1
|
Tsutsumi T, Kawabata K, Yamazaki N, Tsukigawa K, Nishi H, Tokumura A. Extracellular and intracellular productions of lysophosphatidic acids and cyclic phosphatidic acids by lysophospholipase D from exogenously added lysophosphatidylcholines to cultured NRK52E cells. Biochim Biophys Acta Mol Cell Biol Lipids 2023:159349. [PMID: 37295607 DOI: 10.1016/j.bbalip.2023.159349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Lysophosphatidic acid (LPA) is a bioactive lysophospholipid that is a notable biomarker of kidney injury. However, it is not clear how LPA is produced in renal cells. In this study, we explored LPA generation and its enzymatic pathway in a rat kidney-derived cell, NRK52E cells. Culturing of NRK52E cells with acyl lysophosphatidylcholine (acyl LPC), or lyso-platelet activating factor (lysoPAF, alkyl LPC) was resulted in increased extracellular level of choline, co-product with LPA by lysophospholipase D (lysoPLD). Their activities were enhanced by addition of calcium ions to the cell culture medium, but failed to be inhibited by S32826, an autotaxin (ATX)-specific inhibitor. Liquid chromatography-tandem mass spectrometric analysis revealed the small, but significant extracellular production of acyl LPA/cyclic phosphatidic acid (cPA) and alkyl LPA/cPA. The mRNA expression of glycerophosphodiesterase (GDE) 7 with lysoPLD activity was elevated in confluent NRK52E cells cultured over 3 days. GDE7 plasmid-transfection of NRK52E cells augmented both extracellular and intracellular productions of LPAs (acyl and alkyl) as well as extracellular productions of cPAs (acyl and alkyl) from exogenous LPCs (acyl and alkyl). These results suggest that intact NRK52E cells are able to produce choline and LPA/cPA from exogenous LPCs through the enzymatic action of GDE7 that is located on the plasma membranes and intracellular membranes.
Collapse
Affiliation(s)
- Toshihiko Tsutsumi
- Pharmaceutics, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, 1714-1 Yoshino-machi, Nobeoka, Miyazaki 882-8508, Japan.
| | - Kohei Kawabata
- Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| | - Naoshi Yamazaki
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kenji Tsukigawa
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Hiroyuki Nishi
- Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| | - Akira Tokumura
- Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan; Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
2
|
Dong W, Zhang K, Gong Z, Luo T, Li J, Wang X, Zou H, Song R, Zhu J, Ma Y, Liu G, Liu Z. N-acetylcysteine delayed cadmium-induced chronic kidney injury by activating the sirtuin 1-P53 signaling pathway. Chem Biol Interact 2023; 369:110299. [PMID: 36493885 DOI: 10.1016/j.cbi.2022.110299] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
With the development of modern industrial civilization, cadmium (Cd), a known nephrotoxic metal, has become a growing public safety issue due to its ability to induce various types of kidney disease. Maladaptive proximal tubule repair is a significant cause of Cd-induced chronic kidney disease (CKD), which is characterized by premature senescence and pro-fibrosis. Previously, we demonstrated that cadmium causes DNA damage and cycle arrest in renal tubular epithelial cells, which may be relevant to premature senescence regulated by sirtuin 1 (SIRT1). In this study, in vivo and in vitro studies were conducted to elucidate the role of SIRT1-mediated premature renal senescence in Cd-induced CKD. As oxidative stress is a significant cause of aging, we evaluated whether N-acetylcysteine (NAC) would inhibit Cd-induced premature aging and dysfunction in rat renal tubular epithelial cells. Cadmium induced premature renal senescence and fibrosis, and NAC inhibited premature renal senescence and fibrosis through the SIRT1-P53 pathway and delayed CKD progression. Overall, the results suggested that the SIRT1-P53 pathway mediates oxidative stress, premature renal senescence, and renal fibrosis during cadmium exposure, which may be a potential therapeutic target for Cd-induced CKD.
