1
|
Zhang G, Lin W, Gao N, Lan C, Ren M, Yan L, Pan B, Xu J, Han B, Hu L, Chen Y, Wu T, Zhuang L, Lu Q, Wang B, Fang M. Using Machine Learning to Construct the Blood-Follicle Distribution Models of Various Trace Elements and Explore the Transport-Related Pathways with Multiomics Data. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7743-7757. [PMID: 38652822 DOI: 10.1021/acs.est.3c10904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Permeabilities of various trace elements (TEs) through the blood-follicle barrier (BFB) play an important role in oocyte development. However, it has not been comprehensively described as well as its involved biological pathways. Our study aimed to construct a blood-follicle distribution model of the concerned TEs and explore their related biological pathways. We finally included a total of 168 women from a cohort of in vitro fertilization-embryo transfer conducted in two reproductive centers in Beijing City and Shandong Province, China. The concentrations of 35 TEs in both serum and follicular fluid (FF) samples from the 168 women were measured, as well as the multiomics features of the metabolome, lipidome, and proteome in both plasma and FF samples. Multiomics features associated with the transfer efficiencies of TEs through the BFB were selected by using an elastic net model and further utilized for pathway analysis. Various machine learning (ML) models were built to predict the concentrations of TEs in FF. Overall, there are 21 TEs that exhibited three types of consistent BFB distribution characteristics between Beijing and Shandong centers. Among them, the concentrations of arsenic, manganese, nickel, tin, and bismuth in FF were higher than those in the serum with transfer efficiencies of 1.19-4.38, while a reverse trend was observed for the 15 TEs with transfer efficiencies of 0.076-0.905, e.g., mercury, germanium, selenium, antimony, and titanium. Lastly, cadmium was evenly distributed in the two compartments with transfer efficiencies of 0.998-1.056. Multiomics analysis showed that the enrichment of TEs was associated with the synthesis and action of steroid hormones and the glucose metabolism. Random forest model can provide the most accurate predictions of the concentrations of TEs in FF among the concerned ML models. In conclusion, the selective permeability through the BFB for various TEs may be significantly regulated by the steroid hormones and the glucose metabolism. Also, the concentrations of some TEs in FF can be well predicted by their serum levels with a random forest model.
Collapse
Affiliation(s)
- Guohuan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, P. R. China
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing 100191, P. R. China
- Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, P. R. China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, P. R. China
| | - Weinan Lin
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, P. R. China
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing 100191, P. R. China
- Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, P. R. China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, P. R. China
| | - Ning Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, P. R. China
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing 100191, P. R. China
- Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, P. R. China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, P. R. China
| | - Changxin Lan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, P. R. China
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing 100191, P. R. China
- Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, P. R. China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, P. R. China
| | - Mengyuan Ren
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, P. R. China
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing 100191, P. R. China
- Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, P. R. China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, P. R. China
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing 100191, P. R. China
| | - Bo Pan
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, P. R. China
| | - Jia Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, P. R. China
| | - Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, P. R. China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, P. R. China
| | - Tianxiang Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, P. R. China
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing 100191, P. R. China
- Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, P. R. China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, P. R. China
| | - Lili Zhuang
- Reproductive Medicine Centre, Yuhuangding Hospital of Yantai, Affiliated Hospital of Qingdao University, Yantai 264000, P. R. China
| | - Qun Lu
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R China
- Center of Reproductive Medicine, Peking University People's Hospital, Beijing 100044, P. R. China
| | - Bin Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, P. R. China
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing 100191, P. R. China
- Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, P. R. China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, P. R. China
- Laboratory for Earth Surface Processes, College of Urban and Environmental Science, Peking University, Beijing 100871, China
| | - Mingliang Fang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
2
|
Cheng H, Villahoz BF, Ponzio RD, Aschner M, Chen P. Signaling Pathways Involved in Manganese-Induced Neurotoxicity. Cells 2023; 12:2842. [PMID: 38132161 PMCID: PMC10742340 DOI: 10.3390/cells12242842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Manganese (Mn) is an essential trace element, but insufficient or excessive bodily amounts can induce neurotoxicity. Mn can directly increase neuronal insulin and activate insulin-like growth factor (IGF) receptors. As an important cofactor, Mn regulates signaling pathways involved in various enzymes. The IGF signaling pathway plays a protective role in the neurotoxicity of Mn, reducing apoptosis in neurons and motor deficits by regulating its downstream protein kinase B (Akt), mitogen-activated protein kinase (MAPK), and mammalian target of rapamycin (mTOR). In recent years, some new mechanisms related to neuroinflammation have been shown to also play an important role in Mn-induced neurotoxicity. For example, DNA-sensing receptor cyclic GMP-AMP synthase (cCAS) and its downstream signal efficient interferon gene stimulator (STING), NOD-like receptor family pyrin domain containing 3(NLRP3)-pro-caspase1, cleaves to the active form capase1 (CASP1), nuclear factor κB (NF-κB), sirtuin (SIRT), and Janus kinase (JAK) and signal transducers and activators of the transcription (STAT) signaling pathway. Moreover, autophagy, as an important downstream protein degradation pathway, determines the fate of neurons and is regulated by these upstream signals. Interestingly, the role of autophagy in Mn-induced neurotoxicity is bidirectional. This review summarizes the molecular signaling pathways of Mn-induced neurotoxicity, providing insight for further understanding of the mechanisms of Mn.
