1
|
Fadaghi S, Mahmoodi M, Derakhshani A, Sedghy F, Ranjkesh M, Behzadi A. Enhancement the antioxidative and immunomodulatory functions of mesenchymal stem cells by tetrandrine. Heliyon 2024; 10:e35667. [PMID: 39220890 PMCID: PMC11365297 DOI: 10.1016/j.heliyon.2024.e35667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
In this study, mesenchymal stem cells (MSCs) were primed with Tetrandrine (TET) having anti-inflammatory and immunomodulatory effects to examine the effects of this molecule on the antioxidative potential of MSCs as well as their modulatory effects on activated peripheral blood mononuclear cells (PBMCs). The viability of primed MSCs was detected using MTT assay and Trypan blue staining. Moreover, flow cytometry technique was applied to evaluate cell cycle distribution and immunophenotype of MSCs. The production of superoxide dismutase 3 (SOD3), malondialdehyde (MDA), kynurenine, TGF-β, and IFN-γ were also measured by spectrophotometry to assess the alteration of antioxidative and immunomodulatory potential of MSCs. Then, TET-primed MSCs were cocultured with PBMCs. The MTT assay was used to measure the proliferation of PBMCs. Cell cycle progression of PBMCs and frequency of regulatory T cells were evaluated using Flow cytometry. ELISA assay was also applied to determine the concentrations of TGF-β and IFN-γ after coculturing. According to our data, TET enhanced the secretion of SOD3 and kynurenine from MSCs, while the production of IFN-γ was reduced. No changes were observed in the viability, proliferation, and immunophenotype of MSCs after priming with TET. Moreover, the proliferation and frequency of PBMCs in the S and G2/M phases of cell cycle reduced after co-culturing with TET-primed MSCs. The concentration of TGF-β was increased in the supernatant of PBMCs, but the level of IFN-γ was reduced. Our data suggested this priming method as a novel strategy for increasing the antioxidative and immunomodulatory activity of MSCs.
Collapse
Affiliation(s)
- Shohreh Fadaghi
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Merat Mahmoodi
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Derakhshani
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Farnaz Sedghy
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdi Ranjkesh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ahmadreza Behzadi
- School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
2
|
Najar M, Bouhtit F, Rahmani S, Bouali A, Melki R, Najimi M, Lewalle P, Merimi M. The immunogenic profile and immunomodulatory function of mesenchymal stromal / stem cells in the presence of Ptychotis verticillata. Heliyon 2024; 10:e24822. [PMID: 38317994 PMCID: PMC10838760 DOI: 10.1016/j.heliyon.2024.e24822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are considered to be a promising immunotherapeutic tool due to their easy accessibility, culture expansion possibilities, safety profile, and immunomodulatory properties. Although several studies have demonstrated the therapeutic effects of MSCs, their efficacy needs to be improved while also preserving their safety. It has been suggested that cell homeostasis may be particularly sensitive to plant extracts. The impact of natural compounds on immunity is thus a fascinating and growing field. Ptychotis verticillata and its bioactive molecules, carvacrol and thymol, are potential candidates for improving MSC therapeutic effects. They can be used as immunotherapeutic agents to regulate MSC functions and behavior during immunomodulation. Depending on their concentrations and incubation time, these compounds strengthened the immunomodulatory functions of MSCs while maintaining their immune-evasive profile. Incubating MSCs with carvacrol and thymol does not alter their hypoimmunogenicity, as no induction of the allogeneic immune response was observed. MSCs also showed enhanced abilities to reduce the proliferation of activated T cells. Thus, MSCs are immunologically responsive to bioactive molecules derived from PV. The bioactivity may depend on the whole phyto-complex of the oil. These findings may contribute to the development of safe and efficient immunotherapeutic MSCs by using medicinal plant-derived active molecules.
