1
|
Liu Y, Chen Y, Zhang J, Ran G, Cheng Z, Wang X, Liao Y, Mao X, Peng Y, Li W, Zheng J. Dihydrotanshinone I-Induced CYP1 Enzyme Inhibition and Alteration of Estradiol Metabolism. Drug Metab Dispos 2024; 52:188-197. [PMID: 38123940 DOI: 10.1124/dmd.123.001490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Dihydrotanshinone I (DHTI) is a pharmacologically active component occurring in the roots of the herbal medicine Salvia miltiorrhiza Bunge. This study investigated DHTI-induced inhibition of CYP1A1, CYP1A2, and CYP1B1 with the aim to determine the potential effects of DHTI on the bioactivation of estradiol (E2), possibly related to preventive/therapeutic strategy for E2-associated breast cancer. Ethoxyresorufin as a specific substrate for CYP1s was incubated with human recombinant CYP1A1, CYP1A2, or CYP1B1 in the presence of DHTI at various concentrations. Enzymatic inhibition and kinetic behaviors were examined by monitoring the formation of the corresponding product. Molecular docking was further conducted to define the interactions between DHTI and the three CYP1s. The same method and procedure were employed to examine the DHTI-induced alteration of E2 metabolism. DHTI showed significant inhibition of ethoxyresorufin O-deethylation activity catalyzed by CYP1A1, CYP1A2 and CYP1B1 in a concentration-dependent manner (IC50 = 0.56, 0.44, and 0.11 μM, respectively). Kinetic analysis showed that DHTI acted as a competitive type of inhibitor of CYP1A1 and CYP1B1, whereas it noncompetitively inhibited CYP1A2. The observed enzyme inhibition was independent of NADPH and time. Molecular docking analysis revealed hydrogen bonding interactions between DHTI and Asp-326 of CYP1B1. Moreover, DHTI displayed preferential activity to inhibit 4-hydroxylation of E2 (a genotoxic pathway) mediated by CYP1B1. Exposure to DHTI could reduce the risk of genotoxicity induced by E2. SIGNIFICANCE STATEMENT: CYP1A1, CYP1A2, and CYP1B1 enzymes are involved in the conversion of estradiol (E2) into 2-hydroxyestradiol (2-OHE2) and 4-hydroxyestradiol (4-OHE2) through oxidation. 2-OHE2 is negatively correlated with breast cancer risk, and 4-OHE2 may be a significant initiator and promoter of breast cancer. The present study revealed that dihydrotanshinone I (DHTI) competitively inhibits CYP1A1/CYP1B1 and noncompetitively inhibits CYP1A2. DHTI exhibits a preference for inhibiting the genotoxicity associated with E2 4-hydroxylation pathway mediated by CYP1B1, potentially reducing the risk of 4-OHE2-induced genotoxicity.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| | - Yu Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| | - Jingyu Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| | - Guangyun Ran
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| | - Zihao Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| | - Xin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| | - Yufen Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| | - Xu Mao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| | - Ying Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| | - Weiwei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| | - Jiang Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (Y.L., Y.C., J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Zhe.), School of Basic Medical Sciences (Y.L., Y.C., J.Zhe.), and School of Pharmacy (J.Zha., G.R., Z.C., X.W., Y.L., W.L., J.Zhe.), Guizhou Medical University, Guiyang, Guizhou, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (Y.P., J.Zhe.); and Department of Pharmaceutical Analysis, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China (X.M.)