Collapse
Affiliation(s)
| | | | | | | | - Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (H.C.); (B.F.V.); (R.D.P.); (M.A.)
| |
Collapse
|
3
|
Niu Y, Du SZ, He R. TNF-α interference ameliorates brain damage in neonatal hypoxic-ischemic encephalopathy rats by regulating the expression of NT-3 and TRKC. IBRAIN 2023; 9:381-389. [PMID: 38680513 PMCID: PMC11045181 DOI: 10.1002/ibra.12089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 05/01/2024]
Abstract
The aim of this study is to explore the effect of tumor necrosis factor-α (TNF-α) inhibition in rats with neonatal hypoxic-ischemic encephalopathy (HIE) and ascertain the relevant signaling pathways. The Zea-Longa score was used to evaluate the neurological function of the rats. ImageJ was used for quantification of the brain edema volume. Triphenyl tetrazolium chloride (TTC) staining of brain tissue was performed 24 h after hypoxic-ischemic (HI) to detect right brain infarction. The expression of TNF-α was detected by real-time quantitative polymerase chain reaction (RT-qPCR). Immunofluorescence staining was used to identify the localization of TNF-α; Then, the effective shRNA fragment of TNF-α was used to validate the role of TNF-α in HIE rats, and the change of neurotrofin-3 (NT-3) and tyrosine kinase receptor-C (TRKC) was examined after TNF-α-shRNA lentivirus transfection to determine downstream signaling associated with TNF-α. Protein interaction analysis was carried out to predict the links among TNF-α, NT-3, and TRKC. Cerebral edema volume and infarction increased in the right brain after the HI operation. The Zea-Longa score significantly increased within 24 h after the HI operation. The relative expression of TNF-α was upregulated after the HI operation. TNF-α was highly expressed in the right hippocampus post HI through immunofluorescence staining. Bioinformatics analysis found a direct or an indirect link among TNF-α, NT-3, and TRKC. Moreover, the interference of TNF-α increased the expression of NT-3 and TRKC. TNF-α interference might alleviate brain injury in HIE by upregulating NT-3 and TRKC.