Collapse
Affiliation(s)
- Wenxuan Dong
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Kanglei Zhang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Zhonggui Gong
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Tongwang Luo
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Hangzhou, 311300, PR China
| | - Jiahui Li
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Xueru Wang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Gang Liu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China; Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China.
| |
Collapse
|
3
|
Ueda N. A Rheostat of Ceramide and Sphingosine-1-Phosphate as a Determinant of Oxidative Stress-Mediated Kidney Injury. Int J Mol Sci 2022; 23:ijms23074010. [PMID: 35409370 PMCID: PMC9000186 DOI: 10.3390/ijms23074010] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) modulate sphingolipid metabolism, including enzymes that generate ceramide and sphingosine-1-phosphate (S1P), and a ROS-antioxidant rheostat determines the metabolism of ceramide-S1P. ROS induce ceramide production by activating ceramide-producing enzymes, leading to apoptosis, while they inhibit S1P production, which promotes survival by suppressing sphingosine kinases (SphKs). A ceramide-S1P rheostat regulates ROS-induced mitochondrial dysfunction, apoptotic/anti-apoptotic Bcl-2 family proteins and signaling pathways, leading to apoptosis, survival, cell proliferation, inflammation and fibrosis in the kidney. Ceramide inhibits the mitochondrial respiration chain and induces ceramide channel formation and the closure of voltage-dependent anion channels, leading to mitochondrial dysfunction, altered Bcl-2 family protein expression, ROS generation and disturbed calcium homeostasis. This activates ceramide-induced signaling pathways, leading to apoptosis. These events are mitigated by S1P/S1P receptors (S1PRs) that restore mitochondrial function and activate signaling pathways. SphK1 promotes survival and cell proliferation and inhibits inflammation, while SphK2 has the opposite effect. However, both SphK1 and SphK2 promote fibrosis. Thus, a ceramide-SphKs/S1P rheostat modulates oxidant-induced kidney injury by affecting mitochondrial function, ROS production, Bcl-2 family proteins, calcium homeostasis and their downstream signaling pathways. This review will summarize the current evidence for a role of interaction between ROS-antioxidants and ceramide-SphKs/S1P and of a ceramide-SphKs/S1P rheostat in the regulation of oxidative stress-mediated kidney diseases.
Collapse
Affiliation(s)
- Norishi Ueda
- Department of Pediatrics, Public Central Hospital of Matto Ishikawa, 3-8 Kuramitsu, Hakusan 924-8588, Japan
| |
Collapse
|
4
|
Abstract
Current research suggests that cadmium (Cd) exposure may be associated with the progression of diabetic nephropathy; however, the details of this relationship are insufficiently understood. The present study investigated the effects of elevated glucose on Cd-induced toxicity to glomerular cells using in vitro and in vivo models, and it demonstrated that Cd exposure and the hyperglycemia of diabetes acting together increased the risk of developing glomerular nephrosis. In vitro, human podocytes were exposed to a DMEM low-glucose media without (control), or with Cd (as CdCl2), or a high-glucose media plus Cd. The CCK-8, ROS, apoptosis, and mitochondrial transmembrane potential (ΔΨm) assays showed that human podocytes exposed to Cd in a high-glucose media had greater degrees of injury compared with cells treated with Cd at low (euglycemic)-glucose levels. In vivo, diabetic hyperglycemia was induced by streptozotocin in 8-week-old male C57BL/6 mice to which either CdCl2 or saline (control) was intraperitoneally injected twice weekly for 24 weeks. Compared with euglycemic saline-treated controls, the diabetic mice exposed to Cd demonstrated decreased body weight and increased blood urea nitrogen levels along with histopathological renal architecture changes including collagen fiber accumulation. The results of this study supported the hypothesis that hyperglycemia plus Cd exposure increases the risk of damage to glomerular podocytes compared with Cd exposure in euglycemia.
