1
|
Qin L, Xiao J, Yang H, Liang J, Li L, Wu S, Peng D. Rapid immunoassays for the detection of quinoxalines and their metabolites residues in animal-derived foods: A review. Food Chem 2024; 443:138539. [PMID: 38320375 DOI: 10.1016/j.foodchem.2024.138539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/06/2024] [Accepted: 01/20/2024] [Indexed: 02/08/2024]
Abstract
Quinoxalines are a class of veterinary drugs with antibacterial and growth-promoting functions. They are often widely used to treat and prevent animal diseases and are illegally used as animal growth promoters to increase economic benefits. Quinoxalines could be easily metabolized in animals to various residue markers and remain in animal-derived foods, which would pose a serious threat to human health. Consequently, it is necessary to detect the residues of quinoxalines and their metabolites. This article reviewed and evaluated immunoassays for quinoxalines and their metabolites in animal-derived foods, mainly including enzyme-linked immunosorbent assays, fluorescence immunosorbent assays, immunochromatography, and surface plasmon resonance biosensors. In addition, we deeply explored the design of haptens for quinoxalines and their metabolites and analyzed the effect of haptens on antibody performance. This paper aims to provide guidance and references for their accurate and sensitive detection, thereby ensuring food safety and human public health.
Collapse
Affiliation(s)
- Liangni Qin
- State Key Laboratory of Agricultural Microbiology, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaxu Xiao
- State Key Laboratory of Agricultural Microbiology, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongfei Yang
- State Key Laboratory of Agricultural Microbiology, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Jixiang Liang
- State Key Laboratory of Agricultural Microbiology, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Long Li
- State Key Laboratory of Agricultural Microbiology, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Shixiang Wu
- State Key Laboratory of Agricultural Microbiology, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Dapeng Peng
- State Key Laboratory of Agricultural Microbiology, National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China; Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
2
|
Li L, Liu R, Liu L, Guo Z, Zhou T, Yang Y, Yang H, He L. Determination of marker residues of quinoxaline-1,4-di-N-oxides and its prototype identification by liquid chromatography tandem mass spectrometry. Food Chem 2024; 442:138395. [PMID: 38266409 DOI: 10.1016/j.foodchem.2024.138395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/20/2023] [Accepted: 01/06/2024] [Indexed: 01/26/2024]
Abstract
Quinoxaline-1,4-di-N-oxides (QdNOs), such as carbadox, olaquindox, mequindox, quinocetone, etc. are a class of antibacterial drugs. Prototype drugs residues can not be detected due to their rapid metabolism in animals. Quinoxaline-2-carboxylic acid (QCA) and 3-methyl-QCA (MQCA) are their common marker residues, so it has been always a challenge to trace the specific QdNOs drug used in food animal production. Herein, a liquid chromatography tandem mass spectrometry method was developed to determine QCA and MQCA, and meanwhile, the prototype drugs were identified by analyzing bis-desoxy QdNOs metabolites in single ion-pair monitoring mode. The method indicated that the average recoveries for QCA and MQCA were from 90 % to 105 % with relative standard deviations below 10 %, and the limits of quantification were 1.0 μg/kg. The limits of detection of five bis-desoxy QdNOs (qualitative markers) reached 0.5 μg/kg. This new analytical strategy can effectively solve the identification problem of QdNOs drugs in animal-derived food.
Collapse
Affiliation(s)
- Lu Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
| | - Rong Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China; Inspection and Testing Center for Domestic Animal Products (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510642,China
| | - Longyun Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
| | - Zeyu Guo
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Tong Zhou
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yuxi Yang
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Huiping Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
| | - Limin He
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China; Inspection and Testing Center for Domestic Animal Products (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510642,China; National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
An H, Li Y, Li Y, Gong S, Zhu Y, Li X, Zhou S, Wu Y. Advances in Metabolism and Metabolic Toxicology of Quinoxaline 1,4-Di-N-oxides. Chem Res Toxicol 2024; 37:528-539. [PMID: 38507288 DOI: 10.1021/acs.chemrestox.4c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Quinoxaline 1,4-di-N-Oxides (QdNOs) have been used as synthetic antimicrobial agents in animal husbandry and aquaculture. The metabolism and potential toxicity have been also concerns in recently years. The metabolism investigations showed that there were 8 metabolites of Carbadox (CBX), 34 metabolites of Cyadox (CYA), 33 metabolites of Mequindox (MEQ), 35 metabolites of Olaquindox (OLA), and 56 metabolites of Quinocetone (QCT) in different animals. Among them, Cb3 and Cb8, M6, and O9 are metabolic residual markers of CBX, MEQ and OLA, which are associated with N → O reduction. Toxicity studies revealed that QdNOs exhibited severe tumorigenicity, cytotoxicity, and adrenal toxicity. Metabolic toxicology showed that toxicity of QdNOs metabolites might be related to the N → O group reduction, and some metabolites exhibited higher toxic effects than the precursor, which could provide guidance for further research on the metabolic toxicology of QdNOs and provide a wealth of information for food safety evaluation.