Collapse
Affiliation(s)
- Mehdi Najar
- Faculty of Medicine, ULB721, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), University of Montreal, Montreal H2X 0A9, QC, Canada
| | - Fatima Bouhtit
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Saida Rahmani
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Abderrahim Bouali
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Rahma Melki
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Makram Merimi
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| |
Collapse
|
3
|
Abbasloo E, Khaksari M, Sanjari M, Kobeissy F, Thomas TC. Carvacrol decreases blood-brain barrier permeability post-diffuse traumatic brain injury in rats. Sci Rep 2023; 13:14546. [PMID: 37666857 PMCID: PMC10477335 DOI: 10.1038/s41598-023-40915-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 08/18/2023] [Indexed: 09/06/2023] Open
Abstract
Previously, we showed that Satureja Khuzestanica Jamzad essential oil (SKEO) and its major component, carvacrol (CAR), 5-isopropyl-2-methylphenol, has anti-inflammatory, anti-apoptotic, and anti-edematous properties after experimental traumatic brain injury (TBI) in rats. CAR, predominantly found in Lamiaceae family (Satureja and Oregano), is lipophilic, allowing diffusion across the blood-brain barrier (BBB). These experiments test the hypothesis that acute treatment with CAR after TBI can attenuate oxidative stress and BBB permeability associated with CAR's anti-edematous traits. Rats were divided into six groups and injured using Marmarou weight drop: Sham, TBI, TBI + Vehicle, TBI + CAR (100 and 200 mg/kg) and CAR200-naive treated rats. Intraperitoneal injection of vehicle or CAR was administered thirty minutes after TBI induction. 24 h post-injury, brain edema, BBB permeability, BBB-related protein levels, and oxidative capacity were measured. Data showed CAR 200 mg/kg treatment decreased brain edema and prevented BBB permeability. CAR200 decreased malondialdehyde (MDA) and reactive oxygen species (ROS) and increased superoxide dismutase (SOD) and total antioxidative capacity (T-AOC), indicating the mechanism of BBB protection is, in part, through antioxidant activity. Also, CAR 200 mg/kg treatment suppressed matrix metalloproteinase-9 (MMP-9) expression and increased ZO-1, occludin, and claudin-5 levels. These data indicate that CAR can promote antioxidant activity and decrease post-injury BBB permeability, further supporting CAR as a potential early therapeutic intervention that is inexpensive and more readily available worldwide. However, more experiments are required to determine CAR's long-term impact on TBI pathophysiology.
Collapse
Affiliation(s)
- Elham Abbasloo
- Institute of Basic and Clinical Physiology Sciences, Endocrinology and Metabolism Research Center, Kerman, Iran.
| | - Mohammad Khaksari
- Institute of Neuropharmacology, Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojgan Sanjari
- Institute of Basic and Clinical Physiology Sciences, Endocrinology and Metabolism Research Center, Kerman, Iran
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Theresa Currier Thomas
- College of Medicine-Phoenix, University of Arizona, Child Health, Phoenix, USA
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, USA
| |
Collapse
|
4
|
Moghtaderi M, Bazzazan S, Sorourian G, Sorourian M, Akhavanzanjani Y, Noorbazargan H, Ren Q. Encapsulation of Thymol in Gelatin Methacryloyl (GelMa)-Based Nanoniosome Enables Enhanced Antibiofilm Activity and Wound Healing. Pharmaceutics 2023; 15:1699. [PMID: 37376147 DOI: 10.3390/pharmaceutics15061699] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Non-healing wounds impose huge cost on patients, healthcare, and society, which are further fortified by biofilm formation and antimicrobial resistance (AMR) problems. Here, Thymol, an herbal antimicrobial agent, is utilized to combat AMR. For efficient delivery of Thymol gelatin methacryloyl (GelMa), a hydrophilic polymeric hydrogel with excellent biocompatibility combined with niosome was used to encapsulate Thymol. After optimization of the niosomal Thymol (Nio-Thymol) in the company of GelMa (Nio-Thymol@GelMa) to achieve maximum entrapment efficiency, minimum size, and low polydispersity index, the Thymol release peaked at 60% and 42% from Nio-Thymol@GelMa in medium with pH values of 6.5 and 7.4 after 72 h, respectively. Furthermore, Nio-Thymol@GelMa demonstrated higher antibacterial and anti-biofilm activity than Nio-Thymol and free Thymol against both Gram-negative and Gram-positive bacteria. Interestingly, compared with other obtained formulations, Nio-Thymol@GelMa also led to greater enhancement of migration of human dermal fibroblasts in vitro, and higher upregulation of the expression of certain growth factors such as FGF-1, and matrix metalloproteinases such as MMP-2 and MMP-13. These results suggest that Nio-Thymol@GelMa can represent a potential drug preparation for Thymol to enhance the wound healing process and antibacterial efficacy.