| |
Collapse
|
2
|
Ma S, Zhang Q, Hou J, Liu S, Feng C. Drug-herb Synergistic Interactions between Clopidogrel and Natural Medicine. Cardiovasc Hematol Agents Med Chem 2024; 22:421-431. [PMID: 37691215 DOI: 10.2174/1871525722666230907112509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/01/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023]
Abstract
INTRODUCTION Natural medicine (NM) has been used since ancient times for therapeutic purposes worldwide. Presently, the combination of clopidogrel and NM with a reasonable synergistic effect has gained increasing acceptance in clinical therapeutics. METHODS Here, we have performed a comprehensive retrieval of literature published in both English and Chinese databases until August 1, 2022, studying the synergistic interactions of clopidogrel and NM through pharmacokinetic/pharmacodynamic (PK-PD) analyses. We retrieved 7, 3, and 5 studies on PK analysis and 3, 3, and 8 studies on PD analysis for the interaction of clopidogrel with single herbal medicines, bioactive compounds, and herbal prescriptions, respectively. Most studies on NM have been found to mainly focus on preclinical observations, and there have been fewer clinical PK analyses. RESULTS A potential drug-herb interaction has been observed to occur when clopidogrel and NM were metabolized by an enzyme network comprising P-gp, CES1, and CYP450. In contrast, most PD studies have focused on clinical observations, and few preclinical findings have been reported. Some cases have suggested that the combination of the two types of drugs would alter the antiplatelet efficacy and adverse effects. Studies on PK, however, have shown significant or slightly varying results for the drug prototype and its metabolites. CONCLUSION In the combination therapies, the interaction between clopidogrel and NM was found to alter antiplatelet aggregation pathways and P2Y12 receptor function.
Collapse
Affiliation(s)
- Shitang Ma
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China
| | | | - Jiafu Hou
- Mudanjiang Medical University, Mudanjiang, China
| | - Shijuan Liu
- Mudanjiang Medical University, Mudanjiang, China
| | - Chengtao Feng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
3
|
Gómez-Garduño J, León-Rodríguez R, Alemón-Medina R, Pérez-Guillé BE, Soriano-Rosales RE, González-Ortiz A, Chávez-Pacheco JL, Solorio-López E, Fernandez-Pérez P, Rivera-Espinosa L. Phytochemicals That Interfere With Drug Metabolism and Transport, Modifying Plasma Concentration in Humans and Animals. Dose Response 2022; 20:15593258221120485. [PMID: 36158743 PMCID: PMC9500303 DOI: 10.1177/15593258221120485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 11/16/2022] Open
Abstract
Phytochemicals (Pch) present in fruits, vegetables and other foods, are known to inhibit or induce drug metabolism and transport. An exhaustive search was performed in five databases covering from 2000 to 2021. Twenty-one compounds from plants were found to modulate CYP3A and/or P-gp activities and modified the pharmacokinetics and the therapeutic effect of 27 different drugs. Flavonols, flavanones, flavones, stilbenes, diferuloylmethanes, tannins, protoalkaloids, flavans, hyperforin and terpenes, reduce plasma concentration of cyclosporine, simvastatin, celiprolol, midazolam, saquinavir, buspirone, everolimus, nadolol, tamoxifen, alprazolam, verapamil, quazepam, digoxin, fexofenadine, theophylline, indinavir, clopidogrel. Anthocyanins, flavonols, flavones, flavanones, flavonoid glycosides, stilbenes, diferuloylmethanes, catechin, hyperforin, alkaloids, terpenes, tannins and protoalkaloids increase of plasma concentration of buspirone, losartan, diltiazem, felodipine, midazolam, cyclosporine, triazolam, verapamil, carbamazepine, diltiazem, aripiprazole, tamoxifen, doxorubicin, paclitaxel, nicardipine. Interactions between Pchs and drugs affect the gene expression and enzymatic activity of CYP3A and P-gp transporter, which has an impact on their bioavailability; such that co-administration of drugs with food, beverages and food supplements can cause a subtherapeutic effect or overdose. Therefore, it is important for the clinician to consider these interactions to obtain a better therapeutic effect.