Collapse
Affiliation(s)
- Yong‐Min Niu
- Institute of NeuroscienceKunming Medical UniversityKunmingChina
| | - Steven Z. Du
- Department of Integrative BiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Rong He
- Animal Zoology DepartmentKunming Medical UniversityKunmingChina
| |
Collapse
|
4
|
Deng Y, Peng D, Yang C, Zhao L, Li J, Lu L, Zhu X, Li S, Aschner M, Jiang Y. Preventive treatment with sodium para-aminosalicylic acid inhibits manganese-induced apoptosis and inflammation via the MAPK pathway in rat thalamus. Drug Chem Toxicol 2023; 46:59-68. [PMID: 34875954 DOI: 10.1080/01480545.2021.2008127] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Excessive exposure to manganese (Mn) may lead to neurotoxicity, referred to as manganism. In several studies, sodium para-aminosalicylic acid (PAS-Na) has shown efficacy against Mn-induced neurodegeneration by attenuating the neuroinflammatory response. The present study investigated the effect of Mn on inflammation and apoptosis in the rat thalamus, as well as the underlying mechanism of the PAS-Na protective effect. The study consisted of sub-acute (Mn treatment for 4 weeks) and sub-chronic (Mn and PAS-Na treatment for 8 weeks) experiments. In the sub-chronic experiments, pro-inflammatory cytokines, namely tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and cyclooxygenase 2 (COX-2) were significantly increased in the Mn-exposed group compared to the control II. PAS-Na treatment led to a significant reduction in the Mn-induced neuroinflammation by inhibiting IL-1β and COX-2 mRNA expression and reducing IL-1β secretion and JNK/p38 MAPK pathway activity. Furthermore, immunohistochemical analysis showed that the expression of caspase-3 was significantly increased in both the sub-acute and sub-chronic experimental paradigms concomitant with a significant decrease in B-cell lymphoma 2 (Bcl-2) in the thalamus of Mn-treated rats. PAS-Na also decreased the expression levels of several apoptotic markers downstream of the MAPK pathway, including Bcl-2/Bax and caspase-3, while up-regulating anti-apoptotic Bcl-2 proteins. In conclusion, Mn exposure led to inflammation in the rat thalamus concomitant with apoptosis, which was mediated via the MAPK signaling pathway. PAS-Na treatment antagonized effectively Mn-induced neurotoxicity by inhibiting the MAPK activity in the same brain region.
Collapse
Affiliation(s)
- Yue Deng
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Dongjie Peng
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Chun Yang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Lin Zhao
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Junyan Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Lili Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Xiaojuan Zhu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Shaojun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | | | - Yueming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| |
Collapse
|
5
|
Long noncoding RNA Sh2d3c promotes manganese-induced neuronal apoptosis through the mmu-miR-675-5p/Chmp4b/Bax axis. Toxicol Lett 2022; 365:24-35. [DOI: 10.1016/j.toxlet.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022]
|
6
|
Tinkov AA, Paoliello MMB, Mazilina AN, Skalny AV, Martins AC, Voskresenskaya ON, Aaseth J, Santamaria A, Notova SV, Tsatsakis A, Lee E, Bowman AB, Aschner M. Molecular Targets of Manganese-Induced Neurotoxicity: A Five-Year Update. Int J Mol Sci 2021; 22:4646. [PMID: 33925013 PMCID: PMC8124173 DOI: 10.3390/ijms22094646] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 12/16/2022] Open
Abstract
Understanding of the immediate mechanisms of Mn-induced neurotoxicity is rapidly evolving. We seek to provide a summary of recent findings in the field, with an emphasis to clarify existing gaps and future research directions. We provide, here, a brief review of pertinent discoveries related to Mn-induced neurotoxicity research from the last five years. Significant progress was achieved in understanding the role of Mn transporters, such as SLC39A14, SLC39A8, and SLC30A10, in the regulation of systemic and brain manganese handling. Genetic analysis identified multiple metabolic pathways that could be considered as Mn neurotoxicity targets, including oxidative stress, endoplasmic reticulum stress, apoptosis, neuroinflammation, cell signaling pathways, and interference with neurotransmitter metabolism, to name a few. Recent findings have also demonstrated the impact of Mn exposure on transcriptional regulation of these pathways. There is a significant role of autophagy as a protective mechanism against cytotoxic Mn neurotoxicity, yet also a role for Mn to induce autophagic flux itself and autophagic dysfunction under conditions of decreased Mn bioavailability. This ambivalent role may be at the crossroad of mitochondrial dysfunction, endoplasmic reticulum stress, and apoptosis. Yet very recent evidence suggests Mn can have toxic impacts below the no observed adverse effect of Mn-induced mitochondrial dysfunction. The impact of Mn exposure on supramolecular complexes SNARE and NLRP3 inflammasome greatly contributes to Mn-induced synaptic dysfunction and neuroinflammation, respectively. The aforementioned effects might be at least partially mediated by the impact of Mn on α-synuclein accumulation. In addition to Mn-induced synaptic dysfunction, impaired neurotransmission is shown to be mediated by the effects of Mn on neurotransmitter systems and their complex interplay. Although multiple novel mechanisms have been highlighted, additional studies are required to identify the critical targets of Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Alexey A. Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia;
- Laboratory of Molecular Dietetics, Department of Neurological Diseases and Neurosurgery, Department of Analytical and Forensic Toxicology, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (O.N.V.); (J.A.); (A.T.)
| | - Monica M. B. Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.M.B.P.); (A.C.M.)
