Matrigel, respectively. In pancreatic cancer tissues, TLR4, VEGF and CD31 were upregulated as determined by immunohistochemistry and the expression of TLR4 and VEGF was positively correlated with microvessel density as detected by CD31 staining. Activation of TLR4 signaling by LPS in PANC-1 cells resulted in increased VEGF and phosphorylation of AKT, which were abolished by TLR4 silencing with siRNA and PI3K/AKT signaling inhibitor LY294002. The conditioned medium from PANC-1 cells treated with LY294002 or transfected with TRL4 siRNA reduced the proliferation, migration and tube formation of HUVECs. In contrast, the conditioned medium from PANC-1 cells treated with LPS stimulated the proliferation, migration and tube formation of HUVECs, which was however significantly inhibited by pretreatment of PANC-1 cells with LY294002 or transfection with TRL4 siRNA. Our findings suggest TLR4 may promote angiogenesis in pancreatic cancer by activating the PI3K/AKT signaling pathway to induce VEGF expression.
Collapse
Affiliation(s)
- Yunliang Sun
- Department of Gastroenterology, Lianyungang Ganyu People's Hospital, Ganyu, Jiangsu, China
| | - Congshan Wu
- Department of Gastroenterology, Lianyungang Ganyu People's Hospital, Ganyu, Jiangsu, China
| | - Jianxia Ma
- Department of Gastroenterology, Huadong Hospital, Fudan University, Shanghai, China.
| | - Yu Yang
- Department of Gastroenterology, Huadong Hospital, Fudan University, Shanghai, China
| | - Xiaohua Man
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Hongyu Wu
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Shude Li
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| |
Collapse
|
16
|
Park EH, Park JY, Yoo HS, Yoo JE, Lee HL. Assessment of the anti-metastatic properties of sanguiin H-6 in HUVECs and MDA-MB-231 human breast cancer cells. Bioorg Med Chem Lett 2016; 26:3291-3294. [DOI: 10.1016/j.bmcl.2016.05.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/05/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
|
17
|
Boron promotes streptozotocin-induced diabetic wound healing: roles in cell proliferation and migration, growth factor expression, and inflammation. Mol Cell Biochem 2016; 417:119-33. [PMID: 27206737 DOI: 10.1007/s11010-016-2719-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/13/2016] [Indexed: 12/26/2022]
Abstract
Acute wounds do not generally require professional treatment modalities and heal in a predictable fashion, but chronic wounds are mainly accompanied with infection and prolonged inflammation, leading to healing impairments and continuous tissue degradation. Although a vast amount of products have been introduced in the market, claiming to provide a better optimization of local and systemic conditions of patients, they do not meet the expectations due to being expensive and not easily accessible, requiring wound care facilities, having patient-specific response, low efficiency, and severe side-effects. In this sense, developing new, safe, self-applicable, effective, and cheap wound care products with broad-range antimicrobial activity is still an attractive area of international research. In the present work, boron derivatives [boric acid and sodium pentaborate pentahydrate (NaB)] were evaluated for their antimicrobial activity, proliferation, migratory, angiogenesis, gene, and growth factor expression promoting effects on dermal cells in vitro. In addition, boron-containing hydrogel formulation was examined for its wound healing promoting potential using full-thickness wound model in streptozotocin-induced diabetic rats. The results revealed that while both boron compounds significantly increased proliferation, migration, vital growth factor, and gene expression levels of dermal cells along with displaying remarkable antimicrobial effects against bacteria, yeast, and fungi, NaB displayed greater antimicrobial properties as well as gene and growth factor expression inductive effects. Animal studies proved that NaB-containing gel formulation enhanced wound healing rate of diabetic animals and histopathological scores. Overall data suggest a potential promising therapeutic option for the management of chronic wounds but further studies are highly warranted to determine signaling pathways and target metabolisms in which boron is involved to elucidate the limitations and extend its use in clinics.