Collapse
Affiliation(s)
- Haoxian An
- College of Life Science, Yantai University, Yantai 264005, People's Republic of China
| | - Yonggang Li
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, People's Republic of China
| | - Yanshen Li
- College of Life Science, Yantai University, Yantai 264005, People's Republic of China
| | - Shanmin Gong
- College of Life Science, Yantai University, Yantai 264005, People's Republic of China
| | - Ya'ning Zhu
- College of Life Science, Yantai University, Yantai 264005, People's Republic of China
| | - Xinru Li
- College of Life Science, Yantai University, Yantai 264005, People's Republic of China
| | - Shuang Zhou
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100017, People's Republic of China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100017, People's Republic of China
| |
Collapse
|
4
|
Mao X, Zhou X, He J, Liu G, Liu H, Zhao H, Luo P, Wu Y, Li Y. Metabolism Profile of Mequindox in Sea Cucumbers In Vivo Using LC-HRMS. Antibiotics (Basel) 2022; 11:1599. [PMID: 36421242 PMCID: PMC9686589 DOI: 10.3390/antibiotics11111599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 01/21/2025] Open
Abstract
In this work, the metabolism behavior of mequindox (MEQ) in sea cucumber in vivo was investigated using LC-HRMS. In total, nine metabolites were detected and identified as well as the precursor in sea cucumber tissues. The metabolic pathways of MEQ in sea cucumber mainly include hydrogenation reduction, deoxidation, carboxylation, deacetylation, and combinations thereof. The most predominant metabolites of MEQ in sea cucumber are 2-iso-BDMEQ and 2-iso-1-DMEQ, with deoxidation and carbonyl reduction as major metabolic pathways. In particular, this work first reported 3-methyl-2-quinoxalinecarboxylic acid (MQCA) as a metabolite of MEQ, and carboxylation is a major metabolic pathway of MEQ in sea cucumber. This work revealed that the metabolism of MEQ in marine animals is different from that in land animals. The metabolism results in this work could facilitate the accurate risk assessment of MEQ in sea cucumber and related marine foods.
Collapse
Affiliation(s)
- Xin Mao
- Department of Marine Product Quality and Safety Inspection Key Laboratory, Yantai University, Yantai 264005, China
| | - Xiaozhen Zhou
- Department of Marine Product Quality and Safety Inspection Key Laboratory, Yantai University, Yantai 264005, China
| | - Jun He
- Department of Marine Product Quality and Safety Inspection Key Laboratory, Yantai University, Yantai 264005, China
| | - Gongzhen Liu
- College of Agriculture and Forestry, Linyi University, Linyi 276000, China
| | - Huihui Liu
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Han Zhao
- Department of Marine Product Quality and Safety Inspection Key Laboratory, Yantai University, Yantai 264005, China
| | - Pengjie Luo
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100017, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100017, China
| | - Yanshen Li
- Department of Marine Product Quality and Safety Inspection Key Laboratory, Yantai University, Yantai 264005, China
| |
Collapse
|
5
|
A label-free electrochemical immunosensor based on AuNPs/GO-PEI-Ag-Nf for olaquindox detection in feedstuffs. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Rivera G. Quinoxaline 1,4-di-N-Oxide Derivatives: Are They Unselective or Selective Inhibitors? Mini Rev Med Chem 2021; 22:15-25. [PMID: 33573542 DOI: 10.2174/1389557521666210126142541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/07/2020] [Accepted: 12/07/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND For decades, the quinoxaline 1,4-di-N-oxide ring has been considered a privileged structure to develop new antibacterial, antitumoural, and antiprotozoal agents, among others, however its mechanism of action is not clear. OBJECTIVE The main aim of this mini-review was to analyze the mechanism of action of quinoxaline 1,4-di-N-oxide derivatives reported as antibacterial, antitumoural and antiprotozoal agents. RESULTS Initially, the mechanism of action of quinoxaline 1,4-di-N-oxide derivatives against bacteria, tumoural cell lines, and parasites has been described as nonspecific, but recently, the results against different organisms have shown that these compounds have an inhibitory action on specific targets such as trypanothione reductase, triosephosphate isomerase, and other essential enzymes. CONCLUSION In summary, quinoxaline 1,4-di-N-oxide is a scaffold to develop new anti-Mycobacterium tuberculosis, antitumoural and antiprotozoal agents, however, understanding the mechanism of action of quinoxaline 1,4-di-N-oxide derivatives in each microorganism could contribute to the development of new, and more potent selective drugs.