- Graduate Program in Public Health, Center of Health Sciences, State University of Londrina, Londrina, PR 86038-350, Brazil
| | - Aksana N. Mazilina
- Department of Medical Elementology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
| | - Anatoly V. Skalny
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia;
- Laboratory of Medical Elementology, KG Razumovsky Moscow State University of Technologies and Management, 109004 Moscow, Russia
| | - Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.M.B.P.); (A.C.M.)
| | - Olga N. Voskresenskaya
- Laboratory of Molecular Dietetics, Department of Neurological Diseases and Neurosurgery, Department of Analytical and Forensic Toxicology, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (O.N.V.); (J.A.); (A.T.)
| | - Jan Aaseth
- Laboratory of Molecular Dietetics, Department of Neurological Diseases and Neurosurgery, Department of Analytical and Forensic Toxicology, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (O.N.V.); (J.A.); (A.T.)
- Research Department, Innlandet Hospital Trust, P.O. Box 104, 2381 Brumunddal, Norway
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, SSA, Mexico City 14269, Mexico;
| | - Svetlana V. Notova
- Institute of Bioelementology, Orenburg State University, 460018 Orenburg, Russia;
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, 460000 Orenburg, Russia
| | - Aristides Tsatsakis
- Laboratory of Molecular Dietetics, Department of Neurological Diseases and Neurosurgery, Department of Analytical and Forensic Toxicology, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (O.N.V.); (J.A.); (A.T.)
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 700 13 Heraklion, Greece
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47906, USA;
| | - Michael Aschner
- Laboratory of Molecular Dietetics, Department of Neurological Diseases and Neurosurgery, Department of Analytical and Forensic Toxicology, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (O.N.V.); (J.A.); (A.T.)
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.M.B.P.); (A.C.M.)
| |
Collapse
|
7
|
Yao Q, The E, Ao L, Zhai Y, Osterholt MK, Fullerton DA, Meng X. TLR4 Stimulation Promotes Human AVIC Fibrogenic Activity through Upregulation of Neurotrophin 3 Production. Int J Mol Sci 2020; 21:ijms21041276. [PMID: 32074942 PMCID: PMC7072994 DOI: 10.3390/ijms21041276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) is a chronic inflammatory disease that manifests as progressive valvular fibrosis and calcification. An inflammatory milieu in valvular tissue promotes fibrosis and calcification. Aortic valve interstitial cell (AVIC) proliferation and the over-production of the extracellular matrix (ECM) proteins contribute to valvular thickening. However, the mechanism underlying elevated AVIC fibrogenic activity remains unclear. Recently, we observed that AVICs from diseased aortic valves express higher levels of neurotrophin 3 (NT3) and that NT3 exerts pro-osteogenic and pro-fibrogenic effects on human AVICs. HYPOTHESIS Pro-inflammatory stimuli upregulate NT3 production in AVICs to promote fibrogenic activity in human aortic valves. METHODS AND RESULTS AVICs were isolated from normal human aortic valves and were treated with lipopolysaccharide (LPS, 0.20 µg/mL). LPS induced TLR4-dependent NT3 production. This effect of LPS was abolished by inhibition of the Akt and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) pathways. The stimulation of TLR4 in human AVICs with LPS resulted in a greater proliferation rate and an upregulated production of matrix metallopeptidases-9 (MMP-9) and collagen III, as well as augmented collagen deposition. Recombinant NT3 promoted AVIC proliferation in a tropomyosin receptor kinase (Trk)-dependent fashion. The neutralization of NT3 or the inhibition of Trk suppressed LPS-induced AVIC fibrogenic activity. CONCLUSIONS The stimulation of TLR4 in human AVICs upregulates NT3 expression and promotes cell proliferation and collagen deposition. The NT3-Trk cascade plays a critical role in the TLR4-mediated elevation of fibrogenic activity in human AVICs. Upregulated NT3 production by endogenous TLR4 activators may contribute to aortic valve fibrosis associated with CAVD progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xianzhong Meng
- Correspondence: ; Tel.: +303-724-6303; Fax: +303-724-6330
| |
Collapse
|