Collapse
Affiliation(s)
| | - Renato León-Rodríguez
- Laboratorio de Contención Biológica BSL-3, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, UNAM, Mexico City, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Liu J, Shi Y, Wu C, Hong B, Peng D, Yu N, Wang G, Wang L, Chen W. Comparison of Sweated and Non-Sweated Ethanol Extracts of Salvia miltiorrhiza Bge. (Danshen) Effects on Human and rat Hepatic UDP-Glucuronosyltransferase and Preclinic Herb-Drug Interaction Potential Evaluation. Curr Drug Metab 2022; 23:473-483. [PMID: 35585828 DOI: 10.2174/1389200223666220517115845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/16/2022] [Accepted: 03/08/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The ethanol of Danshen (DEE) preparation has been widely used to treat cardiac-cerebral disease and cancer. Sweating is one of the primary processing methods of Danshen, which greatly influenced its quality and pharmacological properties. Sweated and non-sweated DEE preparation combining with various synthetic drugs, adding up the possibility of herbal-drug interactions. OBJECTIVE This study explored the effects of sweated and non-sweated DEE on human and rat hepatic UGT enzymes expression and activity and proposed a potential mechanism. METHODS The expression of two processed DEE on rat UGT1A, UGT2B and nuclear receptors including pregnane X receptor (PXR), constitutive androstane receptor (CAR), and peroxisome proliferator-activated receptor α (PPARα) were investigated after intragastric administration in rats by Western blot. Enzyme activity of DEE and its active ingredients (Tanshinone I, Cryptotanshinone, and Tanshinone I) on UGT isoenzymes was evaluated by quantifying probe substrate metabolism and metabolite formation in vitro using Ultra Performance Liquid Chromatography. RESULTS The two processed DEE (5.40 g/kg) improved UGT1A (P<0.01) and UGT2B (P<0.05) protein expression, and the non-sweated DEE (2.70 g/kg) upregulated UGT2B expression protein (P<0.05), compared with the CMCNa group. On day 28, UGT1A protein expression was increased (P<0.05) both in two processed DEE groups, meanwhile the non-sweated DEE significantly enhanced UGT2B protein expression (P<0.05) on day 21, compared with the CMCNa group. The process underlying this mechanism involved with the activation of nuclear receptors CAR, PXR, and PPARα; In vitro, sweated DEE (0-80 μg/mL) significantly inhibited the activity of human UGT1A7 (P<0.05) and rat UGT1A1, 1A8, and 1A9 (P<0.05). Non-sweated DEE (0-80 μg/mL) dramatically suppressed the activity of human UGT1A1, 1A3, 1A6, 1A7, 2B4, and 2B15, and rat UGT1A1, 1A3, 1A7, and 1A9 (P<0.05); Tanshinone I (0-1 μM) inhibited the activity of human UGT1A3, 1A6, and 1A7 (P<0.01) and rat UGT1A3, 1A6, 1A7, and 1A8 (P<0.05). Cryptotanshinone (0-1 μM) remarkably inhibited the activity of human UGT1A3 and 1A7 (P<0.05) and rat UGT1A7, 1A8, and 1A9 (P<0.05). Nonetheless, Tanshinone IIA (0-2 μM) is not a potent UGT inhibitor both in humans and rats; Additionally, there existed significant differences between two processed DEE in expression of PXR, and the activity of human UGT1A1, 1A3, 1A6, and 2B15 and rat UGT1A3 and 2B15 (P<0.05). CONCLUSION The effects of two processed DEE on hepatic UGT enzyme expression and activity were different. Accordingly, the combined usage of related UGTs substrates with DEE and its monomer components preparations may call for caution, depending on the drug's exposure-response relationship and dose adjustment. Besides, it is vital to pay attention to the distinction between sweated and non-sweated Danshen in clinic, which exerted an important influence on its pharmacological activity.