Collapse
Affiliation(s)
- Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa. Mexico
| |
Collapse
|
7
|
Novel Electrochemical Sensor Fabricated for Individual and Simultaneous Ultrasensitive Determination of Olaquindox and Carbadox Based on MWCNT-OH/CMK-8 Hybrid Nanocomposite Film. Molecules 2019; 24:molecules24173041. [PMID: 31443345 PMCID: PMC6749216 DOI: 10.3390/molecules24173041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/08/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
A hybrid nanocomposite consisting of hydroxylated multi-walled carbon nanotubes (MWCNTs-OH) and cube mesoporous carbon (CMK-8) was applied in this study to construct an MWCNT-OH/CMK-8/gold electrode (GE) electrochemical sensor and simultaneously perform the electro-reduction of olaquindox (OLA) and carbadox (CBX). The respective peak currents of CBX and OLA on the modified electrode increased by 720- and 595-fold relative to the peak current of GE. The performances of the modified electrode were investigated with electrochemical impedance spectroscopy, cyclic voltammetry, and differential pulse voltammetry. Then, the modified electrodes were used for the individual and simultaneous determination of OLA and CBX. The fabricated sensor demonstrated a linear response at 0.2-500 nmol/L in optimum experimental conditions, and the detection limits were 104.1 and 62.9 pmol/L for the simultaneous determination of OLA and CBX, respectively. As for individual determination, wide linear relationships were obtained for the detected OLA with levels of 0.05-500 nmol/L with LOD of 20.7 pmol/L and the detected CBX with levels of 0.10-500 nmol/L with LOD of 50.2 pmol/L. The fabricated sensor was successfully used in the independent and simultaneous determination of OLA and CBX in spiked pork samples.
Collapse
|
8
|
Tan H, Pan Y, Chen D, Tao Y, Zhou K, Liu Z, Yuan Z, Huang L. Discovery of the Marker Residue of Olaquindox in Pigs, Broilers, and Carp. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6603-6613. [PMID: 31094200 DOI: 10.1021/acs.jafc.8b06026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The excretion, metabolism, distribution, and residue depletion of olaquindox (OLA), an antibacterial and growth-promoting agent used in food-producing animals for decades without a clear understanding of metabolic fate, was completely studied in pigs, broilers, carp, and rats using a radio-tracing approach combined with liquid chromatography-ion trap/time-of-flight mass spectroscopy to define the scientific marker residue (MR). After a single gavage of [3H]OLA, over 92% of the dose was excreted via urine. OLA was transformed into eight metabolites (O1-O8) in pigs and broilers, four metabolites (O1, O2, O4, and O7) in carp, and nine metabolites (O1-O9) in rats. O2 was the major residue in edible tissues of four species and persisted for the longest time in the kidneys with the longest half-life of 3.52-4.6 d. Bisdesoxyolaquindox (O2) is designated to be the MR, and the kidneys are considered to be the target tissue for OLA in food producing animals. Monitoring for this metabolite would improve the food safety evaluation and residue control of this drug.
Collapse
|
9
|
Peng D, Kavanagh O, Gao H, Zhang X, Deng S, Chen D, Liu Z, Xie C, Situ C, Yuan Z. Surface plasmon resonance biosensor for the determination of 3-methyl-quinoxaline-2-carboxylic acid, the marker residue of olaquindox, in swine tissues. Food Chem 2019; 302:124623. [PMID: 31408774 DOI: 10.1016/j.foodchem.2019.04.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/05/2019] [Accepted: 04/05/2019] [Indexed: 11/26/2022]
Abstract
To monitor the illegal use of olaquindox in animals, a monoclonal antibody-based surface plasmon resonance (SPR) biosensor method has been developed to detect 3-methyl-quinoxaline-2-carboxylic acid, the marker residues of olaquindox, in swine tissues. The limit of detection was 1.4 µg kg-1 in swine muscle and 2.7 µg kg-1 in swine liver, which are lower than the EU recommended concentration (10 µg kg-1). The recoveries were from 82% to 104.6%, with coefficients of variation of less than 12.2%. Good correlations between SPR and HPLC results (r = 0.9806, muscle; r = 0.9698, liver) and between SPR and ic-ELISA results (r = 0.9918, muscle; r = 0.9873, liver) were observed in the affected tissues, which demonstrated the reliability of the SPR method. This method would be a rapid and reliable tool for the screening of the residues of olaquindox in the edible tissues of animals.
Collapse
Affiliation(s)
- Dapeng Peng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Owen Kavanagh
- School of Health Sciences, Lord Mayor's Walk, York Y031 7EX, UK
| | - Haijiao Gao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiya Zhang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Sijun Deng
- The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, BT9 5AG Northern Ireland, UK
| | - Dongmei Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhenli Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Changqing Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chen Situ
- The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, BT9 5AG Northern Ireland, UK.
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
10
|
Liu Q, Lei Z, Gu C, Guo J, Yu H, Fatima Z, Zhou K, Shabbir MAB, Maan MK, Wu Q, Xie S, Wang X, Yuan Z. Mequindox induces apoptosis, DNA damage, and carcinogenicity in Wistar rats. Food Chem Toxicol 2019; 127:270-279. [PMID: 30922968 DOI: 10.1016/j.fct.2019.03.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 03/10/2019] [Accepted: 03/12/2019] [Indexed: 12/18/2022]
Abstract
Mequindox (MEQ) is a synthetic antibacterial agent. Recent studies showed that MEQ and its primary metabolites exhibit strong genotoxicity to mammalian cells, and MEQ induced carcinogenicity in mice. These findings suggest that chronic exposure to MEQ could lead to an increased risk of cancer later in life. In the present study, four groups of Wistar rats (55 rats/sex/group) were fed with diets containing MEQ (0, 25, 55, and 110 mg/kg) for 2 years. The results showed that the hematological system, liver, kidneys, and adrenal glands, as well as the developmental and reproductive systems, were the main targets for MEQ. Liver toxicity mediated by MEQ was associated with apoptosis and the nuclear factor κB (NF-κB) signaling pathway. In addition, MEQ increased the incidence of tumors in rats. Phosphorylated histone H2AX (γ-H2AX) is identified as a biomarker of cellular response to DNA double-strand breaks (DSB). Our data demonstrated that γ-H2AX expression was significantly increased in tumors. Thus, high levels of DSB might be responsible for carcinogenesis in rats, and further investigation is absolutely required to clarify the exact molecular mechanisms for carcinogenicity caused by MEQ in vivo.
