1
|
Oliveira ICCS, Marinsek GP, Gonçalves ARN, Lopes BS, Correia LVB, Da Silva RCB, Castro IB, Mari RB. Investigating tributyltin's toxic effects: Intestinal barrier and neuroenteric disruption in rat's jejunum. Neurotoxicology 2024; 105:208-215. [PMID: 39396746 DOI: 10.1016/j.neuro.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
The expansion of economic activities in coastal areas has significantly increased chemical contamination, leading to major environmental challenges. Contaminants enter the human body through the food chain, particularly via seafood and water consumption, triggering biomagnification and bioaccumulation processes. The gastrointestinal tract (GIT) acts as a selective barrier, protecting against chemical pollutants and maintaining homeostasis through a complex network of cells and immune responses. This study assessed impact of tributyltin (TBT), a highly toxic organometallic compound used in antifouling coatings for ships, on the GIT and myenteric neural plasticity in young rats. TBT exposure leads to histopathological changes, including epithelial detachment and inflammatory foci, especially at lower environmental doses. The study found that TBT causes significant reductions in villi height, increases in goblet cells and intraepithelial lymphocytes, and disrupts the myenteric plexus, with higher densities of extraganglionic neurons in exposed animals.
Collapse
Affiliation(s)
- I C C S Oliveira
- UNESP, São Paulo State University, Institute of Biosciences, Paulista Coast Campus (CLP), São Vicente, SP, Brazil.
| | - G P Marinsek
- UNESP, São Paulo State University, Institute of Biosciences, Paulista Coast Campus (CLP), São Vicente, SP, Brazil
| | - A R N Gonçalves
- UNESP, São Paulo State University, Institute of Biosciences, Paulista Coast Campus (CLP), São Vicente, SP, Brazil
| | - B S Lopes
- UNESP, São Paulo State University, Institute of Biosciences, Paulista Coast Campus (CLP), São Vicente, SP, Brazil
| | - L V B Correia
- UNIFESP, Federal University of São Paulo, Institute of Health and Society, Baixada Santista Campus, Santos, SP, Brazil
| | - R C B Da Silva
- UNIFESP, Federal University of São Paulo, Institute of Health and Society, Baixada Santista Campus, Santos, SP, Brazil
| | - I B Castro
- UNIFESP, Federal University of São Paulo, Institute of Marine Science, Baixada Santista Campus, Santos, SP, Brazil
| | - R B Mari
- UNESP, São Paulo State University, Institute of Biosciences, Paulista Coast Campus (CLP), São Vicente, SP, Brazil
| |
Collapse
|
2
|
Palus K. Dietary Exposure to Acrylamide Has Negative Effects on the Gastrointestinal Tract: A Review. Nutrients 2024; 16:2032. [PMID: 38999779 PMCID: PMC11243272 DOI: 10.3390/nu16132032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Changing eating habits and an increase in consumption of thermally processed products have increased the risk of the harmful impact of chemical substances in food on consumer health. A 2002 report by the Swedish National Food Administration and scientists at Stockholm University on the formation of acrylamide in food products during frying, baking and grilling contributed to an increase in scientific interest in the subject. Acrylamide is a product of Maillard's reaction, which is a non-enzymatic chemical reaction between reducing sugars and amino acids that takes place during thermal processing. The research conducted over the past 20 years has shown that consumption of acrylamide-containing products leads to disorders in human and animal organisms. The gastrointestinal tract is a complex regulatory system that determines the transport, grinding, and mixing of food, secretion of digestive juices, blood flow, growth and differentiation of tissues, and their protection. As the main route of acrylamide absorption from food, it is directly exposed to the harmful effects of acrylamide and its metabolite-glycidamide. Despite numerous studies on the effect of acrylamide on the digestive tract, no comprehensive analysis of the impact of this compound on the morphology, innervation, and secretory functions of the digestive system has been made so far. Acrylamide present in food products modifies the intestine morphology and the activity of intestinal enzymes, disrupts enteric nervous system function, affects the gut microbiome, and increases apoptosis, leading to gastrointestinal tract dysfunction. It has also been demonstrated that it interacts with other substances in food in the intestines, which increases its toxicity. This paper summarises the current knowledge of the impact of acrylamide on the gastrointestinal tract, including the enteric nervous system, and refers to strategies aimed at reducing its toxic effect.