Collapse
Affiliation(s)
- Jie Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui,230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui Hefei 230012, China
| | - Yun Shi
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui,230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Chengyuan Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui,230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Bangzhen Hong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui,230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui,230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui,230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Guokai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui,230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui,230012, China.,Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui Hefei 230012, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui,230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui Hefei 230012, China
| |
Collapse
|
5
|
Physiologically Based Pharmacokinetic (PBPK) Modeling of Clopidogrel and Its Four Relevant Metabolites for CYP2B6, CYP2C8, CYP2C19, and CYP3A4 Drug–Drug–Gene Interaction Predictions. Pharmaceutics 2022; 14:pharmaceutics14050915. [PMID: 35631502 PMCID: PMC9145019 DOI: 10.3390/pharmaceutics14050915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
The antiplatelet agent clopidogrel is listed by the FDA as a strong clinical index inhibitor of cytochrome P450 (CYP) 2C8 and weak clinical inhibitor of CYP2B6. Moreover, clopidogrel is a substrate of—among others—CYP2C19 and CYP3A4. This work presents the development of a whole-body physiologically based pharmacokinetic (PBPK) model of clopidogrel including the relevant metabolites, clopidogrel carboxylic acid, clopidogrel acyl glucuronide, 2-oxo-clopidogrel, and the active thiol metabolite, with subsequent application for drug–gene interaction (DGI) and drug–drug interaction (DDI) predictions. Model building was performed in PK-Sim® using 66 plasma concentration-time profiles of clopidogrel and its metabolites. The comprehensive parent-metabolite model covers biotransformation via carboxylesterase (CES) 1, CES2, CYP2C19, CYP3A4, and uridine 5′-diphospho-glucuronosyltransferase 2B7. Moreover, CYP2C19 was incorporated for normal, intermediate, and poor metabolizer phenotypes. Good predictive performance of the model was demonstrated for the DGI involving CYP2C19, with 17/19 predicted DGI AUClast and 19/19 predicted DGI Cmax ratios within 2-fold of their observed values. Furthermore, DDIs involving bupropion, omeprazole, montelukast, pioglitazone, repaglinide, and rifampicin showed 13/13 predicted DDI AUClast and 13/13 predicted DDI Cmax ratios within 2-fold of their observed ratios. After publication, the model will be made publicly accessible in the Open Systems Pharmacology repository.
Collapse
|
6
|
Zuo HL, Huang HY, Lin YCD, Cai XX, Kong XJ, Luo DL, Zhou YH, Huang HD. Enzyme Activity of Natural Products on Cytochrome P450. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020515. [PMID: 35056827 PMCID: PMC8779343 DOI: 10.3390/molecules27020515] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/27/2022]
Abstract
Drug-metabolizing enzymes, particularly the cytochrome P450 (CYP450) monooxygenases, play a pivotal role in pharmacokinetics. CYP450 enzymes can be affected by various xenobiotic substrates, which will eventually be responsible for most metabolism-based herb–herb or herb–drug interactions, usually involving competition with another drug for the same enzyme binding site. Compounds from herbal or natural products are involved in many scenarios in the context of such interactions. These interactions are decisive both in drug discovery regarding the synergistic effects, and drug application regarding unwanted side effects. Herein, this review was conducted as a comprehensive compilation of the effects of herbal ingredients on CYP450 enzymes. Nearly 500 publications reporting botanicals’ effects on CYP450s were collected and analyzed. The countries focusing on this topic were summarized, the identified herbal ingredients affecting enzyme activity of CYP450s, as well as methods identifying the inhibitory/inducing effects were reviewed. Inhibitory effects of botanicals on CYP450 enzymes may contribute to synergistic effects, such as herbal formulae/prescriptions, or lead to therapeutic failure, or even increase concentrations of conventional medicines causing serious adverse events. Conducting this review may help in metabolism-based drug combination discovery, and in the evaluation of the safety profile of natural products used therapeutically.
Collapse
Affiliation(s)
- Hua-Li Zuo
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-L.Z.); (H.-Y.H.); (Y.-C.-D.L.); (X.-X.C.); (D.-L.L.); (Y.-H.Z.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China
| | - Hsi-Yuan Huang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-L.Z.); (H.-Y.H.); (Y.-C.-D.L.); (X.-X.C.); (D.-L.L.); (Y.-H.Z.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Yang-Chi-Dung Lin
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-L.Z.); (H.-Y.H.); (Y.-C.-D.L.); (X.-X.C.); (D.-L.L.); (Y.-H.Z.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Xiao-Xuan Cai
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-L.Z.); (H.-Y.H.); (Y.-C.-D.L.); (X.-X.C.); (D.-L.L.); (Y.-H.Z.)
| | - Xiang-Jun Kong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China;
| | - Dai-Lin Luo
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-L.Z.); (H.-Y.H.); (Y.-C.-D.L.); (X.-X.C.); (D.-L.L.); (Y.-H.Z.)
| | - Yu-Heng Zhou
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-L.Z.); (H.-Y.H.); (Y.-C.-D.L.); (X.-X.C.); (D.-L.L.); (Y.-H.Z.)