Collapse
Affiliation(s)
- Qianying Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, China
| | - Zhixin Lei
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Changqin Gu
- A Department of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Jingchao Guo
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Huiru Yu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zainab Fatima
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Kaixiang Zhou
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Muhammad A B Shabbir
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Muhammad Kashif Maan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China; Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Shuyu Xie
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Xu Wang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
11
|
Kaushal T, Srivastava G, Sharma A, Singh Negi A. An insight into medicinal chemistry of anticancer quinoxalines. Bioorg Med Chem 2018; 27:16-35. [PMID: 30502116 DOI: 10.1016/j.bmc.2018.11.021] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/06/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
Abstract
Quinoxalines are benzopyrazines containing benzene and pyrazine rings fused together. In the recent past, quinoxalines have attracted Medicinal Chemists considerably for their syntheses and chemistry due to their distinct pharmacological activities. Diverse synthetic protocols have been developed via multicomponent reactions, single pot synthesis and combinatorial approach using efficient catalysts, reagents, and nano-composites etc. Further, the versatility of the quinoxaline core and its reasonable chemical simplicity devise it extremely promising source of bioactive compounds. Therefore, a wide variety of bioactive quinoxalines has been realised as antitumour, antifungal, anti-inflammatory, antimicrobial, and antiviral agents. Already, a few of them are clinical drugs while many more are under various phases of clinical trials. Present review focuses on chemistry and pharmacology (both efficacy and safety) of quinoxalines and also provides some insight in to their structure-activity relationship.
Collapse
Affiliation(s)
- Tanu Kaushal
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow 226 015, UP, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - Gaurava Srivastava
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow 226 015, UP, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - Ashok Sharma
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow 226 015, UP, India
| | - Arvind Singh Negi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow 226 015, UP, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India.
| |
Collapse
|
12
|
Liu Q, Lei Z, Zhou K, Yu H, Liu S, Sun Q, Wang X, Dai M, Yuan Z. N-O Reduction and ROS-Mediated AKT/FOXO1 and AKT/P53 Pathways Are Involved in Growth Promotion and Cytotoxicity of Cyadox. Chem Res Toxicol 2018; 31:1219-1229. [PMID: 30265530 DOI: 10.1021/acs.chemrestox.8b00194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cyadox is a novel derivative of quinoxaline-1,4-dioxides (QdNOs) with the potential to be developed as a feed additive. However, the pharmacological and toxicological bioactive molecules of cyadox and the molecular mechanism of its pharmacological and toxic actions remain unclear. In the present study, cyadox and its main metabolites of cy1, cy4, cy6, and cy12 were selected; the growth promotion characteristic was indicated by the mRNA level of EGF; and the cytotoxicity of cyadox was determined by methylthiazol tetrazolium bromide (MTT) assay, lactate dehydrogenase (LDH) release, and Annexin V-FITC/PI apoptosis detection kit with flow cytometry. The intracellular ROS, cyclin D1, and Akt/P53/FOXO1 signaling pathway were also investigated. Our data suggested that cyadox showed relatively higher activity than its metabolites, and the ROS was generated from N-O reduction of cyadox. Moreover, cyadox (2 μM) activated the Akt and increased the EGF, cyclin D1, and FOXO1 expression levels. Cyadox (100 μM) induced cytotoxicity in L02 cells in a concentration- and time-dependent manner. Additionally, the activated P53 pathway, hyperactivated Akt, and apoptosis were found in L02 cells after incubation with 100 μM cyadox. Our data demonstrated that Akt promoted cell survival when it was mildly activated by cyadox at 2 μM, and Akt leads to apoptosis when it was severely activated by cyadox at 100 μM. Thus, the present study revealed that N-O reduction of cyadox and ROS-mediated AKT/FOXO1 and AKT/P53 pathways were involved in growth promotion and cytotoxicity of cyadox.