Collapse
|
18
|
Liu Q, Qiao L, Liang N, Xie J, Zhang J, Deng G, Luo H, Zhang J. The relationship between vasculogenic mimicry and epithelial-mesenchymal transitions. J Cell Mol Med 2016; 20:1761-9. [PMID: 27027258 PMCID: PMC4988285 DOI: 10.1111/jcmm.12851] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/24/2016] [Indexed: 12/15/2022] Open
Abstract
Vasculogenic mimicry (VM) is a vascular‐like structure which can mimic the embryonic vascular network pattern to nourish the tumour tissue. As a unique perfusion way, VM is correlated with tumour progression, invasion, metastasis and lower 5‐year survival rate. Notably, epithelial‐mesenchymal transition (EMT) regulators and EMT‐related transcription factors are highly up‐regulated in VM‐forming tumour cells, which demonstrated that EMT may play a crucial role in VM formation. Therefore, the up‐regulation of EMT‐associated adhesion molecules and other factors can also make a contribution in VM‐forming process. Depending on these discoveries, VM and EMT can be utilized as therapeutic target strategies for anticancer therapy. The purpose of this article is to explore the advance research in the relationship of EMT and VM and their corresponding mechanisms in tumorigenesis effect.
Collapse
Affiliation(s)
- Qiqi Liu
- Department of Oncology, Shandong University School of Medicine, Jinan, Shandong Pro, China
| | - Lili Qiao
- Department of Radiation Oncology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Pro, China
| | - Ning Liang
- Department of Radiation Oncology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Pro, China
| | - Jian Xie
- Department of Radiation Oncology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Pro, China
| | - Jingxin Zhang
- Department of Radiation Oncology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Pro, China
| | - Guodong Deng
- Department of Radiation Oncology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Pro, China
| | - Hui Luo
- Department of Oncology, Weifang Medical College, Weifang, Shandong Pro, China
| | - Jiandong Zhang
- Department of Radiation Oncology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Pro, China
| |
Collapse
|
19
|
Park JY, Shin MS, Kim SN, Kim HY, Kim KH, Shin KS, Kang KS. Polysaccharides from Korean Citrus hallabong peels inhibit angiogenesis and breast cancer cell migration. Int J Biol Macromol 2016; 85:522-9. [PMID: 26778161 DOI: 10.1016/j.ijbiomac.2016.01.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/02/2015] [Accepted: 01/04/2016] [Indexed: 01/07/2023]
Abstract
Although the peel of the hallabong (Citrus sphaerocarpa) fruit is rich in polysaccharides, which are valuable dietary ingredients for human health, it is normally wasted. The present study aimed to utilize the peel waste and identify properties it may have against breast cancer metastasis. Hallabong peel extract containing crude polysaccharides was fractionated by gel permeation chromatography to produce four different polysaccharide fractions (HBE-I, -II, -III, and -IV). The HBE polysaccharides significantly blocked tube formation of human umbilical vein vascular endothelial cells (HUVECs), at a concentration of 12.5 or 25 μg/mL. Tube formation appeared to be more sensitive to HBE-II than to other HBE polysaccharides. HBE-II also inhibited breast cancer cell migration, through downregulation of matrix metalloproteinase-9 (MMP-9) in MDA-MB-231 triple-negative breast cancer cells. Therefore, inhibition of tube formation and MMP-9-mediated migration observed in HUVEC and MDA-MB-231 cells, respectively, are likely to be important therapeutic targets in triple-negative breast cancer metastasis.