Collapse
Affiliation(s)
- Mengyang Li
- School of Public Health, 74565Soochow University, Suzhou, China
| | - Xiuxiu Liu
- School of Public Health, 74565Soochow University, Suzhou, China
| | - Zengli Zhang
- School of Public Health, 74565Soochow University, Suzhou, China
| |
Collapse
|
5
|
Liang L, Huang K, Yuan W, Liu L, Zou F, Wang G. Dysregulations of miR-503-5p and Wnt/β-catenin pathway coordinate in mediating cadmium-induced kidney fibrosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112667. [PMID: 34425536 DOI: 10.1016/j.ecoenv.2021.112667] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/08/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Cadmium is a severe environmental pollutant that mainly targets kidney and causes kidney disease in the end. However, the mechanism of cadmium-induced kidney disease is still unclear. In this study, we treated SD rats, kidney epithelial or fibroblast cells with cadmium, and examined the renal fibrosis process and underlying cellular and molecular mechanism. Rats received daily (Monday-Friday) subcutaneous injections of CdCl2, 0.6 mg/kg, for 6 weeks or 12 weeks, and NRK-52E cells were treated with CdCl2 of 8 μM for 24 h. Sirius red staining and immunohistochemistry assay showed that sub-chronic exposure to cadmium caused interstitial fibrosis in rat kidneys. Cell experiments showed that cadmium treatment in NRK-52E cells only changed levels of α-SMA, vimentin and E-cadherin, but not collagen1, indicating that cells other than EMT cells might be responsible for the extracellular matrix production. By contrast, co-culture of NRK-49F cells with cadmium-treated NRK-52E cells produced collagen1. Assays of supernatant of NRK-52E cell culture showed that the secreted Wnt1, Wnt4 were increased, while miR-503-5p was decreased by cadmium treatment. RT-QPCR assay found that miR-503-5p was downregulated in both kidney of rats and NRK-52E cells exposed to cadmium. miR-503-5p was further shown to be competent in hindering epithelial-mesenchymal transition and fibroblast activation. Given the well established involvement of Wnt/β-catenin pathway in fibrosis, this study suggested that dysregulations of Wnts and miR-503-5p coordinate in mediating cadmium-induced kidney fibrosis. Our findings might provide new insight in the cellular and molecular mechanisms of kidney interstitial fibrosis and novel therapeutic targets for cadmium-induced kidney disease.
Collapse
Affiliation(s)
- Lixia Liang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Ke Huang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; The First People's Hospital of Zhaoqing, Zhaoqing 526000, China
| | - Wenya Yuan
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; Zhoukou Center for Disease Control and Prevention, Zhoukou 466000, China
| | - Lili Liu
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Guanghai Wang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
6
|
Zhang Q, Zhang C, Ge J, Lv MW, Talukder M, Guo K, Li YH, Li JL. Ameliorative effects of resveratrol against cadmium-induced nephrotoxicity via modulating nuclear xenobiotic receptor response and PINK1/Parkin-mediated Mitophagy. Food Funct 2020; 11:1856-1868. [PMID: 32068207 DOI: 10.1039/c9fo02287b] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cadmium (Cd) is a toxic pollutant with high nephrotoxicity in the agricultural environment. Resveratrol has been found to have a renoprotective effect but the underlying mechanisms of this have not yet been fully elucidated. The aim of this study is to illustrate the antagonism of resveratrol against Cd-induced nephrotoxicity. A total of 80 birds were divided randomly into 4 groups and treated via diet for 90 days as follows: control group (Con); 400 mg kg-1 resveratrol group (Resv); 140 mg kg-1 Cd group (Cd 140); and 140 mg kg-1 Cd + 400 mg kg-1 resveratrol group (Cd + Resv). It was observed that resveratrol treatment dramatically alleviated Cd-induced histopathological lesions of the kidney. Simultaneously, resveratrol mitigated Cd-induced oxidative stress by reducing MDA and H2O2 production, alleviating GSH depletion and restoring the activity of antioxidant enzymes (T-SOD, Cu-Zn SOD, CAT, GST and GSH-Px). Resveratrol activated NXRs (CAR/PXR/AHR/Nrf2) signaling pathways and exerted antidotal roles by enhancing the phase I and II detoxification systems to relieve oxidative damage. Moreover, resveratrol ameliorated Cd-induced ultrastructural abnormality and mitochondria dysfunction by recovering mitochondrial function-related factors VDAC1, Cyt C and Sirt3 upregulation and Sirt1, PGC-1α, Nrf1 and TFAM transcription restrictions. Resveratrol attenuated Cd-induced excessive mitochondrial fission and promoted mitochondrial fusion, which reversed PINK1/Parkin-mediated mitophagy initiation. Collectively, our findings explicate the potential protection against Cd-induced nephrotoxicity and mitochondria damage.