Collapse
Affiliation(s)
- Maryam Moghtaderi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417935840, Iran
| | - Saba Bazzazan
- Department of Community Medicine, Mashhad Branch, Islamic Azad University, Mashhad 1477893855, Iran
| | - Ghazal Sorourian
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417935840, Iran
| | - Maral Sorourian
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417935840, Iran
| | - Yasaman Akhavanzanjani
- Department of Molecular and Cellular Biology, Faculty of Advance Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran
| | - Hassan Noorbazargan
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1517964311, Iran
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| |
Collapse
|
5
|
Trzaskowska M, Vivcharenko V, Kazimierczak P, Wolczyk A, Przekora A. In Vitro Screening Studies on Eight Commercial Essential Oils-Derived Compounds to Identify Promising Natural Agents for the Prevention of Osteoporosis. Biomedicines 2023; 11:biomedicines11041095. [PMID: 37189712 DOI: 10.3390/biomedicines11041095] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 04/07/2023] Open
Abstract
Over the years, essential oils (EOs) and their compounds have gained growing interest due to their anti-inflammatory, antimicrobial, antioxidant, and immunomodulatory properties. The aim of this study was to evaluate the effect of eight commercially available EO-derived compounds ((R)-(+)-limonene, (S)-(−)-limonene, sabinene, carvacrol, thymol, alpha-pinene (α-pinene), beta-pinene (β-pinene), and cinnamaldehyde) on the bone formation process in vitro to select the most promising natural agents that could potentially be used in the prevention or treatment of osteoporosis. Within this study, evaluation of cytotoxicity, cell proliferation, and osteogenic differentiation was performed with the use of mouse primary calvarial preosteoblasts (MC3T3-E1). Moreover, extracellular matrix (ECM) mineralization was determined using MC3T3-E1 cells and dog adipose tissue-derived mesenchymal stem cells (ADSCs). The two highest non-toxic concentrations of each of the compounds were selected and used for testing other activities. The conducted study showed that cinnamaldehyde, thymol, and (R)-(+)-limonene significantly stimulated cell proliferation. In the case of cinnamaldehyde, the doubling time (DT) for MC3T3-E1 cells was significantly shortened to approx. 27 h compared to the control cells (DT = 38 h). In turn, cinnamaldehyde, carvacrol, (R)-(+)-limonene, (S)-(−)-limonene, sabinene, and α-pinene exhibited positive effects on either the synthesis of bone ECM or/and mineral deposition in ECM of the cells. Based on the conducted research, it can be assumed that cinnamaldehyde and (R)-(+)-limonene are the most promising among all tested EO-derived compounds and can be selected for further detailed research in order to confirm their biomedical potential in the chemoprevention or treatment of osteoporosis since they not only accelerated the proliferation of preosteoblasts, but also significantly enhanced osteocalcin (OC) synthesis by preosteoblasts (the OC level was approx. 1100–1200 ng/mg compared to approx. 650 ng/mg in control cells) and ECM calcification of both preosteoblasts and mesenchymal stem cells. Importantly, cinnamaldehyde treatment led to a three-fold increase in the mineral deposition in ADSCs, whereas (R)-(+)-limonene caused a two-fold increase in the ECM mineralization of both MC3T3-E1 cells and ADSCs.