Collapse
Affiliation(s)
- J Y Park
- College of Korean Medicine, Gachon University, Seongnam 461-701, Republic of Korea
| | - M S Shin
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung 210-340, Republic of Korea; Department of Food Science and Biotechnology, Kyonggi University, Suwon 443-760, Republic of Korea
| | - S N Kim
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung 210-340, Republic of Korea
| | - H Y Kim
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 660-758, Republic of Korea
| | - K H Kim
- Natural Product Research Laboratory, School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - K S Shin
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 443-760, Republic of Korea.
| | - K S Kang
- College of Korean Medicine, Gachon University, Seongnam 461-701, Republic of Korea.
| |
Collapse
|
20
|
Demirci S, Doğan A, Karakuş E, Halıcı Z, Topçu A, Demirci E, Sahin F. Boron and Poloxamer (F68 and F127) Containing Hydrogel Formulation for Burn Wound Healing. Biol Trace Elem Res 2015; 168:169-80. [PMID: 25893366 DOI: 10.1007/s12011-015-0338-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/08/2015] [Indexed: 01/04/2023]
Abstract
Burn injuries, the most common and destructive forms of wounds, are generally accompanied with life-threatening infections, inflammation, reduced angiogenesis, inadequate extracellular matrix production, and lack of growth factor stimulation. In the current study, a new antimicrobial carbopol-based hydrogel formulated with boron and pluronic block copolymers was evaluated for its healing activity using in vitro cell culture techniques and an experimental burn model. Cell viability, gene expression, and wound healing assays showed that gel formulation increased wound healing potential. In vitro tube-like structure formation and histopathological examinations revealed that gel not only increased wound closure by fibroblastic cell activity, but also induced vascularization process. Moreover, gel formulation exerted remarkable antimicrobial effects against bacteria, yeast, and fungi. Migration, angiogenesis, and contraction-related protein expressions including collagen, α-smooth muscle actin, transforming growth factor-β1, vimentin, and vascular endothelial growth factor were considerably enhanced in gel-treated groups. Macrophage-specific antigen showed an oscillating expression at the burn wounds, indicating the role of initial macrophage migration to the wound site and reduced inflammation phase. This is the first study indicating that boron containing hydrogel is able to heal burn wounds effectively. The formulation promoted burn wound healing via complex mechanisms including stimulation of cell migration, growth factor expression, inflammatory response, and vascularization.
Collapse
Affiliation(s)
- Selami Demirci
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Kayisdagi, Istanbul, Turkey
| | - Ayşegül Doğan
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Kayisdagi, Istanbul, Turkey
| | - Emre Karakuş
- Department of Pharmacology and Toxicology, Ataturk University School of Veterinary Medicine, Erzurum, Turkey
| | - Zekai Halıcı
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Atila Topçu
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Elif Demirci
- Department of Pathology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Fikrettin Sahin
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Kayisdagi, Istanbul, Turkey.
| |
Collapse
|
21
|
Tsai PC, Fu YS, Chang LS, Lin SR. Cardiotoxin III Inhibits Hepatocyte Growth Factor-Induced Epithelial-Mesenchymal Transition and Suppresses Invasion of MDA-MB-231 Cells. J Biochem Mol Toxicol 2015; 30:12-21. [DOI: 10.1002/jbt.21735] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 07/07/2015] [Accepted: 07/22/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry; Kaohsiung Medical University; Kaohsiung 807 Taiwan
| | - Yaw-Syan Fu
- Department of Biomedical Science and Environmental Biology; Kaohsiung Medical University; Kaohsiung 807 Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences; National Sun Yat-Sen University; Kaohsiung 804 Taiwan
| | - Shinne-Ren Lin
- Department of Medicinal and Applied Chemistry; Kaohsiung Medical University; Kaohsiung 807 Taiwan
| |
Collapse
|
22
|
Hajighasemi F, Gheini MH. Lipopolysaccharide Effect on Vascular Endothelial Factor and Matrix Metalloproteinases in Leukemic Cell Lines In vitro. IRANIAN JOURNAL OF CANCER PREVENTION 2015; 8:e2327. [PMID: 26413247 PMCID: PMC4581372 DOI: 10.17795/ijcp2327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 03/10/2015] [Indexed: 11/25/2022]
Abstract