Collapse
Affiliation(s)
- Qi Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Pallio G, Micali A, Benvenga S, Antonelli A, Marini HR, Puzzolo D, Macaione V, Trichilo V, Santoro G, Irrera N, Squadrito F, Altavilla D, Minutoli L. Myo-inositol in the protection from cadmium-induced toxicity in mice kidney: An emerging nutraceutical challenge. Food Chem Toxicol 2019; 132:110675. [PMID: 31306689 DOI: 10.1016/j.fct.2019.110675] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/21/2019] [Accepted: 07/11/2019] [Indexed: 12/22/2022]
Abstract
Cadmium (Cd) induces functional and morphological changes in kidney. Therefore, the effects of a natural nutraceutical antioxidant, myo-inositol (MI), were evaluated in mice kidneys after Cd challenge. Twenty-eight C57 BL/6 J mice were divided into these groups: 0.9% NaCl; MI (360 mg/kg/day); CdCl2 (2 mg/kg/day) plus vehicle; CdCl2 (2 mg/kg/day) plus MI (360 mg/kg/day). After 14 days, kidneys were processed for structural, biochemical and morphometric evaluation. Treatment with CdCl2 increased urea nitrogen and creatinine in serum and augmented tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS) expression. Furthermore, monocyte chemoattractant protein-1 (MCP-1), kidney injury molecule-1 (KIM-1) and myo-inositol oxygenase (MIOX) immunoreactivity, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive cells number were significantly higher than control and MI groups. Glutathione (GSH) content and glutathione peroxidase (GPx) activity were reduced and structural changes were evident. The treatment with MI significantly lowered urea nitrogen and creatinine levels, TNF-α and iNOS expression, MCP-1, KIM-1 and MIOX immunoreactivity and TUNEL positive cells number, increased GSH content and GPx activity and preserved kidney morphology. A protection of MI against Cd-induced damages in mice kidney was demonstrated, suggesting a strong antioxidant role of this nutraceutical against environmental Cd harmful effects on kidney lesions.
Collapse
Affiliation(s)
- Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, 98121, Messina, Italy
| | - Antonio Micali
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98121, Messina, Italy.