Collapse
Affiliation(s)
- Marta Trzaskowska
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Vladyslav Vivcharenko
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Paulina Kazimierczak
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Agata Wolczyk
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Agata Przekora
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| |
Collapse
|
6
|
Imran M, Aslam M, Alsagaby SA, Saeed F, Ahmad I, Afzaal M, Arshad MU, Abdelgawad MA, El‐Ghorab AH, Khames A, Shariati MA, Ahmad A, Hussain M, Imran A, Islam S. Therapeutic application of carvacrol: A comprehensive review. Food Sci Nutr 2022; 10:3544-3561. [PMID: 36348778 PMCID: PMC9632228 DOI: 10.1002/fsn3.2994] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Carvacrol is a major natural constituent and is significantly present as an essential oil in aromatic plants and is well known for its numerous biological activities. Therapeutic properties of carvacrol have been demonstrated as anti-oxidant, anticancer, diabetes prevention, cardioprotective, anti-obesity, hepatoprotective and reproductive role, antiaging, antimicrobial, and immunomodulatory properties. The carvacrol biosynthesis has been mediated through mevalonate pathway. Carvacrol has the anticancer ability against malignant cells via decreasing the expressions of matrix metalloprotease 2 and 9, inducing apoptosis, enhancing the expression of pro-apoptotic proteins, disrupting mitochondrial membrane, suppressing extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase signal transduction, and also decreasing the phosphoinositide 3-kinase/protein kinase B. It also decreased the concentrations of alanine aminotransferase, alkaline phosphatase and aspartate aminotransferase, and gamma-glutamyl transpeptidase as well as also restored liver function, insulin level, and plasma glucose level. Carvacrol also has been found to exert antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, Coagulase-negative staphylococcus, Salmonella spp., Enterococcus sp. Shigella, and Escherichia coli. The current review article summarizes the health-promoting perspectives of carvacrol through various pathways.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Food Science and TechnologyUniversity of NarowalNarowalPakistan
| | - Mahwish Aslam
- Faculty of Allied Health Sciences, University Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical SciencesMajmaah UniversityMajmaahSaudi Arabia
| | - Farhan Saeed
- Department of Food Science and TechnologyGovernment College UniversityFaisalabadPakistan
| | - Ishtiaque Ahmad
- Department of Dairy Technology, FAPTUniversity of Veterinary & Animal SciencesLahorePakistan
| | - Muhamamd Afzaal
- Department of Food Science and TechnologyGovernment College UniversityFaisalabadPakistan
| | - Muhammad Umair Arshad
- Department of Food Science and TechnologyGovernment College UniversityFaisalabadPakistan
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of PharmacyJouf UniversitySakakaSaudi Arabia
| | - Ahmed H. El‐Ghorab
- Department of Chemistry, College of ScienceJouf UniversitySakakaSaudi Arabia
| | - Ahmed Khames
- Department of Pharmaceutics and Industrial Pharmacy, College of PharmacyTaif UniversityTaifSaudi Arabia
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University)MoscowRussian Federation
| | - Arslan Ahmad
- Department of Food Science and TechnologyGovernment College UniversityFaisalabadPakistan
| | - Muzamal Hussain
- Department of Food Science and TechnologyGovernment College UniversityFaisalabadPakistan
| | - Ali Imran
- Department of Food Science and TechnologyGovernment College UniversityFaisalabadPakistan
| | - Saiful Islam
- Institute of Nutrition and Food ScienceUniversity of DhakaDhakaBangladesh
| |
Collapse
|
7
|
Bouhtit F, Najar M, Rahmani S, Melki R, Najimi M, Sadki K, Boukhatem N, Twizere JC, Meuleman N, Lewalle P, Lagneaux L, Merimi M. Bioscreening and pre-clinical evaluation of the impact of bioactive molecules from Ptychotis verticillata on the multilineage potential of mesenchymal stromal cells towards immune- and inflammation-mediated diseases. Inflamm Res 2022; 71:887-898. [PMID: 35716172 DOI: 10.1007/s00011-022-01573-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 04/07/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE AND DESIGN Mesenchymal stromal cells (MSCs) are currently used in cell reparative medicine due to their trophic and ant-inflammatory properties. The modulation of stem cell properties by phytochemicals has been suggested as a tool to empower their tissue repair capacity. In vitro, MSCs are characterized by their tri-lineage potential that holds great interest for tissue regeneration. Ptychotis Verticillata (PV), an aromatic and medicinal plant, may be thus used to modulate the in vitro multilineage potential of MSCs. MATERIALS AND METHODS We screened the impact of PV-derived essential oil and their bioactive molecules (thymol and carvacrol) on the in vitro multilineage potential of MSCs. Different concentrations and incubation times of these compounds were assessed during the osteogenesis and adipogenesis of MSCs. RESULTS The analysis of 75 conditions indicates that these compounds are biologically active by promoting two major differentiation lineages from MSCs. In a time- and dose-dependent manner, thymol and carvacrol increased the osteogenesis and adipogenesis. CONCLUSION According to these preliminary observations, the addition of PV extract may stimulate the tissue regenerative and repair functions of MSCs. Further optimization of compound extraction and characterization from PV as well as cell treatment conditions should increase their therapeutic value in combination with MSCs.