Background: Angiogenesis, the process of new vessels generation, plays a critical role in tumor invasion and metastasis. Vascular Endothelial Growth Factor (VEGF), as a cytokine, and Matrix Metalloproteinases (MMPs), has been the important factors that involved in angiogenesis. Lipopolysaccharide (LPS) has an essential effect on angiogenesis. Objectives: In this study the effect of LPS on VEGF production and MMP-2/MMP-9 activity in two leukemic cell lines has been assessed in vitro. Materials and Methods: Human leukemic U937 and THP1 cells were cultured in complete RPMI medium. Then the cells at the exponential growth phase were incubated with different concentrations of LPS (0 - 4 μg/mL) for 48 hours. Then the level of VEGF production and MMP-2/MMP-9 activity in cell culture supernatants were evaluated with the ELISA standard kits and gelatin zymography respectively. Results: U937 cells have produced a large amount of VEGF without any stimulus and LPS has not shown any substantial effect on VEGF production by these cells. However THP1 cells have produced a small amount of VEGF without stimulation and LPS significantly has increased VEGF production in these cells dose-dependently. Moreover LPS significantly has augmented the MMP-2/MMP-9 activity in the both leukemic cell lines in a dose-dependent manner. Conclusions: Our results have shown that LPS might be a potential inducer/enhancer of VEGF production and MMP-2/MMP-9 activity (angiogenic factors) in leukemia. Moreover the LPS effect on angiogenesis might be in part, due to its stimulatory effects on VEGF and MMPs. Overall LPS-stimulated leukemic cells might be good models for study and planning the useful therapeutic approaches for angiogenesis- dependent diseases.
Collapse
Affiliation(s)
- Fatemeh Hajighasemi
- Department of Immunology, Faculty of Medicine, Shahed University, Tehran, IR Iran
| | | |
Collapse
|
23
|
Jiang YL, Li SX, Liu YJ, Ge LP, Han XZ, Liu ZP. Synthesis and Evaluation of Trehalose-Based Compounds as Novel Inhibitors of Cancer Cell Migration and Invasion. Chem Biol Drug Des 2015; 86:1017-29. [DOI: 10.1111/cbdd.12569] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/16/2015] [Accepted: 03/31/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Yong-Li Jiang
- Institute of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education); School of Pharmaceutical Sciences; Shandong University; Jinan 250012 China
| | - Shui-Xian Li
- Department of Pharmacology; School of Pharmaceutical Sciences; Shandong University; Jinan 250012 China
| | - Yu-Jing Liu
- Institute of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education); School of Pharmaceutical Sciences; Shandong University; Jinan 250012 China
| | - Lian-Ping Ge
- Department of Pharmacology; School of Pharmaceutical Sciences; Shandong University; Jinan 250012 China
| | - Xiu-Zhen Han
- Department of Pharmacology; School of Pharmaceutical Sciences; Shandong University; Jinan 250012 China
| | - Zhao-Peng Liu
- Institute of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education); School of Pharmaceutical Sciences; Shandong University; Jinan 250012 China
| |
Collapse
|
24
|
Zhao J, Liu L, Wan Y, Zhang Y, Zhuang Q, Zhong X, Hong Z, Peng J. Inhibition of Hepatocellular Carcinoma by Total Alkaloids of Rubus alceifolius Poir Involves Suppression of Hedgehog Signaling. Integr Cancer Ther 2015; 14:394-401. [PMID: 25917815 DOI: 10.1177/1534735415583553] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE We evaluated the effects of total alkaloids of Rubus alceifolius Poir (TARAP) on the migration and invasion of hepatocellular carcinoma (HCC) and furthermore investigated the possible molecular mechanisms mediating its anticancer activity. METHODS We implanted nude mice with human HCC HepG2 cells and fed them with vehicle (physiological saline) or 3 g/kg/day dose of TARAP 5 days per week for 21 days. We determined the in vitro effect of TARAP on the migration and invasion of HepG2 cells by transwell assay. We evaluated SHH signaling components' (SHH, PTCH, SMO, and Gli1) expression levels by reverse transcriptase-polymerase chain reaction and immunohistochemistry. Activity of the matrix metalloproteinases (MMPs) in supernatants was analyzed by zymography. The expression of the MMPs and their specific tissue inhibitor (tissue inhibitor of matrix metalloproteinases, TIMP-1, 2) in HCC tissues was detected by immunohistochemistry. RESULTS We discovered that TARAP inhibited hepatocellular migration and invasion in a dose-dependent manner in vitro. In addition, TARAP decreased the expression of SHH, PTCH, SMO, and Gli1 in HCC mouse tumors at both transcriptional and translational levels. Moreover, TARAP inhibited the activity of MMP2 and MMP9. We found that TARAP reduced the expression of MMP2 and MMP9, as well as the tissue inhibitor of MMPs. CONCLUSION Our study showed that TARAP inhibits HCC migration and invasion likely through suppression of the hedgehog pathway. This may, in part, explain its anticancer properties. These results suggest that total alkaloids in Rubus alceifolius may have potential as a novel antimetastasis drug in the treatment of HCC.