| | - Salvatore Benvenga
- Department of Clinical and Experimental Medicine, University of Messina, 98121, Messina, Italy
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy
| | - Herbert R Marini
- Department of Clinical and Experimental Medicine, University of Messina, 98121, Messina, Italy
| | - Domenico Puzzolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98121, Messina, Italy
| | - Vincenzo Macaione
- Department of Clinical and Experimental Medicine, University of Messina, 98121, Messina, Italy
| | - Vincenzo Trichilo
- Department of Clinical and Experimental Medicine, University of Messina, 98121, Messina, Italy
| | - Giuseppe Santoro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98121, Messina, Italy
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, 98121, Messina, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, 98121, Messina, Italy
| | - Domenica Altavilla
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98121, Messina, Italy
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, 98121, Messina, Italy
| |
Collapse
|
8
|
Shen R, Liu D, Hou C, Liu D, Zhao L, Cheng J, Wang D, Bai D. Protective effect of Potentilla anserina polysaccharide on cadmium-induced nephrotoxicity in vitro and in vivo. Food Funct 2018; 8:3636-3646. [PMID: 28905953 DOI: 10.1039/c7fo00495h] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The aim of this research was to investigate the antioxidant and anti-apoptotic activities of Potentilla anserina polysaccharide (PAP) on kidney damage induced by cadmium (Cd) in vitro and in vivo. PAP has been suggested to have anti-oxidation, anti-apoptosis, immunoregulation, antimicrobial, antitussive, and expectorant abilities. In this study, PAP was extracted and the major components of PAP were analyzed. It was shown that PAP pretreatment remarkably improved redox homeostasis, both in human embryonic kidney 293 (HEK293) cells and in BALB/c mice. Administration of PAP attenuated the mitochondrial dysfunction, degeneration, and fibrosis of kidney induced by Cd. Furthermore, PAP exhibited anti-apoptotic activity, which involved regulating both the mitochondria-mediated intrinsic apoptotic pathway and the death receptor-initiated extrinsic pathway. These results suggest that PAP is a potential therapeutic agent for Cd-induced nephrotoxicity.
Collapse
Affiliation(s)
- Rong Shen
- Institute of Integrated Traditional Chinese and Western Medicine, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Santos DCM, Lima ML, Toledo JS, Fernandes PA, Aguiar MMG, López-Gonzálvez Á, Ferreira LAM, Fernandes AP, Barbas C. Metabolomics as a tool to evaluate the toxicity of formulations containing amphotericin B, an antileishmanial drug. Toxicol Res (Camb) 2016; 5:1720-1732. [PMID: 30090471 PMCID: PMC6062298 DOI: 10.1039/c6tx00253f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/12/2016] [Indexed: 11/21/2022] Open
Abstract
Amphotericin B (AmB) is a drug of choice against life-threatening systemic fungal infections and an alternative therapy for the treatment of all forms of leishmaniasis. It is known that AmB and its conventional formulation cause renal damage; however, the lipid formulations can reduce these effects. The aim of the present study was to identify metabolic changes in mice treated with two different AmB formulations, a nanoemulsion (NE) (lipid system carrier) loaded with AmB and the conventional formulation (C-AmB). For this purpose, metabolic fingerprinting represents a valuable strategy to monitor, in a non-targeted manner, the changes that are at the base of the toxicity mechanism of AmB. Plasma samples of BALB-c mice were collected after treatment with 3 alternate doses of AmB at 1 mg kg-1 administered intravenously and analysed with CE, LC and GC coupled to MS. Blood urea nitrogen (BUN) and plasma creatinine levels were also analysed. Kidney tissue specimens were collected and evaluated. It was not observed that there were any alterations in BUN and creatinine levels as well as in histopathological analysis. Approximately 30 metabolites were identified as potentially related to early C-AmB-induced nephrotoxicity. Disturbances in the arachidonic acid, glycerophospholipid, acylcarnitine and polyunsaturated fatty acid (PUFA) pathways were observed in C-AmB-treated mice. In the AmB-loaded NE group, it was observed that there were fewer metabolic changes, including changes in the plasma levels of cortisol and pyranose. The candidate biomarkers revealed in this study could be useful in the detection of the onset and severity of kidney injury induced by AmB formulations.
