1
|
Wang C, Fan S, Li M, Ye Y, Li Z, Long W, Li Y, Huang Z, Jiang Q, Yang W, Yang R, Tang D. A 7-year feed study on the long-term effects of genetically modified maize containing cry1Ab/cry2Aj and EPSPS genes on gut microbiota and metabolite profiles across two generations of cynomolgus macaques. Food Chem Toxicol 2025; 200:115419. [PMID: 40157594 DOI: 10.1016/j.fct.2025.115419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/26/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
The health implications of genetically modified (GM) crops remain controversial relative to their non-GM counterparts, particularly regarding long-term dietary exposure. Although the gut microbiome is a key health indicator, studies investigating the impact of GM crop consumption on intestinal microbiota remain limited. This study presents a comprehensive 7-year evaluation of GM maize expressing cry1Ab/cry2Aj and G10evo-EPSPS proteins through metagenomic and metabolomic analyses. We assessed the effects of GM maize consumption on gut microbiota diversity and metabolite profiles in cynomolgus macaques (Macaca fascicularis) compared with non-GM maize. Three diet regimens were implemented: a conventional compound feed (CK group), diet formulation containing 70 % non-GM maize (Corn group), and diet formulation containing 70 % GM maize (Tg group). The results demonstrated that feeding GM maize to the first (F0) and second (F1) generations of monkeys did not substantially affect the composition, community structure, or function of the intestinal microbiome, as indicated by species composition and diversity analyses. Minor differences in intestinal metabolites were observed but were not directly linked to transgenic maize consumption. Collectively, long-term intake of maize with cry1Ab/cry2Aj and g10evo-epsps genes had no adverse effects on macaques or their offspring.
Collapse
Affiliation(s)
- Chenyun Wang
- Medical Primate Research Center, Drug Safety Evaluation Center, Institute of Medical Biology, Chinese Academy of Medical Sciences/Peking Union Medical College, Kunming, 650118, China
| | - Shengtao Fan
- Medical Primate Research Center, Drug Safety Evaluation Center, Institute of Medical Biology, Chinese Academy of Medical Sciences/Peking Union Medical College, Kunming, 650118, China
| | - Minghao Li
- Medical Primate Research Center, Drug Safety Evaluation Center, Institute of Medical Biology, Chinese Academy of Medical Sciences/Peking Union Medical College, Kunming, 650118, China
| | - Yousong Ye
- Medical Primate Research Center, Drug Safety Evaluation Center, Institute of Medical Biology, Chinese Academy of Medical Sciences/Peking Union Medical College, Kunming, 650118, China
| | - Zheli Li
- Medical Primate Research Center, Drug Safety Evaluation Center, Institute of Medical Biology, Chinese Academy of Medical Sciences/Peking Union Medical College, Kunming, 650118, China
| | - Weihu Long
- Medical Primate Research Center, Drug Safety Evaluation Center, Institute of Medical Biology, Chinese Academy of Medical Sciences/Peking Union Medical College, Kunming, 650118, China
| | - Yongjie Li
- Medical Primate Research Center, Drug Safety Evaluation Center, Institute of Medical Biology, Chinese Academy of Medical Sciences/Peking Union Medical College, Kunming, 650118, China
| | - Zhangqiong Huang
- Medical Primate Research Center, Drug Safety Evaluation Center, Institute of Medical Biology, Chinese Academy of Medical Sciences/Peking Union Medical College, Kunming, 650118, China
| | - Qinfang Jiang
- Medical Primate Research Center, Drug Safety Evaluation Center, Institute of Medical Biology, Chinese Academy of Medical Sciences/Peking Union Medical College, Kunming, 650118, China
| | - Wanjing Yang
- Medical Primate Research Center, Drug Safety Evaluation Center, Institute of Medical Biology, Chinese Academy of Medical Sciences/Peking Union Medical College, Kunming, 650118, China
| | - Rujia Yang
- Medical Primate Research Center, Drug Safety Evaluation Center, Institute of Medical Biology, Chinese Academy of Medical Sciences/Peking Union Medical College, Kunming, 650118, China
| | - Donghong Tang
- Medical Primate Research Center, Drug Safety Evaluation Center, Institute of Medical Biology, Chinese Academy of Medical Sciences/Peking Union Medical College, Kunming, 650118, China.