Collapse
Affiliation(s)
- Jinyan Zhao
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Liya Liu
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Yun Wan
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Yuchen Zhang
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Qunchuan Zhuang
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Xiaoyong Zhong
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Zhenfeng Hong
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Jun Peng
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| |
Collapse
|
25
|
Tang L, Yue B, Cheng Y, Yao H, Ma X, Tian Q, Ge L, Liu Z, Han X. Inhibition of invasion and metastasis by DMBT, a novel trehalose derivative, through Akt/GSK-3β/β-catenin pathway in B16BL6 cells. Chem Biol Interact 2014; 222:7-17. [PMID: 25148938 DOI: 10.1016/j.cbi.2014.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 07/14/2014] [Accepted: 08/11/2014] [Indexed: 12/19/2022]
Abstract
Invasion, either directly or via metastasis formation, is the main cause of death in cancer patients. Development of efficient anti-invasive agents is an important research challenge. 6,6'-bis (2,3-dimethoxybenzoyl)-a, a-d-trehalose (DMBT), one of brartemicin analogs, was found to be the most potent anti-invasive agent, but the underlying mechanisms are poorly understood. Our current study was to explore the effects of DMBT on invasion and metastasis in B16BL6 cells. Antiproliferation assay and trypan blue exclusion assay showed that no obvious inhibitory or cytotoxic effect of DMBT was found in B16BL6 cells. Wound healing demonstrated that DMBT could inhibit cell migration compared with the normal group. Transwell experiments showed that DMBT could significantly inhibit invasion to the reconstituted basement membrane (P<0.01). We examined the effects of lung metastasis produced by highly metastatic B16BL6 melanoma cells by using experimental metastasis models and BLI analysis. DMBT could significantly suppress lung metastasis in mice. Results from immunohistochemical staining, Western blotting and real-time PCR indicated that the chemopreventive effect of DMBT was attributed to the inhibition of the VEGF and MMP-9 through Akt/GSK-3β/β-catenin and Akt/mTOR signaling pathways. These results suggested that DMBT could be a promising lead molecule for the anti-metastasis and serve as a therapeutic agent to inhibit cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Linlin Tang
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Bin Yue
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Yanna Cheng
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China; Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, China
| | - Hong Yao
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Xiaowen Ma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Qi Tian
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Lianping Ge
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Zhaopeng Liu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China; Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, China
| | - Xiuzhen Han
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China; Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, China.