Collapse
Affiliation(s)
- Délia C M Santos
- Department of Pharmaceutics , Faculty of Pharmacy , Federal University of Minas Gerais (UFMG) , Belo Horizonte , Brazil . ; Tel: +(55) 31 3409 6985
- CEMBIO , Centre for Metabolomics and Bioanalysis , Faculty of Pharmacy , San Pablo CEU University , Madrid , Spain
| | - Marta L Lima
- Institute of Tropical Medicine , University of São Paulo , São Paulo , SP , Brazil
- CEMBIO , Centre for Metabolomics and Bioanalysis , Faculty of Pharmacy , San Pablo CEU University , Madrid , Spain
| | - Juliano S Toledo
- Department of Pharmaceutics , Faculty of Pharmacy , Federal University of Minas Gerais (UFMG) , Belo Horizonte , Brazil . ; Tel: +(55) 31 3409 6985
- CEMBIO , Centre for Metabolomics and Bioanalysis , Faculty of Pharmacy , San Pablo CEU University , Madrid , Spain
| | - Paula A Fernandes
- Department of Pharmaceutics , Faculty of Pharmacy , Federal University of Minas Gerais (UFMG) , Belo Horizonte , Brazil . ; Tel: +(55) 31 3409 6985
| | - Marta M G Aguiar
- Department of Pharmaceutics , Faculty of Pharmacy , Federal University of Minas Gerais (UFMG) , Belo Horizonte , Brazil . ; Tel: +(55) 31 3409 6985
| | - Ángeles López-Gonzálvez
- CEMBIO , Centre for Metabolomics and Bioanalysis , Faculty of Pharmacy , San Pablo CEU University , Madrid , Spain
| | - Lucas A M Ferreira
- Department of Pharmaceutics , Faculty of Pharmacy , Federal University of Minas Gerais (UFMG) , Belo Horizonte , Brazil . ; Tel: +(55) 31 3409 6985
| | - Ana Paula Fernandes
- Department of Pharmaceutics , Faculty of Pharmacy , Federal University of Minas Gerais (UFMG) , Belo Horizonte , Brazil . ; Tel: +(55) 31 3409 6985
| | - Coral Barbas
- CEMBIO , Centre for Metabolomics and Bioanalysis , Faculty of Pharmacy , San Pablo CEU University , Madrid , Spain
| |
Collapse
|
10
|
Epigallocatechin-3-gallate attenuates cadmium-induced chronic renal injury and fibrosis. Food Chem Toxicol 2016; 96:70-8. [PMID: 27474435 DOI: 10.1016/j.fct.2016.07.030] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/13/2016] [Accepted: 07/25/2016] [Indexed: 12/11/2022]
Abstract
Cadmium (Cd) pollution is a serious environmental problem. Kidney is a main target organ of Cd toxicity. This study was undertaken to investigate the potential protective effects of epigallocatechin-3-gallate (EGCG) against chronic renal injury and fibrosis induced by CdCl2. Rat model was induced by exposing to 250 mg/L CdCl2 through drinking water. The renal function was evaluated by detecting the levels of blood urea nitrogen (BUN) and serum creatinine (SCR). The oxidative stress was measured by detecting the levels of malondialdehyde (MDA), nitric oxide (NO), reduced glutathione/oxidized glutathione (GSH/GSSG) and renal enzymatic antioxidant status. Additionally, the renal levels of transforming growth factor-β1 (TGF-β1), Smad3, phosphorylation-Smad3 (pp-Smad3), α-smooth muscle actin (α-SMA), vimentin and E-cadherin were measured by western blot assay. Renal levels of microRNA-21 (miR-21), miR-29a/b/c and miR-192 were measured by quantitative RT-PCR. It was found that EGCG ameliorated the CdCl2-induced renal injury, inhibited the level of oxidative stress, normalized renal enzymatic antioxidant status and E-cadherin level, as well as attenuated the over generation of TGF-β1, pp-Smad3, vimentin and α-SMA. EGCG also decreased the production of miR-21 and miR-192, and enhanced the levels of miR-29a/b/c. These results showed that EGCG could attenuate Cd induced chronic renal injury.