Collapse
Affiliation(s)
- Fatima Bouhtit
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Mehdi Najar
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium.
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, Canada.
- Department of Medicine, University of Montreal, Montreal, Canada.
| | - Saida Rahmani
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Rahma Melki
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Mustapha Najimi
- Institut de Recherche Expérimentale et Clinique (IREC), Laboratory of Pediatric Hepatology and Cell Therapy, Université Catholique de Louvain, Brussels, Belgium
| | - Khalid Sadki
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University Rabat, Agdal, Rabat, Morocco
| | - Noreddine Boukhatem
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Jean-Claude Twizere
- Laboratory of Viral Interactomes, GIGA Institute, University of Liege, Liege, Belgium
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nathalie Meuleman
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Makram Merimi
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| |
Collapse
|
8
|
Ahmadzadeh A, Nobakht A, Mehmannavaz Y. Supplementary Prebiotics, Probiotics, and Thyme (Thymus vulgaris) Essential Oil for Broilers: Performance, Intestinal Morphology, and Fecal Nutrient Composition. Probiotics Antimicrob Proteins 2022:10.1007/s12602-022-09927-3. [PMID: 35124796 DOI: 10.1007/s12602-022-09927-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 10/19/2022]
Abstract
This experiment was performed to evaluate the effects of selected natural feed additives (thyme extract, organic acid, probiotic, and prebiotic) on performance, intestinal morphology, and composition of fecal nutrients with two crude protein levels diet (10% reduced crude protein level and the recommended level) in broilers. In this experiment, 388 Ross-308 strain broilers from 1 to 42 days in three experimental periods including starter (1 to 10 days), grower (11 to 24 days), and finisher (25 to 42 days) were used in a completely randomized design (8 treatments, 4 replicates, and 12 chickens in 5 × 2 factorial arrangements). According to the results, use of feed additives along with both levels of crude protein had significant effects on performance, intestinal morphology, and fecal nutrient levels (P < 0.05). A 10% decrease in crude protein level of diet caused to decrease in daily weight gain and an increase in feed conversion ratio in the starting period (P < 0.05). Decreased dietary crude protein levels in growing and finishing period had insignificant effects on chicken's performance (P > 0.05). During the experiment period, the use of feed additives on diets with lower than normal crude protein levels had no effect on the average feed intake, daily weight gain, and feed conversion ratio of chickens (P > 0.05). Lower crude protein level changed the intestinal morphology (P < 0.05). The use of feed additives had significant effects on the nutrient content of feces (P < 0.05). Overall, results showed that a 10% reduction in crude protein level of diet compared to normal crude protein levels changed the intestinal morphology and nutrient content of feces while having adverse effects on the performance of chickens.
Collapse
|
9
|
Mkhumbeni N, Pillay M, Mtunzi F, Motaung KSC. Effect of Eucomis autumnalis on the Osteogenic Differentiation of Adipose Derived Stem Cells. Tissue Eng Part A 2021; 28:136-149. [PMID: 34269614 DOI: 10.1089/ten.tea.2021.0115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Eucomis autumnalis subsp. autumnalis (Mill.) Chitt. (EASA) is a commonly used medicinal plant for the treatment of fractures, osteoarthritis, back pain, and wound healing in Southern Africa. In this study, the effects of water and acetone extracts of EASA on the viability, osteogenic differentiation, and mineralization of human adipose derived stem cells (hADSCs) were investigated in vitro. The results showed that both water and acetone extracts of EASA increased cell viability at concentrations between 10 to 50 µg/mL on day 7 and 14 of treatment. Osteogenic differentiation and mineralization of hADSCs was optimal at 5 μg/mL for the water extract and at 5 to 10 μg/ml for the acetone extract. A 5 µg/ml acetone extract up-regulated the expression of the ALP, Runx2, Col1a1, and osteocalcin genes. In addition, EASA up-regulated β-catenin, cyclin D1 and osteoprotegerin genes. The results suggest that EASA may likely up-regulate the expression of β-catenin, which subsequently up-regulates the osteogenic marker genes through Runx2. On the other hand, EASA also up-regulates cyclin D1 supporting the growth of precursor cells. Additionally, EASA upregulated the expression of osteoprotegerin (OPG) suggesting that it may inhibit bone resorption. The results of this study support the traditional use of the plant in bone healing.