Collapse
Affiliation(s)
- Katarzyna Palus
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowski Str. 13, 10-718 Olsztyn, Poland
| |
Collapse
|
3
|
Makowska K, Fagundes KRC, Gonkowski S. Influence of bisphenol A and its analog bisphenol S on cocaine- and amphetamine-regulated transcript peptide-positive enteric neurons in the mouse gastrointestinal tract. Front Mol Neurosci 2023; 16:1234841. [PMID: 37675141 PMCID: PMC10477371 DOI: 10.3389/fnmol.2023.1234841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023] Open
Abstract
Introduction Bisphenol A (BPA) is used in large quantities for the production of plastics and is present in various everyday objects. It penetrates living organisms and shows multidirectional adverse influence on many internal organs. For this reason, BPA is often replaced in plastic production by other substances. One of them is bisphenol S (BPS), whose effects on the enteric nervous system (ENS) have not been explained. Methods Therefore, the present study compares the influence of BPA and BPS on the number of enteric neurons immunoreactive to cocaine-and amphetamine-regulated transcript (CART) peptide located in the ENS of the stomach, jejunum and colon with the use of double immunofluorescence method. Results The obtained results have shown that both bisphenols studied induced an increase in the number of CART-positive enteric neurons, and the severity of changes depended on the type of enteric ganglion, the dose of bisphenols and the segment of the digestive tract. The most visible changes were noted in the myenteric ganglia in the colon. Moreover, in the colon, the changes submitted by BPS are more noticeable than those observed after BPA administration. In the stomach and jejunum, bisphenol-induced changes were less visible, and changes caused by BPS were similar or less pronounced than those noted under the impact of BPA, depending on the segment of the gastrointestinal tract and ganglion type studied. Discussion The results show that BPS affects the enteric neurons containing CART in a similar way to BPA, and the BPS impact is even stronger in the colon. Therefore, BPS is not neutral for the gastrointestinal tract and ENS.
Collapse
Affiliation(s)
- Krystyna Makowska
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Kainã R. C. Fagundes
- Laboratório de Morfofisiologia Animal, Instituto de Biociências, Universidade Estadual Paulista, São Paulo, Brazil
| | - Sławomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
4
|
Palus K, Bulc M, Całka J. Glyphosate affects the neurochemical phenotype of the intramural neurons in the duodenum in the pig. Neurogastroenterol Motil 2023; 35:e14507. [PMID: 36502523 DOI: 10.1111/nmo.14507] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/26/2022] [Accepted: 11/23/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Glyphosate-based herbicides have been one of the most intensively used pollutants worldwide and food products containing glyphosate are an essential component of human and animal diet. The aim of present study was to determine the effect of glyphosate intoxication on the neurochemical properties of the enteric nervous system (ENS) neurons located in the wall of the porcine duodenum. METHODS Fifteen sexually immature gilts divided into 3 groups were used: control-animals receiving empty gelatin capsules; G1-animals receiving a low dose of glyphosate-corresponding to the theoretical maximum daily intake (TMDI) - 0.05 mg/kg bw/day; G2-animals receiving a higher dose of glyphosate-corresponding to the acceptable daily intake (ADI)-0.5 mg/kg/day in gelatin capsules orally for 28 days. After this time, the animals were euthanized and small intestine samples were collected. Frozen sections were then subjected to the procedure of double immunofluorescent staining. KEY RESULTS Glyphosate supplementation led to alterations in the neurochemical code of the ENS neurons in the porcine duodenum. Generally, increased population of neurons immunoreactive to PACAP, CGRP, CART, nNOS, and a decreased number of VAChT-like immunoreactive neurons were noted. CONCLUSIONS AND INFERENCES It may be a first preclinical symptom of digestive tract dysfunction in the course of glyphosate intoxication and further studies are needed to assess the toxicity and risks of glyphosate to humans.