Collapse
|
11
|
Tsutsumi T, Okamoto Y, Yamakawa S, Bingjun C, Ishihara A, Tanaka T, Tokumura A. Reduced rat plasma lysophosphatidylglycerol or lysophosphatidic acid level as a biomarker of aristolochic acid-induced renal and adipose dysfunctions. Life Sci 2016; 157:208-216. [PMID: 27267499 DOI: 10.1016/j.lfs.2016.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 10/21/2022]
Abstract
AIMS Food products and diet pills containing aristolochic acid (AA) are responsible for a rapid progression of nephropathy associated with reduced body weight in human beings. In this study, we investigated the relationship of dietary NaCl and lysophospholipid (LPL) plasma levels to body weight gain in AA-treated rats. MAIN METHODS Male rats receiving a salt-deficient chow, normal salt chow or high salt chow were injected intraperitoneally daily with AA for 15days. Body weight, visceral fat mass, food intake, levels of LPL in plasma and its synthesized enzyme were investigated. KEY FINDINGS Body weight gain, visceral fat mass and daily food intake were smaller in AA-treated rats than those of control rats, regardless of dietary salt concentration. AA treatment decreased plasma levels of major lysophosphatidic acid (LPA) molecular species in rats fed the normal or high-salt chow but not the salt-deficient chow, whereas both the plasma lysophospholipase D activity and kidney mRNA level of autotaxin of AA-treated rats fed chow with defined salt concentrations were lower than those of control rats. Plasma levels of major molecular species of lysophosphatidylglycerol (LPG) in AA-treated rat groups fed chow with defined salt concentrations were lower than those of control rats. SIGNIFICANCE Plasma levels of LPG and LPA seem to be relevant to the reduced body weight gain and fat mass due to AA treatment.
Collapse
Affiliation(s)
- Toshihiko Tsutsumi
- Department of Pharmaceutical Sciences, Kyushu University of Health and Welfare, Japan
| | - Yoko Okamoto
- Department of Pharmaceutical Health Chemistry, Institute of Health Biosciences, University of Tokushima Graduate School, Japan
| | - Syougo Yamakawa
- Department of Pharmaceutical Health Chemistry, Institute of Health Biosciences, University of Tokushima Graduate School, Japan
| | - Cheng Bingjun
- Department of Pharmaceutical Sciences, Kyushu University of Health and Welfare, Japan
| | - Akira Ishihara
- Department of Anatomic Pathology, Prefectural Nobeoka Hospital, Japan
| | - Tamotsu Tanaka
- Department of Pharmaceutical Health Chemistry, Institute of Health Biosciences, University of Tokushima Graduate School, Japan
| | - Akira Tokumura
- Department of Life Sciences, Faculty of Pharmacy, Yasuda Women's University, Japan
| |
Collapse
|
12
|
Wu X, Cobbina SJ, Mao G, Xu H, Zhang Z, Yang L. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:8244-59. [PMID: 26965280 DOI: 10.1007/s11356-016-6333-x] [Citation(s) in RCA: 580] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 02/21/2016] [Indexed: 04/16/2023]
Abstract
The rational for the study was to review the literature on the toxicity and corresponding mechanisms associated with lead (Pb), mercury (Hg), cadmium (Cd), and arsenic (As), individually and as mixtures, in the environment. Heavy metals are ubiquitous and generally persist in the environment, enabling them to biomagnify in the food chain. Living systems most often interact with a cocktail of heavy metals in the environment. Heavy metal exposure to biological systems may lead to oxidation stress which may induce DNA damage, protein modification, lipid peroxidation, and others. In this review, the major mechanism associated with toxicities of individual metals was the generation of reactive oxygen species (ROS). Additionally, toxicities were expressed through depletion of glutathione and bonding to sulfhydryl groups of proteins. Interestingly, a metal like Pb becomes toxic to organisms through the depletion of antioxidants while Cd indirectly generates ROS by its ability to replace iron and copper. ROS generated through exposure to arsenic were associated with many modes of action, and heavy metal mixtures were found to have varied effects on organisms. Many models based on concentration addition (CA) and independent action (IA) have been introduced to help predict toxicities and mechanisms associated with metal mixtures. An integrated model which combines CA and IA was further proposed for evaluating toxicities of non-interactive mixtures. In cases where there are molecular interactions, the toxicogenomic approach was used to predict toxicities. The high-throughput toxicogenomics combines studies in genetics, genome-scale expression, cell and tissue expression, metabolite profiling, and bioinformatics.