| |
Collapse
|
2
|
Liu H, He X, Xu W, Huang K, Zhang J. Safety evaluation of subchronic feeding ofnisItransformedLactobacillus plantarumin Sprague-Dawley rats. J Food Saf 2017. [DOI: 10.1111/jfs.12427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Haiyan Liu
- School of Public Health; North China University of Science and Technology; Tangshan Hebei China
| | - Xiaoyun He
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering; China Agricultural University; Beijing China
- Ministry of Agriculture; The Supervision, Inspection & Testing Center of Genetically Modified Organisms; Beijing China
| | - Wentao Xu
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering; China Agricultural University; Beijing China
- Ministry of Agriculture; The Supervision, Inspection & Testing Center of Genetically Modified Organisms; Beijing China
| | - Kunlun Huang
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering; China Agricultural University; Beijing China
- Ministry of Agriculture; The Supervision, Inspection & Testing Center of Genetically Modified Organisms; Beijing China
| | - Jianwei Zhang
- Physical Education Department; Tangshan Normal University; Tangshan Hebei China
| |
Collapse
|
3
|
Lang T, Zou S, Huang K, Guo M, Liu X, He X. Safety assessment of transgenic canola RF3 with bar and barstar gene on Sprague-Dawley (SD) rats by 90-day feeding test. Regul Toxicol Pharmacol 2017; 91:226-234. [DOI: 10.1016/j.yrtph.2017.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 09/13/2017] [Accepted: 10/19/2017] [Indexed: 12/20/2022]
|
4
|
Tsatsakis AM, Nawaz MA, Tutelyan VA, Golokhvast KS, Kalantzi OI, Chung DH, Kang SJ, Coleman MD, Tyshko N, Yang SH, Chung G. Impact on environment, ecosystem, diversity and health from culturing and using GMOs as feed and food. Food Chem Toxicol 2017. [PMID: 28645870 DOI: 10.1016/j.fct.2017.06.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Modern agriculture provides the potential for sustainable feeding of the world's increasing population. Up to the present moment, genetically modified (GM) products have enabled increased yields and reduced pesticide usage. Nevertheless, GM products are controversial amongst policy makers, scientists and the consumers, regarding their possible environmental, ecological, and health risks. Scientific-and-political debates can even influence legislation and prospective risk assessment procedure. Currently, the scientifically-assessed direct hazardous impacts of GM food and feed on fauna and flora are conflicting; indeed, a review of literature available data provides some evidence of GM environmental and health risks. Although the consequences of gene flow and risks to biodiversity are debatable. Risks to the environment and ecosystems can exist, such as the evolution of weed herbicide resistance during GM cultivation. A matter of high importance is to provide precise knowledge and adequate current information to regulatory agencies, governments, policy makers, researchers, and commercial GMO-releasing companies to enable them to thoroughly investigate the possible risks.
Collapse
Affiliation(s)
- Aristidis M Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Muhammad Amjad Nawaz
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Republic of Korea
| | - Victor A Tutelyan
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, Moscow, Russian Federation
| | - Kirill S Golokhvast
- Educational Scientific Center of Nanotechnology, Engineering School, Far Eastern Federal Univeristy, 37 Pushkinskaya Street, 690950, Vladivostok, Russian Federation
| | | | - Duck Hwa Chung
- Department of Agricultural Chemistry and Food Science and Technology, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
| | - Sung Jo Kang
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Geyongnam 52828, Republic of Korea
| | - Michael D Coleman
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Nadia Tyshko
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, Moscow, Russian Federation
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Republic of Korea
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Republic of Korea.
| |
Collapse
|
5
|
Bauer SM. Atopic Eczema: Genetic Associations and Potential Links to Developmental Exposures. Int J Toxicol 2017; 36:187-198. [DOI: 10.1177/1091581817701075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Atopic eczema (AE), or atopic dermatitis (AD), is a common inflammatory skin disease with a disrupted epidermal barrier and an allergic immune response. AD/AE is prominently characterized by a symptomatic itch and transient skin lesions. Infants compose a significant percentage affected. Two models have been proposed to explain AD/AE skin pathology: the gut microbiome-focused inside-outside model and the outside-inside model concentrating on the disrupted skin barrier/skin microbiome. Gene disruptions contributing to epidermal structure, as well as those in immune system genes, are implicated. Over 30 genes have been linked to AD/AE with Flg and Tmem79/Matt alterations being common. Other linked disruptions are in the interleukin-1 family of cytokines/receptors and the TH2 gene family of cytokines. Inheritable epigenetic modifications of the genes or associated proteins may also be involved. Skin barrier disruption and the allergic immune response have been the main foci in mechanistic studies of AD/AE, but the role of the environment is becoming more apparent. Thus, an examination of in utero exposures could be very helpful in understanding the heterogeneity of AD/AE. Although research is limited, there is evidence that developmental exposure to environmental tobacco smoke or phthalates may impact disease. Management for AD/AE includes topical corticosteroids and calcineurin inhibitors, which safely facilitate improvements in select individuals. Disease heterogeneity warrants continued research not only into elucidating disease mechanism(s), via identification of contributing genetic alterations, but also research to understand how/when these genetic alterations occur. This may lead to the cure that those affected by AD/AE eagerly await.
Collapse
Affiliation(s)
- Stephen M. Bauer
- Assistant Professor of Biology, Department of Biology, Belmont Abbey College, Belmont, NC, USA
| |
Collapse
|
6
|
Domingo JL. Safety assessment of GM plants: An updated review of the scientific literature. Food Chem Toxicol 2016; 95:12-8. [PMID: 27317828 DOI: 10.1016/j.fct.2016.06.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/13/2016] [Accepted: 06/13/2016] [Indexed: 01/08/2023]
Abstract
In a wide revision of the literature conducted in 2000, I noted that the information in scientific journals on the safety of genetically modified (GM) foods in general, and GM plants in particular, was scarce. Of course, it was not sufficient to guarantee that the consumption of these products should not mean risks for the health of the consumers. Because of the scientific interest in GM organisms (GMOs), as well as the great concern that the consumption of GM foods/plants has raised in a number of countries, I conducted two subsequent revisions (2007 and 2011) on the adverse/toxic effects of GM plants. In the present review, I have updated the information on the potential adverse health effects of GM plants consumed as food and/or feed. With only a few exceptions, the reported studies in the last six years show rather similar conclusions; that is to say, the assessed GM soybeans, rice, corn/maize and wheat would be as safe as the parental species of these plants. However, in spite of the notable increase in the available information, studies on the long-term health effects of GM plants, including tests of mutagenicity, teratogenicity and carcinogenicity seem to be still clearly necessary.
Collapse
Affiliation(s)
- José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain.
| |
Collapse
|