Collapse
Affiliation(s)
| | | | - Kaixiang Zhou
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety , Wuhan , Hubei 430070 , China
| | - Huiru Yu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety , Wuhan , Hubei 430070 , China
| | - Shenhe Liu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety , Wuhan , Hubei 430070 , China
| | - Qiliang Sun
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety , Wuhan , Hubei 430070 , China
| | - Xu Wang
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety , Wuhan , Hubei 430070 , China
| | - Menghong Dai
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety , Wuhan , Hubei 430070 , China
| | - Zonghui Yuan
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety , Wuhan , Hubei 430070 , China
| |
Collapse
|
13
|
Wang H, Liu Y, Yao S, Hu G. Fabrication of super pure single-walled carbon nanotube electrochemical sensor and its application for picomole detection of olaquindox. Anal Chim Acta 2018; 1049:82-90. [PMID: 30612660 DOI: 10.1016/j.aca.2018.10.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/09/2018] [Accepted: 10/09/2018] [Indexed: 01/29/2023]
Abstract
In this study, a novel and simple electrochemical sensor (ECS) was fabricated based on super pure single-walled carbon nanotubes (spSWCNTs) modified electrode. The ECS exhibited superior catalytic performance on the electrochemical reduction of olaquindox. A series of experimental parameters were systematically optimized to achieve optimal ECS performance. Compared with the bare gold electrode, the peak current increased 1700 times under the optimal experimental conditions. The ECS exhibited excellent sensitivity for the determination of trace olaquindox. The current response of the modified electrode was linear to the olaquindox concentration in the range of 0.1-500 nM with a detection limit of 30.0 pM (S/N = 3). The ECS was successfully applied for electrochemical recognition of olaquindox in real samples. In addition, the spSWCNTs modified electrode also exhibited remarkable electrocatalytic property in a wide potential range, so it had great potential for sensitive detection of various electroactive compounds.
Collapse
Affiliation(s)
- Hongwu Wang
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, China
| | - Yanqing Liu
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, China.
| | - Su Yao
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, China.
| | - Gengxin Hu
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, China
| |
Collapse
|
14
|
Liu Q, Lei Z, Wu Q, Awais I, Shabbir MAB, Ahmed S, Fatima Z, Wang X, Pan Y, Xie S, Yuan Z. The Reproductive Toxicity of Mequindox in a Two-Generation Study in Wistar Rats. Front Pharmacol 2018; 9:870. [PMID: 30186160 PMCID: PMC6113877 DOI: 10.3389/fphar.2018.00870] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 07/18/2018] [Indexed: 01/16/2023] Open
Abstract
Mequindox (MEQ), belonging to quinoxaline-di-N-oxides (QdNOs), has been extensively used as a synthetic antibacterial agent. To evaluate the reproductive toxicity of MEQ, different concentrations of MEQ were administered to Wistar rats by feeding diets containing 0, 25, 55, 110, and 275 mg/kg, respectively. Each group consisting of 25 males and 25 females (F0) was treated with different concentrations of MEQ for 12-week period time, prior to mating and during mating, gestation, parturition and lactation. At weaning, 25 males and 25 females of F1 generation weanlings per group were randomly selected as parents for the F2 generation. Selected F1 weanlings were exposed to the same diet and treatment as their parents. The number of live litter and indexes of mating and fertility were significantly decreased in the F1 and F2 generation at 110 and 275 mg/kg groups. Significant decrease in pup vitality during lactation was observed in F1 litter at 275 mg/kg group, in F2 litter at 55, 110, and 275 mg/kg groups. A downward trend in the body weights was observed in F1 pups at 55, 110, and 275 mg/kg MEQ groups, and in F2 pups at 110 and 275 mg/kg MEQ groups. The changed levels of ALT, AST, CREA, BUN, UA, Na, and K were noted in the serum of rats. The histopathologic examination showed that MEQ induced toxicity in the liver, kidney, adrenal, uterus and testis. The no-observed-adverse-effect level (NOAEL) for reproduction toxicity of MEQ was 25 mg/kg diet. The malformations and severe maternal toxicity of MEQ caused adverse effects on the conceptus and embryo, which result in fetal malformations and fetal deaths. In summary, the present study showed that MEQ induced maternal, embryo and reproductive toxicities as well as teratogenicity in rats.
Collapse
Affiliation(s)
- Qianying Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Zhixin Lei
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Qin Wu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Ihsan Awais
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Muhammad A B Shabbir
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Saeed Ahmed
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Zainab Fatima
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Xu Wang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Yuanhu Pan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Shuyu Xie
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| |
Collapse
|
15
|
Liu Q, Lei Z, Guo J, Liu A, Lu Q, Fatima Z, Khaliq H, Shabbir MAB, Maan MK, Wu Q, Dai M, Wang X, Pan Y, Yuan Z. Mequindox-Induced Kidney Toxicity Is Associated With Oxidative Stress and Apoptosis in the Mouse. Front Pharmacol 2018; 9:436. [PMID: 29765325 PMCID: PMC5938394 DOI: 10.3389/fphar.2018.00436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/12/2018] [Indexed: 12/29/2022] Open
Abstract
Mequindox (MEQ), belonging to quinoxaline-di-N-oxides (QdNOs), is a synthetic antimicrobial agent widely used in China. Previous studies found that the kidney was one of the main toxic target organs of the QdNOs. However, the mechanisms underlying the kidney toxicity caused by QdNOs in vivo still remains unclear. The present study aimed to explore the molecular mechanism of kidney toxicity in mice after chronic exposure to MEQ. MEQ led to the oxidative stress, apoptosis, and mitochondrial damage in the kidney of mice. Meanwhile, MEQ upregulated Bax/Bcl-2 ratio, disrupted mitochondrial permeability transition pores, caused cytochrome c release, and a cascade activation of caspase, eventually induced apoptosis. The oxidative stress mediated by MEQ might led to mitochondria damage and apoptosis in a mitochondrial-dependent apoptotic pathway. Furthermore, upregulation of the Nrf2-Keap1 signaling pathway was also observed. Our findings revealed that the oxidative stress, mitochondrial dysfunction, and the Nrf2-Keap1 signaling pathway were associated with the kidney apoptosis induced by MEQ in vivo.