Collapse
Affiliation(s)
- Nolutho Mkhumbeni
- Tshwane University of Technology Faculty of Science, 275316, Department of Biomedical Sciences, Pretoria, Gauteng, South Africa.,Vaal University of Technology Faculty of Applied and Computer Sciences, 442135, Department of Health Sciences, Vanderbijlpark, Gauteng, South Africa;
| | - Michael Pillay
- Vaal University of Technology Faculty of Applied and Computer Sciences, 442135, Department of Biotechnology, Vanderbijlpark, Gauteng, South Africa;
| | - Fanyana Mtunzi
- Vaal University of Technology Faculty of Applied and Computer Sciences, 442135, Department of Chemistry , Vanderbijlpark, Gauteng, South Africa;
| | | |
Collapse
|
10
|
Bouhtit F, Najar M, Moussa Agha D, Melki R, Najimi M, Sadki K, Boukhatem N, Bron D, Meuleman N, Hamal A, Lagneaux L, Lewalle P, Merimi M. New Anti-Leukemic Effect of Carvacrol and Thymol Combination through Synergistic Induction of Different Cell Death Pathways. Molecules 2021; 26:410. [PMID: 33466806 PMCID: PMC7829697 DOI: 10.3390/molecules26020410] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is a cancer of the myeloid lineage of blood cells, and treatment for AML is lengthy and can be very expensive. Medicinal plants and their bioactive molecules are potential candidates for improving human health. In this work, we studied the effect of Ptychotis verticillata (PV) essential oil and its derivatives, carvacrol and thymol, in AML cell lines. We demonstrated that a combination of carvacrol and thymol induced tumor cell death with low toxicity on normal cells. Mechanistically, we highlighted that different molecular pathways, including apoptosis, oxidative, reticular stress, autophagy, and necrosis, are implicated in this potential synergistic effect. Using quantitative RT-PCR, Western blotting, and apoptosis inhibitors, we showed that cell death induced by the carvacrol and thymol combination is caspase-dependent in the HL60 cell line and caspase-independent in the other cell lines tested. Further investigations should focus on improving the manufacturing of these compounds and understanding their anti-tumoral mechanisms of action. These efforts will lead to an increase in the efficiency of the oncotherapy strategy regarding AML.
Collapse
Affiliation(s)
- Fatima Bouhtit
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (F.B.); (D.M.A.); (D.B.); (N.M.); (P.L.)
- Genetics and Immune Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco; (M.N.); (R.M.); (N.B.); (A.H.)
| | - Mehdi Najar
- Genetics and Immune Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco; (M.N.); (R.M.); (N.B.); (A.H.)
- Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), University of Montreal, Montreal, QC H2X 0A9, Canada
| | - Douâa Moussa Agha
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (F.B.); (D.M.A.); (D.B.); (N.M.); (P.L.)
| | - Rahma Melki
- Genetics and Immune Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco; (M.N.); (R.M.); (N.B.); (A.H.)
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Khalid Sadki
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University, Rabat, Agdal-Rabat 10090, Morocco;
| | - Noureddine Boukhatem
- Genetics and Immune Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco; (M.N.); (R.M.); (N.B.); (A.H.)
| | - Dominique Bron
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (F.B.); (D.M.A.); (D.B.); (N.M.); (P.L.)
| | - Nathalie Meuleman
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (F.B.); (D.M.A.); (D.B.); (N.M.); (P.L.)
| | - Abdellah Hamal
- Genetics and Immune Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco; (M.N.); (R.M.); (N.B.); (A.H.)
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (F.B.); (D.M.A.); (D.B.); (N.M.); (P.L.)
| | - Makram Merimi
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (F.B.); (D.M.A.); (D.B.); (N.M.); (P.L.)
- Genetics and Immune Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco; (M.N.); (R.M.); (N.B.); (A.H.)
| |
Collapse
|