| | - Hsien-Da Huang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-L.Z.); (H.-Y.H.); (Y.-C.-D.L.); (X.-X.C.); (D.-L.L.); (Y.-H.Z.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- Correspondence: ; Tel.: +86-0755-2351-9601
| |
Collapse
|
7
|
Qiang T, Li Y, Wang K, Lin W, Niu Z, Wang D, Wang X. Evaluation of potential herb-drug interactions based on the effect of Suxiao Jiuxin Pill on CYP450 enzymes and transporters. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114408. [PMID: 34252529 DOI: 10.1016/j.jep.2021.114408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Suxiao jiuxin pill (SJP) is a Chinese medical drug with anti-inflammatory, anti-apoptotic, and vasodilatory function. It is widely used in combination with other drugs for the treatment of coronary heart disease (CHD) and angina. Nevertheless, the effect of SJP on Cytochrome P450 (CYP450) enzymes and transporters' activity related to drug metabolism is rarely studied. OBJECTIVE The aim of this study was to investigate the effect of SJP on the activity of drug-metabolizing enzyme CYP450 and transporters. MATERIALS AND METHODS Human primary hepatocytes were used in present study. Probe substrates of CYP450 enzymes were incubated in human liver microsomes (HLMs) with and without SJP while IC50 values were calculated. The inhibitory effect of SJP on the activity of CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6 and 3A4 was evaluated. The inducing effect of SJP on the activity of CYP1A2, 2B6 and 3A4 was accessed. The inhibition of SJP on human OATP1B1 was investigated through cell-based assay. The inhibition of SJP on human MDR1 and BCRP was also estimated by means of the vesicles assay. RESULTS The results showed that the SJP under the concentration of 1000 μg/mL could inhibit the activity of CYP1A2, 2B6, 2C19, and 3A4, with IC50 values of 189.7, 308.2, 331.2 and 805.7 μg/mL, respectively. There was no inhibitory effect found in the other 3 liver drug enzyme subtypes. In addition, SJP showed no induction effect on CYP1A2, 2B6 and 3A4, however it had a significant inhibitory effect on human-derived OATP1B1 at the concentration of 100 and 1000 μg/mL, with the IC50 value of 21.9 μg/mL. Simultaneously, the SJP inhibited BCRP at high concentration of 1000 μg/mL but did not affect human MDR1. CONCLUSIONS Based on these research results above, it is suggested that the SJP can affect some of the CYP450 enzymes and transporters' activity. When used in combination with related conventional drugs, potential herb-drug interactions should be considered.
Collapse
Affiliation(s)
- Tingting Qiang
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yiping Li
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Keyan Wang
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wenyong Lin
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zhenchao Niu
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Dan Wang
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xiaolong Wang
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
8
|
Hakkola J, Hukkanen J, Turpeinen M, Pelkonen O. Inhibition and induction of CYP enzymes in humans: an update. Arch Toxicol 2020; 94:3671-3722. [PMID: 33111191 PMCID: PMC7603454 DOI: 10.1007/s00204-020-02936-7] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022]
Abstract
The cytochrome P450 (CYP) enzyme family is the most important enzyme system catalyzing the phase 1 metabolism of pharmaceuticals and other xenobiotics such as herbal remedies and toxic compounds in the environment. The inhibition and induction of CYPs are major mechanisms causing pharmacokinetic drug–drug interactions. This review presents a comprehensive update on the inhibitors and inducers of the specific CYP enzymes in humans. The focus is on the more recent human in vitro and in vivo findings since the publication of our previous review on this topic in 2008. In addition to the general presentation of inhibitory drugs and inducers of human CYP enzymes by drugs, herbal remedies, and toxic compounds, an in-depth view on tyrosine-kinase inhibitors and antiretroviral HIV medications as victims and perpetrators of drug–drug interactions is provided as examples of the current trends in the field. Also, a concise overview of the mechanisms of CYP induction is presented to aid the understanding of the induction phenomena.