Collapse
Affiliation(s)
- Katarzyna Palus
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Michał Bulc
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Jarosław Całka
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
5
|
Karpiesiuk A, Całka J, Palus K. Acrylamide-Induced Changes in the Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Immunoreactivity in Small Intestinal Intramural Neurons in Pigs. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3272. [PMID: 36833970 PMCID: PMC9963040 DOI: 10.3390/ijerph20043272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND A particularly pressing problem is determining consumer-safe doses of potentially health- and life-threatening substances, such as acrylamide. The aim of the study was to determine how acrylamide affects the pituitary adenylate cyclase-activating polypeptide (PACAP)-immunoreactive intramural neurons in the small intestine of sexually immature gilts. METHODS The study was conducted on 15 sexually immature Danish gilts receiving for 28 days empty gelatin capsules or acrylamide in low (0.5 µg/kg of body weight (b.w.)/day) and high (5 µg/kg b.w./day) doses. After euthanasia, intestinal sections were stained using the double immunofluorescence staining procedure. RESULTS Studies have shown that oral administration of acrylamide in both doses induced a response of intramural neurons expressed as an increase in the population of PACAP-immunoreactive neurons in the small intestine. In the duodenum, only in the myenteric plexus (MP) was an increase in the number of PACAP-immunoreactive (IR) neurons observed in both experimental groups, while in the outer submucous plexus (OSP) and inner submucous plexus (ISP), an increase was noted only in the high-dose group. In the jejunum, both doses of acrylamide led to an increase in the population of PACAP-IR neurons in each enteric plexus (MP, OSP, ISP), while in the ileum, only supplementation with the higher dose of acrylamide increased the number of PACAP-IR enteric neurons in the MP, OSP, and ISP. CONCLUSIONS The obtained results suggest the participation of PACAP in acrylamide-induced plasticity of enteric neurons, which may be an important line of defence from the harmful action of acrylamide on the small intestines.
Collapse
Affiliation(s)
- Aleksandra Karpiesiuk
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str. 13, 10-718 Olsztyn, Poland
| | | | | |
Collapse
|
6
|
Hong Z, Minghua W, Bo N, Chaoyue Y, Haiyang Y, Haiqing Y, Chunyu X, Yan Z, Yuan Y. Rosmarinic acid attenuates acrylamide induced apoptosis of BRL-3A cells by inhibiting oxidative stress and endoplasmic reticulum stress. Food Chem Toxicol 2021; 151:112156. [PMID: 33781805 DOI: 10.1016/j.fct.2021.112156] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/16/2021] [Accepted: 03/20/2021] [Indexed: 12/20/2022]
Abstract
Acrylamide (AA) is a common endogenous contaminant in food, with a complex toxicity mechanism. The study on liver damage to experimental animals caused by AA has aroused a great attention. Rosmarinic acid (RosA) as a natural antioxidant shows excellent protective effects against AA-induced hepatotoxicity, but the potential mechanism is still unclear. In the current study, the protective effect of RosA on BRL-3A cell damage induced by AA was explored. RosA increased the activity of SOD and GSH, reduced the content of ROS and MDA, and significantly reduced the oxidative stress (OS) damage of BRL-3A cells induced by AA. RosA pretreatment inhibited the MAPK signaling pathway activated by AA, and down-regulated the phosphorylation of JNK, ERK and p38. RosA pretreatment also reduced the production of calcium ions caused by AA. In addition, the key proteins p-IRE1α, XBP-1s, TRAF2 of the IRE1 pathway, and the expression of endoplasmic reticulum stress (ERS) characteristic proteins GRP78, p-ASK1, Caspase-12 and CHOP were also down-regulated by RosA. NAC blocked the activation of the MAPK signaling pathway and inhibited the ERS pathway. RosA reduced the rate of apoptosis and down-regulated the expression of Bax/Bcl-2 and Caspase-3, thereby inhibiting AA-induced apoptosis. In conclusion, RosA reduced the OS and ERS induced by AA in BRL-3A cells, thereby inhibiting cell apoptosis, and it could be used as a potential protective agent against AA toxicity.
