1
|
Ang B, Yang T, Wang Z, Cheng Y, Chen Q, Wang Z, Zeng M, Chen J, He Z. In Vitro Comparative Analysis of the Effect and Structure-Based Influencing Factors of Flavonols on Lipid Accumulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8237-8246. [PMID: 38530935 DOI: 10.1021/acs.jafc.4c02159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Flavonols represented by quercetin have been widely reported to have biological activities of regulating lipid metabolism. However, the differences in flavonols with different structures in lipid-lowering activity and the influencing factors remain unclear. In this study, the stability, transmembrane uptake ratio, and lipid metabolism regulation activities of 12 flavonol compounds in the 3T3-L1 cell model were systematically compared. The results showed that kaempferide had the highest cellular uptake ratio and the most potent inhibitory effect on adipogenesis at a dosing concentration of 20 μM, followed by isorhamnetin and kaempferol. They inhibited TG accumulation by more than 65% and downregulated the expression of PPARγ and SREBP1c by more than 60%. The other four aglycones, including quercetin, did not exhibit significant activity due to the structural instability in the cell culture medium. Meanwhile, five quercetin glucosides were quite stable but showed a low uptake ratio that no obvious activity was observed. Correlation analysis also showed that for 11 compounds except galangin, the activity was positively correlated with the cellular uptake ratio (p < 0.05, r = 0.6349). These findings may provide a valuable idea and insight for exploring the structure-based activity of flavonoids at the cellular level.
Collapse
Affiliation(s)
- Beijun Ang
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tian Yang
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhenyu Wang
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yong Cheng
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
2
|
Heiserman JP, Minhas Z, Nikpayam E, Cheon DJ. Targeting Heat Shock Protein 27 and Fatty Acid Oxidation Augments Cisplatin Treatment in Cisplatin-Resistant Ovarian Cancer Cell Lines. Int J Mol Sci 2023; 24:12638. [PMID: 37628819 PMCID: PMC10454186 DOI: 10.3390/ijms241612638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Most ovarian cancer patients develop recurrent cancers which are often resistant to commonly employed chemotherapy agents, such as cisplatin. We have previously shown that the inhibition of heat shock protein 27 (HSP27) or fatty acid oxidation (FAO) sensitizes cisplatin-resistant ovarian cancer cell lines to cisplatin and dual inhibition of both HSP27 and FAO induces substantial cell death in vitro. However, it is unclear how HSP27 and FAO promote cisplatin resistance, and if dual inhibition of both HSP27 and FAO would augment cisplatin treatment in vivo. Here we showed that HSP27 knockdown in two cisplatin-resistant ovarian cancer cell lines (A2780CIS and PEO4) resulted in more ROS production upon cisplatin treatment. HSP27-knockdown cancer cells exhibited decreased levels of reduced glutathione (GSH) and glucose6phosphate dehydrogenase (G6PD), a crucial pentose phosphate pathway enzyme. ROS depletion with the compound N-acetyl cysteine (NAC) attenuated cisplatin-induced upregulation of HSP27, FAO, and markers of apoptosis and ferroptosis in cisplatin-resistant ovarian cancer cell lines. Finally, inhibition of HSP27 and FAO with ivermectin and perhexiline enhanced the cytotoxic effect of cisplatin in A2780CIS xenograft tumors in vivo. Our results suggest that two different cisplatin-resistant ovarian cancer cell lines upregulate HSP27 and FAO to deplete cisplatin-induced ROS to attenuate cisplatin's cytotoxic effect.
Collapse
Affiliation(s)
| | | | | | - Dong-Joo Cheon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA; (J.P.H.); (E.N.)
| |
Collapse
|
3
|
Membrane polarization in non-neuronal cells as a potential mechanism of metabolic disruption by depolarizing insecticides. Food Chem Toxicol 2022; 160:112804. [PMID: 34990786 DOI: 10.1016/j.fct.2021.112804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/22/2021] [Accepted: 12/31/2021] [Indexed: 01/01/2023]
Abstract
A significant rise in the incidence of obesity and type 2 diabetes has occurred worldwide in the last two decades. Concurrently, a growing body of evidence suggests a connection between exposure to environmental pollutants, particularly insecticides, and the development of obesity and type 2 diabetes. This review summarizes key evidence of (1) the presence of different types of neuronal receptors - target sites for neurotoxic insecticides - in non-neuronal cells, (2) the activation of these receptors in non-neuronal cells by membrane-depolarizing insecticides, and (3) changes in metabolic functions, including lipid and glucose accumulation, associated with changes in membrane potential. Based on these findings, we propose that changes in membrane potential (Vmem) by certain insecticides serve as a novel regulator of lipid and glucose metabolism in non-excitable cells associated with obesity and type 2 diabetes.
Collapse
|
4
|
Semiz S. SIT1 transporter as a potential novel target in treatment of COVID-19. Biomol Concepts 2021; 12:156-163. [PMID: 34969185 DOI: 10.1515/bmc-2021-0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
Studies published earlier this year demonstrated the association of the solute carrier SLC6A20 gene with the risk and severity of COVID-19. The SLC6A20 protein product (Sodium-dependent Imino Transporter 1 (SIT1)) is involved in the transport of amino acids, including glycine. Here we summarized the results of recent studies demonstrating the interaction of SIT1 with the ACE2 receptor for SARS-CoV-2 as well as an observed association of SLC6A20 with the risk and traits of Type 2 diabetes (T2D). Recently, it was also proposed that SLC6A20 represents the novel regulator of glycine levels and that glycine has beneficial effects against the proinflammatory cytokine secretion induced by SARS-CoV-2 infection. Ivermectin, as a partial agonist of glycine-gated chloride channels, was also recently suggested to interfere with the COVID-19 cytokine storm by inducing the activation of glycine receptors. Furthermore, plasma glycine levels are found to be decreased in diabetic patients. Thus, further clinical trials are warranted to confirm the potential favorable effects of targeting the SIT1 transporter and glycine levels in the treatment of COVID-19, particularly for the severe case of disease associated with hyperglycemia, inflammation, and T2D. These findings suggest that SIT1 may potentially represent one of the missing pieces in the complex puzzle observed between these two pandemic diseases and the potential novel target for their efficient treatment.