| |
Collapse
|
26
|
Zhang J, Yin L, Wu J, Zhang Y, Xu T, Ma R, Cao H, Tang J. Detection of serum VEGF and MMP-9 levels by Luminex multiplexed assays in patients with breast infiltrative ductal carcinoma. Exp Ther Med 2014; 8:175-180. [PMID: 24944618 PMCID: PMC4061234 DOI: 10.3892/etm.2014.1685] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/27/2014] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to assess the effect of the combined detection of serum vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) by Luminex multiplexed assays for the diagnosis, treatment and prognosis of breast cancer. Preoperative levels of serum VEGF and MMP-9 were detected via a lipid chip-based method in 301 breast cancer cases, 83 breast fibroadenoma cases and 40 healthy adults. Postoperative levels of VEGF and MMP-9 were also detected in 118 breast cancer cases. The levels of serum VEGF and MMP-9 in patients with breast infiltrative ductal carcinoma (IDC) were higher than those in the breast fibroadenoma and healthy control groups (P<0.05); there was no statistically significant difference between the breast fibroadenoma and healthy groups (P>0.05). The levels of VEGF and MMP-9 were shown to correlate with the clinical stage, tumor size and the lymph node metastasis status. However, the levels were not associated with age or gender (P>0.05). In addition, the serum level of MMP-9 exhibited a significantly correlation with the VEGF level (r=0.601, P<0.001). Subgroup analysis revealed that in patients with IDC, serum levels of VEGF and MMP-9 prior to surgery were significantly higher than those following surgery (P<0.05). Therefore, the serum levels of VEGF and MMP-9 can be used as markers for the diagnosis of breast IDC and may also be valuable for the prediction of lymph nodes metastasis.
Collapse
Affiliation(s)
- Junying Zhang
- Department of Oncology, Xuzhou Medical College, Xuzhou, Jiangsu 221004, P.R. China
| | - Li Yin
- Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, P.R. China
| | - Jianzhong Wu
- Research Center for Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, P.R. China
| | - Ye Zhang
- Research Center for Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, P.R. China
| | - Tao Xu
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, P.R. China
| | - Rong Ma
- Research Center for Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, P.R. China
| | - Haixia Cao
- Research Center for Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, P.R. China
| | - Jinhai Tang
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
27
|
Human Sprouty1 suppresses growth, migration, and invasion in human breast cancer cells. Tumour Biol 2014; 35:5037-48. [PMID: 24510305 DOI: 10.1007/s13277-014-1665-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 01/17/2014] [Indexed: 10/25/2022] Open
Abstract
Breast cancer is the most common cancer and the leading cause of cancer death in women worldwide. Expression of human Sprouty1 (hSpry1) gene is downregulated in most breast cancer patients, implicating it as an important tumor suppressor gene. So, we hypothesized that overexpression of hSpry1 gene may suppress breast cancer cell growth, migration, and invasion. Here, we demonstrate that in breast cancer cell lines, MDA-MB-231 and T47D, transfection-induced overexpression of hSpry1 reduced cell population, proliferation, and colony formation in vitro without affecting cell apoptosis. Adhesion molecules act as both positive and negative modulators of cellular migration and invasion. Here, we found that overexpression of hSpry1 enhances the initial establishment events in breast cancer cell adhesion to type IV collagen and vitronectin. Moreover, the overexpression of hSpry1 in the highly invasive MDA-MB-231 breast cancer cells causes a significant reduction in cellular migration and invasion through Matrigel membranes. In addition, we showed that hSpry1 overexpression prevents VEGF secretion. VEGF is essential for primary tumor growth, migration, and invasion. Thus, our study provides a novel mechanism of tumor suppression activity of hSpry1.