Collapse
Affiliation(s)
- Zhuang Hong
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Wang Minghua
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Nan Bo
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yang Chaoyue
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yan Haiyang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Ye Haiqing
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Xi Chunyu
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Zhang Yan
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yuan Yuan
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
7
|
Brzozowska M, Całka J. Review: Occurrence and Distribution of Galanin in the Physiological and Inflammatory States in the Mammalian Gastrointestinal Tract. Front Immunol 2021; 11:602070. [PMID: 33552060 PMCID: PMC7862705 DOI: 10.3389/fimmu.2020.602070] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022] Open
Abstract
Galanin (GAL) is a broad-spectrum peptide that was first identified 37 years ago. GAL, which acts through three specific receptor subtypes, is one of the most important molecules on an ever-growing list of neurotransmitters. Recent studies indicate that this peptide is commonly present in the gastrointestinal (GI) tract and GAL distribution can be seen in the enteric nervous system (ENS). The function of the GAL in the gastrointestinal tract is, inter alia, to regulate motility and secretion. It should be noted that the distribution of neuropeptides is largely dependent on the research model, as well as the part of the gastrointestinal tract under study. During the development of digestive disorders, fluctuations in GAL levels were observed. The occurrence of GAL largely depends on the stage of the disease, e.g., in porcine experimental colitis GAL secretion is caused by infection with Brachyspira hyodysenteriae. Many authors have suggested that increased GAL presence is related to the involvement of GAL in organ renewal. Additionally, it is tempting to speculate that GAL may be used in the treatment of gastroenteritis. This review aims to present the function of GAL in the mammalian gastrointestinal tract under physiological conditions. In addition, since GAL is undoubtedly involved in the regulation of inflammatory processes, and the aim of this publication is to provide up-to-date knowledge of the distribution of GAL in experimental models of gastrointestinal inflammation, which may help to accurately determine the role of this peptide in inflammatory diseases and its potential future use in the treatment of gastrointestinal disorders.
Collapse
Affiliation(s)
- Marta Brzozowska
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Jarosław Całka
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
8
|
Makowska K, Gonkowski S. Bisphenol A (BPA) Affects the Enteric Nervous System in the Porcine Stomach. Animals (Basel) 2020; 10:ani10122445. [PMID: 33419365 PMCID: PMC7765808 DOI: 10.3390/ani10122445] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
Bisphenol A (BPA) is widely utilized in plastic production process all over the world. Previous studies have shown that BPA, with its similarity to estrogen, may negatively affect living organisms. It is acknowledged that BPA distorts the activity of multiple internal systems, including the nervous, reproductive, urinary, and endocrine systems. BPA also affects the gastrointestinal tract and enteric nervous system (ENS), which is placed throughout the wall from the esophagus to the rectum. Contrary to the intestine, the influence of BPA on the ENS in the stomach is still little known. This study, performed using the double immunofluorescence method, has revealed that BPA affects the number of nervous structures in the porcine gastric wall immunoreactive to vesicular acetylcholine transporter (VAChT, a marker of cholinergic neurons), substance P (SP), vasoactive intestinal polypeptide (VIP), galanin (GAL) and cocaine- and amphetamine-regulated transcript peptide (CART). The character and severity of noted alterations depended on the part of the ENS, the BPA dose, and the type of neuronal substance. Administration of BPA resulted in an increase in the number of nervous structures containing SP, GAL, and/or CART, and a decrease in the number of cholinergic neurons in all parts of the gastric wall. The number of VIP-positive nervous structures increased in the enteric myenteric ganglia, along with the muscular and mucosal layers, whilst it decreased in the submucous ganglia. The exact mechanism of noted changes was not absolutely obvious, but they were probably related to the neuroprotective and adaptive processes constituting the response to the impact of BPA.
Collapse
Affiliation(s)
- Krystyna Makowska
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-957 Olsztyn, Poland
- Correspondence: ; Tel./Fax: +48-952-344-60
| | - Sławomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-957 Olsztyn, Poland;
| |
Collapse
|
9
|
Effect of Acrylamide Supplementation on the Population of Vasoactive Intestinal Peptide (VIP)-Like Immunoreactive Neurons in the Porcine Small Intestine. Int J Mol Sci 2020; 21:ijms21249691. [PMID: 33353157 PMCID: PMC7765847 DOI: 10.3390/ijms21249691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Acrylamide is one of the harmful substances present in food. The present study aimed to establish the effect of acrylamide supplementation in tolerable daily intake (TDI) dose (0.5 µg/kg b.w./day) and a dose ten times higher than TDI (5 µg/kg b.w./day) on the population of vasoactive intestinal peptide-like immunoreactive (VIP-LI) neurons in the porcine small intestine and the degree of the co-localization of VIP with other neuroactive substances (neuronal nitric oxide synthase (nNOS), substance P (SP), and cocaine- and amphetamine-regulated transcript peptide (CART)). In our work, 15 Danish landrace gilts (5 in each experimental group) received capsules (empty or with low or high doses of acrylamide) for a period of 28 days with their morning feeding. Using double immunofluorescence staining, we established that acrylamide supplementation increased the number of neurons showing immunoreactivity towards VIP in all types of enteric nervous system (ENS) plexuses and fragments of the small intestine studied. Moreover, both doses of acrylamide led to changes in the degree of co-localization of VIP with nNOS, SP, and CART in intramural neurons. The observed changes may be the adaptation of neurons to local inflammation, oxidative stress, or the direct toxic effects of acrylamide on intestinal neurons, also referred to as neuronal plasticity.