Collapse
Affiliation(s)
- Qianying Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Zhixin Lei
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Jingchao Guo
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Aimei Liu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Qirong Lu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Zainab Fatima
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Haseeb Khaliq
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Muhammad A B Shabbir
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Kashif Maan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Menghong Dai
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Xu Wang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Yuanhu Pan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| |
Collapse
|
16
|
Liu Q, Lei Z, Wu Q, Huang D, Xie S, Wang X, Pan Y, Yuan Z. Mequindox Induced Genotoxicity and Carcinogenicity in Mice. Front Pharmacol 2018; 9:361. [PMID: 29692735 PMCID: PMC5902691 DOI: 10.3389/fphar.2018.00361] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022] Open
Abstract
Mequindox (MEQ), acting as an inhibitor of deoxyribonucleic acid (DNA) synthesis, is a synthetic heterocyclic N-oxides. To investigate the potential carcinogenicity of MEQ, four groups of Kun-Ming (KM) mice (50 mice/sex/group) were fed with diets containing MEQ (0, 25, 55, and 110 mg/kg) for one and a half years. The result showed adverse effects on body weights, feed consumption, hematology, serum chemistry, organ weights, relative organ weights, and incidence of tumors during most of the study period. Treatment-related changes in hematology, serum chemistry, relative weights and histopathological examinations revealed that the hematological system, liver, kidneys, and adrenal glands, as well as the developmental and reproductive system, were the main targets after MEQ administration. Additionally, MEQ significantly increased the frequency of micronucleated normochromatic erythrocytes in bone marrow cells of mice. Furthermore, MEQ increased the incidence of tumors, including mammary fibroadenoma, breast cancer, corticosuprarenaloma, haemangiomas, hepatocarcinoma, and pulmonary adenoma. Interestingly, the higher incidence of tumors was noted in M25 mg/kg group, the lowest dietary concentration tested, which was equivalent to approximately 2.25 and 1.72 mg/kg b.w./day in females and males, respectively. It was assumed that the lower toxicity might be a reason for its higher tumor incidence in M25 mg/kg group. This finding suggests a potential relationships among the dose, general toxicity and carcinogenicity in vivo, and further study is required to reveal this relationship. In conclusion, the present study demonstrates that MEQ is a genotoxic carcinogen in KM mice.
Collapse
Affiliation(s)
- Qianying Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zhixin Lei
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Qin Wu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Deyu Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Yuanhu Pan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| |
Collapse
|
17
|
Liu H, Ren C, Han D, Huang H, Zou R, Zhang H, Xu Y, Gong X, Zhang X, Li Y. UPLC-MS/MS Method for Simultaneous Determination of Three Major Metabolites of Mequindox in Holothurian. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:2768047. [PMID: 29805832 PMCID: PMC5902003 DOI: 10.1155/2018/2768047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/10/2018] [Indexed: 06/08/2023]
Abstract
This study developed an ultraperformance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method for the detection of three major metabolites of mequindox, including 3-methyl-quinoxaline-2-carboxylic acid, 1-desoxymequindox, and 1,4-bisdesoxymequindox (MQCA, 1-DMEQ, and BDMEQ), in holothurian. Target analytes were simplified with ultrasound-assisted acidolysis extracted without complicated enzymolysis steps. After that, each sample was centrifuged and purified by an Oasis MAX cartridge. Then, the processed samples were separated and monitored by UPLC-MS/MS. This developed method has been validated according to FDA criteria. At fortified levels of 2, 10, and 20 μg/kg, recoveries ranged from 82.5% to 93.5% with the intraday RSD less than 7.27% and interday RSD less than 11.8%. The limit of detection (LOD) of all the three metabolites ranged from 0.21 to 0.48 μg/kg, while the limit of quantification (LOQ) ranged from 0.79 to 1.59 μg/kg. On application to commercial samples, 14 of 20 samples were detected positive for the three target analytes, with positive rate at 70 percentage. The result indicated that this method was specific, sensitive, and suitable for the quantification and conformation of the three major metabolites of MEQ in holothurian.