Collapse
|
28
|
Farina AR, Mackay AR. Gelatinase B/MMP-9 in Tumour Pathogenesis and Progression. Cancers (Basel) 2014; 6:240-96. [PMID: 24473089 PMCID: PMC3980597 DOI: 10.3390/cancers6010240] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 12/14/2022] Open
Abstract
Since its original identification as a leukocyte gelatinase/type V collagenase and tumour type IV collagenase, gelatinase B/matrix metalloproteinase (MMP)-9 is now recognised as playing a central role in many aspects of tumour progression. In this review, we relate current concepts concerning the many ways in which gelatinase B/MMP-9 influences tumour biology. Following a brief outline of the gelatinase B/MMP-9 gene and protein, we analyse the role(s) of gelatinase B/MMP-9 in different phases of the tumorigenic process, and compare the importance of gelatinase B/MMP-9 source in the carcinogenic process. What becomes apparent is the importance of inflammatory cell-derived gelatinase B/MMP-9 in tumour promotion, early progression and triggering of the "angiogenic switch", the integral relationship between inflammatory, stromal and tumour components with respect to gelatinase B/MMP-9 production and activation, and the fundamental role for gelatinase B/MMP-9 in the formation and maintenance of tumour stem cell and metastatic niches. It is also apparent that gelatinase B/MMP-9 plays important tumour suppressing functions, producing endogenous angiogenesis inhibitors, promoting inflammatory anti-tumour activity, and inducing apoptosis. The fundamental roles of gelatinase B/MMP-9 in cancer biology underpins the need for specific therapeutic inhibitors of gelatinase B/MMP-9 function, the use of which must take into account and substitute for tumour-suppressing gelatinase B/MMP-9 activity and also limit inhibition of physiological gelatinase B/MMP-9 function.
Collapse
Affiliation(s)
- Antonietta Rosella Farina
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, Via Vetoio, Coppito 2, L'Aquila 67100, Italy.
| | - Andrew Reay Mackay
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, Via Vetoio, Coppito 2, L'Aquila 67100, Italy.
| |
Collapse
|
29
|
Ghattass K, El-Sitt S, Zibara K, Rayes S, Haddadin MJ, El-Sabban M, Gali-Muhtasib H. The quinoxaline di-N-oxide DCQ blocks breast cancer metastasis in vitro and in vivo by targeting the hypoxia inducible factor-1 pathway. Mol Cancer 2014; 13:12. [PMID: 24461075 PMCID: PMC3932516 DOI: 10.1186/1476-4598-13-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 01/07/2014] [Indexed: 12/13/2022] Open
Abstract
Background Although tumor hypoxia poses challenges against conventional cancer treatments, it provides a therapeutic target for hypoxia-activated drugs. Here, we studied the effect of the hypoxia-activated synthetic quinoxaline di-N-oxide DCQ against breast cancer metastasis and identified the underlying mechanisms. Methods The human breast cancer cell lines MCF-7 (p53 wildtype) and MDA-MB-231 (p53 mutant) were treated with DCQ under normoxia or hypoxia. Drug toxicity on non-cancerous MCF-10A breast cells was also determined. In vitro cellular responses were investigated by flow cytometry, transfection, western blotting, ELISA and migration assays. The anti-metastatic effect of DCQ was validated in the MDA-MB-231 xenograft mouse model. Results DCQ selectively induced apoptosis in both human breast cancer cells preferentially under hypoxia without affecting the viability of non-cancerous MCF-10A. Cancer cell death was associated with an increase in reactive oxygen species (ROS) independently of p53 and was inhibited by antioxidants. DCQ-induced ROS was associated with DNA damage, the downregulation of hypoxia inducible factor-1 alpha (HIF-1α), and inhibition of vascular endothelial growth factor (VEGF) secretion. In MCF-7, HIF-1α inhibition was partially via p53-activation and was accompanied by a decrease in p-mTOR protein, suggesting interference with HIF-1α translation. In MDA-MB-231, DCQ reduced HIF-1α through proteasomal-dependent degradation mechanisms. HIF-1α inhibition by DCQ blocked VEGF secretion and invasion in MCF-7 and led to the inhibition of TWIST in MDA-MB-231. Consistently, DCQ exhibited robust antitumor activity in MDA-MB-231 breast cancer mouse xenografts, enhanced animal survival, and reduced metastatic dissemination to lungs and liver. Conclusion DCQ is the first hypoxia-activated drug showing anti-metastatic effects against breast cancer, suggesting its potential use for breast cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Marwan El-Sabban
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon.