Collapse
Affiliation(s)
- Sabina Semiz
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates; Association South East European Network for Medical Research-SOVE, E-mail:
| |
Collapse
|
5
|
Romero-Nava R, Alarcón-Aguilar FJ, Giacoman-Martínez A, Blancas-Flores G, Aguayo-Cerón KA, Ballinas-Verdugo MA, Sánchez-Muñoz F, Huang F, Villafaña-Rauda S, Almanza-Pérez JC. Glycine is a competitive antagonist of the TNF receptor mediating the expression of inflammatory cytokines in 3T3-L1 adipocytes. Inflamm Res 2021; 70:605-618. [PMID: 33877377 DOI: 10.1007/s00011-021-01462-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/16/2021] [Accepted: 04/05/2021] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE To determine the involvement of TNF-α and glycine receptors in the inhibition of pro-inflammatory adipokines in 3T3-L1 cells. METHODS RT-PCR evidenced glycine receptors in 3T3-L1 adipocytes. 3T3-L1 cells were transfected with siRNA for the glycine (Glrb) and TNF1a (Tnfrsf1a) receptors and confirmed by confocal microscopy. Transfected cells were treated with glycine (10 mM). The expressions of TNF-α and IL-6 mRNA were measured by qRT-PCR, while concentrations were quantified by ELISA. RESULTS Glycine decreased the expression and concentration of TNF-α and IL-6; this effect did not occur in the absence of TNF-α receptor due to siRNA. In contrast, glycine produced only slight changes in the expression of TNF-α and IL-6 in the absence of the glycine receptor due to siRNA. A docking analysis confirmed the possibility of binding glycine to the TNF-α1a receptor. CONCLUSION These findings support the idea that glycine could partially inhibit the binding of TNF-α to its receptor and provide clues about the mechanisms by which glycine inhibits the secretion of pro-inflammatory adipokines in adipocytes through the TNF-α receptor.
Collapse
MESH Headings
- 3T3-L1 Cells
- Adipocytes/metabolism
- Adiponectin/genetics
- Animals
- Cytokines/genetics
- Cytokines/metabolism
- Gene Expression
- Glycine/pharmacology
- Mice
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/metabolism
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- Receptors, Glycine/genetics
- Receptors, Tumor Necrosis Factor, Type I/antagonists & inhibitors
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type II/antagonists & inhibitors
- Receptors, Tumor Necrosis Factor, Type II/genetics
Collapse
Affiliation(s)
- Rodrigo Romero-Nava
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I), San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, C.P. 09340, Mexico City, Mexico
- Departamento de Farmacología y Toxicología, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
- Sección de Posgrado, Laboratorio de Señalización Intracelular, Escuela Superior de Medicina del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Francisco J Alarcón-Aguilar
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I), San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, C.P. 09340, Mexico City, Mexico
| | - Abraham Giacoman-Martínez
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I), San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, C.P. 09340, Mexico City, Mexico
| | - Gerardo Blancas-Flores
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I), San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, C.P. 09340, Mexico City, Mexico
| | - Karla A Aguayo-Cerón
- Sección de Posgrado, Laboratorio de Señalización Intracelular, Escuela Superior de Medicina del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Martha A Ballinas-Verdugo
- Departamento de Inmunología, Instituto Nacional de Cardiología (Ignacio Chávez), Mexico City, Mexico
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología (Ignacio Chávez), Mexico City, Mexico
| | - Fengyang Huang
- Departamento de Farmacología y Toxicología, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Santiago Villafaña-Rauda
- Sección de Posgrado, Laboratorio de Señalización Intracelular, Escuela Superior de Medicina del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Julio C Almanza-Pérez
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I), San Rafael Atlixco 186, Col. Vicentina. Iztapalapa, C.P. 09340, Mexico City, Mexico.
| |
Collapse
|
6
|
He B, Ni Y, Jin Y, Fu Z. Pesticides-induced energy metabolic disorders. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:139033. [PMID: 32388131 DOI: 10.1016/j.scitotenv.2020.139033] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/17/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Metabolic disorders have become a heavy burden on society. Recently, through excessive use, pesticides have been found to be present in environmental matrixes and sometimes even accumulate in humans or other mammals through the food chain, which then causes health concerns. Evidence has indicated that pesticides have the potential to induce energy metabolic disorders by disturbing the physical process of energy absorption in the intestine and energy storage in the liver, adipose tissue and skeletal muscle in humans or other mammals. In addition, the homeostasis of energy regulation by the pancreas and immune cells is also affected by pesticides. These pesticide-induced disruptions ultimately cause abnormal levels of blood glucose and lipids, which in turn induce the development of related metabolic diseases, including overweight, underweight, insulin resistance and even diabetes. In this review, the results of previous studies focused on the induction of metabolic disorders by pesticides are summarized. We hope that this work will facilitate the discovery of a potential strategy for the treatment of diseases caused by pesticides.
Collapse
Affiliation(s)
- Bingnan He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|