Collapse
|
10
|
Palus K, Bulc M, Całka J. Effect of Acrylamide Supplementation on the CART-, VAChT-, and nNOS-Immunoreactive Nervous Structures in the Porcine Stomach. Animals (Basel) 2020; 10:E555. [PMID: 32225044 PMCID: PMC7222419 DOI: 10.3390/ani10040555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/27/2022] Open
Abstract
Acrylamide is found in food products manufactured with high-temperature processing, and exposure to acrylamide contained in food products may cause a potential risk to human health. The aim of this investigation was to demonstrate the changes in the population of CART-, nNOS-, and VAChT-immunoreactive enteric neurons in the porcine stomach in response to supplementation of low and high acrylamide doses. The study was carried out with 15 Danish landrace gilts divided into three experimental groups: the control group-animals were administered empty gelatine capsules; the low-dose group-animals were administrated a tolerable daily intake (TDI) dose (0.5 µg/kg of body weight (b.w.)/day) of acrylamide capsules, and the high-dose group-animals were administrated high-dose (ten times higher than TDI: 5 µg/kg b.w./day) acrylamide capsules for 28 days. Using the double immunofluorescence staining method, it was established that supplementation with low and high doses of acrylamide resulted in alterations of the porcine stomach neuron phenotype, which was reflected in an increased number of CART-, VAChT-, and nNOS-immunoreactive neurons. These changes were accompanied by an increased density of CART-, VAChT-, and nNOS-positive fibres. The results suggest that the enteric nervous system plays an important role in protecting the gastrointestinal tract during acrylamide intoxication.
Collapse
Affiliation(s)
- Katarzyna Palus
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland; (M.B.); (J.C.)
| | | | | |
Collapse
|
11
|
Ivanski F, de Oliveira VM, de Oliveira IM, de Araújo Ramos AT, de Oliveira Tonete ST, de Oliveira Hykavei G, Bargi-Souza P, Schiessel DL, Martino-Andrade AJ, Romano MA, Marino Romano R. Prepubertal acrylamide exposure causes dose-response decreases in spermatic production and functionality with modulation of genes involved in the spermatogenesis in rats. Toxicology 2020; 436:152428. [PMID: 32151602 DOI: 10.1016/j.tox.2020.152428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 11/29/2022]
Abstract
The increase in human infertility prevalence due to male reproductive disorders has been associated with extensive endocrine-disrupting chemical (EDC) exposure. Acrylamide (AA) is a compound formed spontaneously during heat processing of some foods that are mainly consumed by children and adolescents. In this study, we evaluated the prepubertal AA exposure effects on male adult reproductive physiology using a prepubertal experimental model to analyze the pubertal development, spermatogenesis hormones levels and genes expression involved in male reproductive function. This study is the first one to use the validated protocol to correlate the AA exposure with puberty development, as well as the AA-induced endocrine disrupting effects on reproductive axis. AA did not affect the age at puberty, the reproductive organ's weight and serum hormonal levels. AA reduces spermatogenesis, induces morphological and functional defects on sperm and alters transcript expression of sexual hormone receptors (Ar and Esr2), the transcript expression of Tnf, Egr2, Rhcg and Lrrc34. These findings suggest that excessive AA consumption may impair their reproductive capacity at adulthood, despite no changes in hormonal profile being observed.