Collapse
Affiliation(s)
- Huihui Liu
- Shandong Marine Resource and Environment Research Institute, Laboratory of Restoration for Marine Ecology, Yantai 264006, China
| | - Chuanbo Ren
- Shandong Marine Resource and Environment Research Institute, Laboratory of Restoration for Marine Ecology, Yantai 264006, China
| | - Dianfeng Han
- Shandong Marine Resource and Environment Research Institute, Laboratory of Restoration for Marine Ecology, Yantai 264006, China
| | - Hui Huang
- Shandong Marine Resource and Environment Research Institute, Laboratory of Restoration for Marine Ecology, Yantai 264006, China
| | - Rongjie Zou
- Shandong Marine Resource and Environment Research Institute, Laboratory of Restoration for Marine Ecology, Yantai 264006, China
| | - Huawei Zhang
- Shandong Marine Resource and Environment Research Institute, Laboratory of Restoration for Marine Ecology, Yantai 264006, China
| | - Yingjiang Xu
- Shandong Marine Resource and Environment Research Institute, Laboratory of Restoration for Marine Ecology, Yantai 264006, China
| | - Xianghong Gong
- Shandong Marine Resource and Environment Research Institute, Laboratory of Restoration for Marine Ecology, Yantai 264006, China
| | - Xiuzhen Zhang
- Shandong Marine Resource and Environment Research Institute, Laboratory of Restoration for Marine Ecology, Yantai 264006, China
| | - Yanshen Li
- College of Life Science, Yantai University, Yantai 264005, China
| |
Collapse
|
18
|
Liu Q, Lei Z, Huang A, Lu Q, Wang X, Ahmed S, Awais I, Yuan Z. Mechanisms of the Testis Toxicity Induced by Chronic Exposure to Mequindox. Front Pharmacol 2017; 8:679. [PMID: 29018347 PMCID: PMC5622959 DOI: 10.3389/fphar.2017.00679] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022] Open
Abstract
Mequindox (MEQ) is a synthetic antimicrobial agent widely used in China since the 1980s. Although the toxicity of MEQ is well recognized, its testis toxicity has not been adequately investigated. In the present study, we provide evidence that MEQ triggers oxidative stress, mitochondrion dysfunction and spermatogenesis deficiency in mice after exposure to MEQ (0, 25, 55, and 110 mg/kg in the diet) for up to 18 months. The genotoxicity and adrenal toxicity may contribute to sperm abnormalities caused by MEQ. Moreover, using LC/MS-IT-TOF analysis, two metabolites, 3-methyl-2-(1-hydroxyethyl) quinoxaline-N4-monoxide (M4) and 3-methyl-2-(1-hydroxyethyl) quinoxaline-N1-monoxide (M8), were detected in the serum of mice, which directly confirms the relationship between the N→O group reduction metabolism of MEQ and oxidative stress. Interestingly, only M4 was detected in the testes, suggesting that the higher reproductive toxicity of M4 than M8 might be due to the increased stability of M4-radical (M4-R) compared to M8-radical (M8-R). Furthermore, the expression of the blood-testis barrier (BTB)-associated junctions such as tight junctions, gap junctions and basal ectoplasmic specializations were also examined. The present study demonstrated for the first time the role of the M4 in testis toxicity, and illustrated that the oxidative stress, mitochondrion dysfunction and interference in spermatogenesis, as well as the altered expression of BTB related junctions, were involved in the reproductive toxicity mediated by MEQ in vivo.
Collapse
Affiliation(s)
- Qianying Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
| | - Zhixin Lei
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Anxiong Huang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Qirong Lu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| | - Xu Wang
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| | - Saeed Ahmed
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Ihsan Awais
- Department of Biosciences, COMSATS Institute of Information Technology, Sahiwal, Pakistan
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| |
Collapse
|
19
|
Liu Q, Lei Z, Dai M, Wang X, Yuan Z. Toxic metabolites, Sertoli cells and Y chromosome related genes are potentially linked to the reproductive toxicity induced by mequindox. Oncotarget 2017; 8:87512-87528. [PMID: 29152098 PMCID: PMC5675650 DOI: 10.18632/oncotarget.20916] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 08/28/2017] [Indexed: 11/25/2022] Open
Abstract
Mequindox (MEQ) is a relatively new synthetic antibacterial agent widely applied in China since the 1980s. However, its reproductive toxicity has not been adequately performed. In the present study, four groups of male Kunming mice (10 mice/group) were fed diets containing MEQ (0, 25, 55 and 110 mg/kg in the diet) for up to 18 months. The results show that M4 could pass through the blood-testis barrier (BTB), and demonstrate that Sertoli cells (SCs) are the main toxic target for MEQ to induce spermatogenesis deficiency. Furthermore, adrenal toxicity, adverse effects on the hypothalamic-pituitary-testicular axis (HPTA) and Leydig cells, as well as the expression of genes related to steroid biosynthesis and cholesterol transport, were responsible for the alterations in sex hormones in the serum of male mice after exposure to MEQ. Additionally, the changed levels of Y chromosome microdeletion related genes, such as DDX3Y, HSF2, Sly and Ssty2 in the testis might be a mechanism for the inhibition of spermatogenesis induced by MEQ. The present study illustrates for the first time the toxic metabolites of MEQ in testis of mice, and suggests that SCs, sex hormones and Y chromosome microdeletion genes are involved in reproductive toxicity mediated by MEQ in vivo.