Collapse
Affiliation(s)
- Jukka Hakkola
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, POB 5000, 90014, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Janne Hukkanen
- Biocenter Oulu, University of Oulu, Oulu, Finland.,Research Unit of Internal Medicine, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Miia Turpeinen
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, POB 5000, 90014, Oulu, Finland.,Administration Center, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Olavi Pelkonen
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, POB 5000, 90014, Oulu, Finland.
| |
Collapse
|
9
|
Qian Y, Markowitz JS. Natural Products as Modulators of CES1 Activity. Drug Metab Dispos 2020; 48:993-1007. [PMID: 32591414 DOI: 10.1124/dmd.120.000065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/12/2020] [Indexed: 12/30/2022] Open
Abstract
Carboxylesterase (CES) 1 is the predominant esterase expressed in the human liver and is capable of catalyzing the hydrolysis of a wide range of therapeutic agents, toxins, and endogenous compounds. Accumulating studies have demonstrated associations between the expression and activity of CES1 and the pharmacokinetics and/or pharmacodynamics of CES1 substrate medications (e.g., methylphenidate, clopidogrel, oseltamivir). Therefore, any perturbation of CES1 by coingested xenobiotics could potentially compromise treatment. Natural products are known to alter drug disposition by modulating cytochrome P450 and UDP-glucuronosyltransferase enzymes, but this issue is less thoroughly explored with CES1. We report the results of a systematic literature search and discuss natural products as potential modulators of CES1 activity. The majority of research reports reviewed were in vitro investigations that require further confirmation through clinical study. Cannabis products (Δ 9-tetrahydrocannabinol, cannabidiol, cannabinol); supplements from various plant sources containing naringenin, quercetin, luteolin, oleanolic acid, and asiatic acid; and certain traditional medicines (danshen and zhizhuwan) appear to pose the highest inhibition potential. In addition, ursolic acid, gambogic acid, and glycyrrhetic acid, if delivered intravenously, may attain high enough systemic concentrations to significantly inhibit CES1. The provision of a translational interpretation of in vitro assessments of natural product actions and interactions is limited by the dearth of basic pharmacokinetic data of the natural compounds exhibiting potent in vitro influences on CES1 activity. This is a major impediment to assigning even potential clinical significance. The modulatory effects on CES1 expression after chronic exposure to natural products warrants further investigation. SIGNIFICANCE STATEMENT: Modulation of CES1 activity by natural products may alter the course of treatment and clinical outcome. In this review, we have summarized the natural products that can potentially interact with CES1 substrate medications. We have also noted the limitations of existing reports and outlined challenges and future directions in this field.
Collapse
Affiliation(s)
- Yuli Qian
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, Florida
| | - John S Markowitz
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, Florida
| |
Collapse
|
10
|
Abstract
The use of traditional Chinese medicine (TCM) has obtained more and more acceptance all over the world due to its multi-target and multi-level function characteristics. Clopidogrel is a major therapeutic option to reduce atherothrombotic events in patients with acute coronary syndrome, recent myocardial infarction, recent stroke or established peripheral arterial disease. These patients probably take TCM. Are there any interactions between clopidogrel and TCM? Whether TCM will affect the efficacy of clopidogrel or increase the adverse reactions of bleeding? Clarifying this information will help physicians make better use of TCM. A literature search was carried out using Web of Science, PubMed and the Cochrane Library to analyze the pharmacokinetic or pharmacodynamic interactions of clopidogrel and TCM. Some herbs can increase the AUC or Cmax of clopidogrel, such as Scutellarin, Danggui, Gegen, Sauchinone and Dengzhan Shengmai capsules. Whereas others can decrease clopidogrel, for example, Ginkgo and Danshen. Furthermore, some herbs can increase the AUC or Cmax of clopidogrel active metabolite, including Ginkgo and Xuesaitong tablet. And others can decrease the clopidogrel active metabolite, such as Scutellarin, Danshen, Fufang Danshen Dripping Pill and Dengzhan Shengmai capsules. Additionally, Schisandra chinensis, Danggui, Gegen and Fufang Danshen Dripping Pill can decrease the AUC or Cmax of the clopidogrel inactive metabolite, while Curcumin on the contrary. The pharmacodynamics of Panax notoginseng, Notoginsenoside Ft1, Hypericum perforatum, Shexiang baoxin pills, Naoxintong capsule increased the antiplatelet activity compared with clopidogrel alone, while Danshen decreased the platelet inhibition. In adverse reactions, Danggui can enhance the adverse effects of clopidogrel on the bleeding time. With more awareness and understanding on potential drug-herb interactions of clopidogrel and TCM, it may be possible to combine clopidogrel with TCM herbs to yield a better therapeutic outcome.