Collapse
Affiliation(s)
- Xiangyang Wu
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang, 212013, Jiangsu, China.
| | - Samuel J Cobbina
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang, 212013, Jiangsu, China
| | - Guanghua Mao
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang, 212013, Jiangsu, China
| | - Hai Xu
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang, 212013, Jiangsu, China
| | - Zhen Zhang
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang, 212013, Jiangsu, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang, 212013, China.
| |
Collapse
|
13
|
Tsutsumi T, Yamakawa S, Ishihara A, Yamamoto A, Tanaka T, Tokumura A. Reduced kidney levels of lysophosphatidic acids in rats after chronic administration of aristolochic acid: Its possible protective role in renal fibrosis. Toxicol Rep 2015; 2:121-129. [PMID: 28962344 PMCID: PMC5598376 DOI: 10.1016/j.toxrep.2015.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/30/2015] [Accepted: 02/23/2015] [Indexed: 11/30/2022] Open
Abstract
Aristolochic acid (AA) is considered to be a causative agent for progressive interstitial renal fibrosis, leading to AA nephropathy. Lysophosphatidic acid (LPA) is a mediator in the onset of renal fibrosis. In this study, we analyzed the molecular species of LPA and its precursor lysophospholipids in kidney tissue from rats exposed to AA. Daily intraperitoneal injections of AA for 35 days to rats gave rise to fibrosis in kidney, decreased the kidney levels of LPA, lysophosphatidylserine and lysophosphatidylinositol. In rat renal cell lines (NRK52E and NRK49F), AA-induced cytotoxicity was potentiated by Ki16425, LPA1,3 receptor antagonist. The level of mRNA encording α-smooth muscle actin was significantly increased by AA-treatment only in NRK52E cells, while the mRNA level of collagen III was decreased in both NRK52E and NRK49F cells. These results suggest that endogenous LPA in rat kidney prevents AA-induced renal fibrosis.
Collapse
Key Words
- 18S, ribosomal protein S18
- AA, aristolochic acid
- AZ, azan Mallory
- Aristolochic acid
- Chronic kidney disease
- Fibrosis
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- HE, hematoxylin/eosin
- LC–MS/MS, liquid chromatography–tandem mass spectrometry
- LPA, lysophosphatidic acid
- LPC, lysophosphatidylcholine
- LPE, lysophosphatidylethanolamine
- LPG, lysophosphatidylglycerol
- LPI, lysophosphatidylinositol
- LPL, lysophospholipid
- LPS, lysophosphatidylserine
- Lysophosphatidic acid
- Lysophospholipid
- Nephrotoxicity
- PLA1, phospholipase A1
- PLA2, phospholipase A2
- lysoPLD, lysophospholipase D
- α-SMA, α-smooth muscle actin
Collapse
Affiliation(s)
- Toshihiko Tsutsumi
- Department of Pharmaceutical Sciences, Kyushu University of Health and Welfare, Japan
| | - Syougo Yamakawa
- Department of Pharmaceutical Health Chemistry, Institute of Health Biosciences, University of Tokushima Graduate School, Japan
| | - Akira Ishihara
- Department of Anatomic Pathology, Prefectural Nobeoka Hospital, Japan
| | - Aimi Yamamoto
- Department of Pharmaceutical Health Chemistry, Institute of Health Biosciences, University of Tokushima Graduate School, Japan
| | - Tamotsu Tanaka
- Department of Pharmaceutical Health Chemistry, Institute of Health Biosciences, University of Tokushima Graduate School, Japan
| | - Akira Tokumura
- Department of Pharmaceutical Health Chemistry, Institute of Health Biosciences, University of Tokushima Graduate School, Japan.,Department of Life Sciences, Faculty of Pharmacy, Yasuda Women's University, Japan
| |
Collapse
|