| | | |
Collapse
|
30
|
Ghattass K, El-Sitt S, Zibara K, Rayes S, Haddadin MJ, El-Sabban M, Gali-Muhtasib H. The quinoxaline di-N-oxide DCQ blocks breast cancer metastasis in vitro and in vivo by targeting the hypoxia inducible factor-1 pathway. Mol Cancer 2014. [PMID: 24461075 DOI: 10.1186/1476-4598-13-12.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although tumor hypoxia poses challenges against conventional cancer treatments, it provides a therapeutic target for hypoxia-activated drugs. Here, we studied the effect of the hypoxia-activated synthetic quinoxaline di-N-oxide DCQ against breast cancer metastasis and identified the underlying mechanisms. METHODS The human breast cancer cell lines MCF-7 (p53 wildtype) and MDA-MB-231 (p53 mutant) were treated with DCQ under normoxia or hypoxia. Drug toxicity on non-cancerous MCF-10A breast cells was also determined. In vitro cellular responses were investigated by flow cytometry, transfection, western blotting, ELISA and migration assays. The anti-metastatic effect of DCQ was validated in the MDA-MB-231 xenograft mouse model. RESULTS DCQ selectively induced apoptosis in both human breast cancer cells preferentially under hypoxia without affecting the viability of non-cancerous MCF-10A. Cancer cell death was associated with an increase in reactive oxygen species (ROS) independently of p53 and was inhibited by antioxidants. DCQ-induced ROS was associated with DNA damage, the downregulation of hypoxia inducible factor-1 alpha (HIF-1α), and inhibition of vascular endothelial growth factor (VEGF) secretion. In MCF-7, HIF-1α inhibition was partially via p53-activation and was accompanied by a decrease in p-mTOR protein, suggesting interference with HIF-1α translation. In MDA-MB-231, DCQ reduced HIF-1α through proteasomal-dependent degradation mechanisms. HIF-1α inhibition by DCQ blocked VEGF secretion and invasion in MCF-7 and led to the inhibition of TWIST in MDA-MB-231. Consistently, DCQ exhibited robust antitumor activity in MDA-MB-231 breast cancer mouse xenografts, enhanced animal survival, and reduced metastatic dissemination to lungs and liver. CONCLUSION DCQ is the first hypoxia-activated drug showing anti-metastatic effects against breast cancer, suggesting its potential use for breast cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Marwan El-Sabban
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon.
| | | |
Collapse
|
31
|
Yang B, Huang J, Xiang T, Yin X, Luo X, Huang J, Luo F, Li H, Li H, Ren G. Chrysin inhibits metastatic potential of human triple-negative breast cancer cells by modulating matrix metalloproteinase-10, epithelial to mesenchymal transition, and PI3K/Akt signaling pathway. J Appl Toxicol 2013; 34:105-12. [PMID: 24122885 DOI: 10.1002/jat.2941] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/25/2013] [Accepted: 09/06/2013] [Indexed: 11/10/2022]
Abstract
Chrysin, a naturally occurring flavone, has been shown to inhibit cell proliferation and induce cell apoptosis in various cancers. However, the effect and mechanisms of chrysin on cancer metastasis are still enigmatic. In this study, metastatic triple-negative breast cancer (TNBC) cell lines were used to evaluate the antimetastatic activity of chrysin. The results showed that chrysin (5, 10 and 20 μM) significantly suppressed TNBC cell migration and invasion in a dose-dependent manner. Human matrix metalloproteinase (MMP) antibody array demonstrated that MMP-10 was downregulated by chrysin, which was further verified by Western blotting and ELISA. Moreover, it was shown that chrysin induced increased E-cadherin expression and decreased expression of vimentin, snail and slug in TNBC cells, suggesting that chrysin had a reversal effect on epithelial-mesenchymal transition. More importantly, it was demonstrated that inhibiting the Akt signal pathway might play a central role in chrysin-induced antimetastatic activity by regulating MMP-10 and epithelial-mesenchymal transition. In conclusion, our study indicates that chrysin exerts antimetastatic activities in TNBC cells, which suggests that chrysin might be a potential therapeutic candidate for the treatment of advanced or metastatic breast cancer.
Collapse
Affiliation(s)
- Bing Yang
- Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|