Collapse
Affiliation(s)
- Yunzhen Hu
- Department of Pharmacy, The First Affiliated Hosptial, College of Medicine, Zhejiang University, Hangzhou, China.
| | - Jing Wang
- Department of Pharmacy, The First Affiliated Hosptial, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Ji S, Shao X, Su ZY, Ji L, Wang YJ, Ma YS, Zhao L, Du Y, Guo MZ, Tang DQ. Segmented scan modes and polarity-based LC-MS for pharmacokinetic interaction study between Fufang Danshen Dripping Pill and Clopidogrel Bisulfate Tablet. J Pharm Biomed Anal 2019; 174:367-375. [DOI: 10.1016/j.jpba.2019.05.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/11/2022]
|
12
|
Fang J, Chen Q, He B, Cai J, Yao Y, Cai Y, Xu S, Rengasamy KRR, Gowrishankar S, Pandian SK, Cao T. Tanshinone IIA attenuates TNF-α induced PTX3 expression and monocyte adhesion to endothelial cells through the p38/NF-κB pathway. Food Chem Toxicol 2018; 121:622-630. [PMID: 30268796 DOI: 10.1016/j.fct.2018.09.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/20/2018] [Accepted: 09/25/2018] [Indexed: 12/22/2022]
Abstract
Tanshinone IIA is one of the most predominant bioactive constituents of Danshen, a traditional Chinese medicinal plant with multiple cardiovascular protective actions. Although Tanshinone IIA has been well documented for its endothelial protective efficacy, studies unveiling the mechanism and/or molecular targets for its pharmacological activity are still inadequate. In recent studies, it has been envisaged that the expression of pentraxin 3 (PTX3) was associated with atherosclerotic cardiovascular diseases (ACVD). Therefore, the current study was designed to evaluate the possible role of Tanshinone IIA in influencing the expression of PTX3 in endothelial cells and thereby prevents endothelial dysfunction. Molecular analyses through real-time PCR, western blot, and ELISA revealed that Tanshinone IIA down-regulates PTX3 gene expression as well as protein secretion in human endothelial cells in the presence or absence of TNF-α. Besides, Tanshinone IIA inhibits the adhesion of THP1 cells (a monocytic cell line) to activated-endothelial cells stimulated with TNF-α. Furthermore, mechanistic studies uncovered the role of p38 MAPK/NF-κB pathway in Tanshinone II-A mediated pharmacological effects. Thus, the present study exemplifies the manifestation of Tanshinone IIA as a plausible alternative natural remedy for ACVD by targeting PTX3.
Collapse
Affiliation(s)
- Jian Fang
- Department of Pharmacy, Huadu District People's Hospital, Southern Medical University, Guangzhou, China
| | - Qiuyan Chen
- Center of Pharmaceutical Research and Development, Guangzhou Medical University, Guangdong, 511436, PR China
| | - Baozhu He
- Center of Pharmaceutical Research and Development, Guangzhou Medical University, Guangdong, 511436, PR China
| | - Jiaxuan Cai
- Center of Pharmaceutical Research and Development, Guangzhou Medical University, Guangdong, 511436, PR China
| | - Yawen Yao
- Center of Pharmaceutical Research and Development, Guangzhou Medical University, Guangdong, 511436, PR China
| | - Yi Cai
- Center of Pharmaceutical Research and Development, Guangzhou Medical University, Guangdong, 511436, PR China
| | - Suowen Xu
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, NY, USA
| | - Kannan R R Rengasamy
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630003, India.
| | | | | | - Tiansheng Cao
- Department of General Surgery, Huadu District People's Hospital, Southern Medical University, Guangzhou, 510800, China.
| |
Collapse
|