Collapse
Affiliation(s)
- Fernanda Ivanski
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Central-West, Rua Simeao Camargo Varela de Sa, 03, 85040-080, Parana, Brazil.
| | - Viviane Matoso de Oliveira
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Central-West, Rua Simeao Camargo Varela de Sa, 03, 85040-080, Parana, Brazil.
| | - Isabela Medeiros de Oliveira
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Central-West, Rua Simeao Camargo Varela de Sa, 03, 85040-080, Parana, Brazil.
| | - Anderson Tadeu de Araújo Ramos
- Department of Physiology, Animal Endocrine and Reproductive Physiology Laboratory, Federal University of Paraná (UFPR), Centro Politécnico, 81531-980,PO Box 19031, Curitiba, Parana, Brazil.
| | - Selma Thaisa de Oliveira Tonete
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Central-West, Rua Simeao Camargo Varela de Sa, 03, 85040-080, Parana, Brazil.
| | - Gabriel de Oliveira Hykavei
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Central-West, Rua Simeao Camargo Varela de Sa, 03, 85040-080, Parana, Brazil.
| | - Paula Bargi-Souza
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, 31270-901, Minas Gerais, Brazil.
| | - Dalton Luiz Schiessel
- Department of Nutrition, State University of Central-West, Rua Simeao Camargo Varela de Sa, 03, Zip-Code 85040-080, Parana, Brazil.
| | - Anderson Joel Martino-Andrade
- Department of Physiology, Animal Endocrine and Reproductive Physiology Laboratory, Federal University of Paraná (UFPR), Centro Politécnico, 81531-980,PO Box 19031, Curitiba, Parana, Brazil.
| | - Marco Aurelio Romano
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Central-West, Rua Simeao Camargo Varela de Sa, 03, 85040-080, Parana, Brazil.
| | - Renata Marino Romano
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Central-West, Rua Simeao Camargo Varela de Sa, 03, 85040-080, Parana, Brazil.
| |
Collapse
|
12
|
Palus K, Całka J. Influence of Acrylamide Administration on the Neurochemical Characteristics of Enteric Nervous System (ENS) Neurons in the Porcine Duodenum. Int J Mol Sci 2019; 21:ijms21010015. [PMID: 31861419 PMCID: PMC6982244 DOI: 10.3390/ijms21010015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 12/23/2022] Open
Abstract
The digestive tract, especially the small intestine, is one of the main routes of acrylamide absorption and is therefore highly exposed to the toxic effect of acrylamide contained in food. The aim of this experiment was to elucidate the effect of low (tolerable daily intake—TDI) and high (ten times higher than TDI) doses of acrylamide on the neurochemical phenotype of duodenal enteric nervous system (ENS) neurons using the pig as an animal model. The experiment was performed on 15 immature gilts of the Danish Landrace assigned to three experimental groups: control (C) group—pigs administered empty gelatine capsules, low dose (LD) group—pigs administered capsules with acrylamide at the TDI dose (0.5 μg/kg body weight (b.w.)/day), and the high dose (HD) group—pigs administered capsules with acrylamide at a ten times higher dose than the TDI (5 μg/kg b.w./day) with a morning feeding for 4 weeks. Administration of acrylamide, even in a low (TDI) dose, led to an increase in the percentage of enteric neurons immunoreactive to substance P (SP), calcitonin gene-related peptide (CGRP), galanin (GAL), neuronal nitric oxide synthase (nNOS), and vesicular acetylcholine transporter (VACHT) in the porcine duodenum. The severity of the changes clearly depended on the dose of acrylamide and the examined plexus. The obtained results suggest the participation of these neuroactive substances in acrylamide-inducted plasticity and the protection of ENS neurons, which may be an important line of defence from the harmful action of acrylamide.
Collapse
|
13
|
Bo N, Yilin H, Haiyang Y, Yuan Y. Acrylamide induced the activation of NLRP3 inflammasome via ROS-MAPKs pathways in Kupffer cells. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1696284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Nan Bo
- College of Food Science and Engineering, Jilin University, Changchun, People’s Republic of China
| | - Hong Yilin
- College of Food Science and Engineering, Jilin University, Changchun, People’s Republic of China
| | - Yan Haiyang
- College of Food Science and Engineering, Jilin University, Changchun, People’s Republic of China
| | - Yuan Yuan
- College of Food Science and Engineering, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|