Collapse
Affiliation(s)
- Qianying Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhixin Lei
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Menghong Dai
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China
| |
Collapse
|
20
|
Peng T, Pei X, Zheng Y, Wang J, Wang Q, Li J, Xia X, Jiang H. Performance of fluorescence microspheres-based immunochromatography in simultaneous monitoring of five quinoxalines. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1354357] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Tao Peng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Xingyao Pei
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yongjun Zheng
- Department of Mechanical and Electrical Engineering, College of Engineering, China Agricultural University, Beijing, People’s Republic of China
| | - Jianyi Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Qi Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Jiancheng Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Xi Xia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Haiyang Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
21
|
A two-year dietary carcinogenicity study of cyadox in Sprague-Dawley rats. Regul Toxicol Pharmacol 2017; 87:9-22. [DOI: 10.1016/j.yrtph.2017.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 04/21/2017] [Accepted: 04/23/2017] [Indexed: 02/02/2023]
|
22
|
Qu X, Xu K, Zhao C, Song X, Li J, Li L, Nie W, Bao H, Wang J, Niu F, Li J. Genotoxicity and acute and subchronic toxicity studies of a bioactive polyoxometalate in Wistar rats. BMC Pharmacol Toxicol 2017; 18:26. [PMID: 28381296 PMCID: PMC5382445 DOI: 10.1186/s40360-017-0133-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 03/29/2017] [Indexed: 01/05/2023] Open
Abstract
Background Cs2K4Na [SiW9Nb3O40] (POM93) is a novel broad-spectrum antiviral agent with high activity, high stability, and low toxicity in vitro. Most toxicity studies for POM93 have been performed in cultured cell lines rather than in animals. Like other POMs, there is a lack of evidence for in vivo toxicity limits, oral bioavailability, and therapeutic applications. Methods The toxic properties of POM93 were evaluated comprehensively in vivo, including the acute and subchronic oral toxicity studies and genotoxicity tests. Results The acute toxicity study showed no abnormal changes or mortality in rats treated with POM93 even at the single high dose of 5000 mg/kg body weight. In the subchronic toxicity study, regardless of the body weight, the organ weight, and the hematological parameters, similar results were observed between the control group and the experimental groups. POM93 produced mild changes in rare hematological parameters in the liver and kidneys, but did not induce the clinical symptoms of liver or kidneys injury in rats as confirmed by histopathological analysis. Moreover, neither mutagenicity nor clastogenicity was caused by POM93 treatment in vitro and in vivo. Conclusions The present study demonstrates that the oral administration of POM93 is presumed safe and poses a low risk of potential health risks. Electronic supplementary material The online version of this article (doi:10.1186/s40360-017-0133-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaofeng Qu
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Kun Xu
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Chao Zhao
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Xiuling Song
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Jinhua Li
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Li Li
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Wei Nie
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Hao Bao
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Juan Wang
- School of Public Health, Jilin University, Changchun, Jilin, China.
| | - Fenglan Niu
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Juan Li
- School of Public Health, Jilin University, Changchun, Jilin, China
| |
Collapse
|
23
|
Liu L, Peng J, Xie Z, Song S, Kuang H, Xu C. Development of an icELISA and Immunochromatographic Assay for Methyl-3-Quinoxaline-2-Carboxylic Acid Residues in Fish. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0888-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Toxic metabolites, MAPK and Nrf2/Keap1 signaling pathways involved in oxidative toxicity in mice liver after chronic exposure to Mequindox. Sci Rep 2017; 7:41854. [PMID: 28157180 PMCID: PMC5291092 DOI: 10.1038/srep41854] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/30/2016] [Indexed: 12/21/2022] Open
Abstract
Mequindox (MEQ) is a synthetic antimicrobial agent of quinoxaline-1,4-dioxide group (QdNOs). The liver is regarded as the toxicity target of QdNOs, and the role of N → O group-associated various toxicities mediated by QdNOs is well recognized. However, the mechanism underlying the in vivo effects of MEQ on the liver, and whether the metabolic pathway of MEQ is altered in response to the pathophysiological conditions still remain unclear. We now provide evidence that MEQ triggers oxidative damage in the liver. Moreover, using LC/MS-ITTOF analysis, two metabolites of MEQ were detected in the liver, which directly confirms the potential connection between N → O group reduction metabolism of MEQ and liver toxicity. The gender difference in MEQ-induced oxidative stress might be due to adrenal toxicity and the generation of M4 (2-isoethanol 1-desoxymequindox). Furthermore, up-regulation of the MAPK and Nrf2-Keap1 family and phase II detoxifying enzymes (HO-1, GCLC and NQO1) were also observed. The present study demonstrated for the first time the protein peroxidation and a proposal metabolic pathway after chronic exposure of MEQ, and illustrated that the MAPK, Nrf2-Keap1 and NF-кB signaling pathways, as well as the altered metabolism of MEQ, were involved in oxidative toxicity mediated by MEQ in vivo.
Collapse
|
25
|
Dai C, Li B, Zhou Y, Li D, Zhang S, Li H, Xiao X, Tang S. Curcumin attenuates quinocetone induced apoptosis and inflammation via the opposite modulation of Nrf2/HO-1 and NF-kB pathway in human hepatocyte L02 cells. Food Chem Toxicol 2016; 95:52-63. [DOI: 10.1016/j.fct.2016.06.025] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/18/2016] [Accepted: 06/25/2016] [Indexed: 01/06/2023]
|