1
|
Oyibo A, Adebayo AC, Taiwo OA, Osoniyi O. Ameliorative role of Tetrapleura tetraptera (Schum. & Thonn.) taub in cadmium chloride-induced oxidative stress in Drosophila melanogaster using in vivo and computational approaches. J Trace Elem Med Biol 2025; 87:127571. [PMID: 39637735 DOI: 10.1016/j.jtemb.2024.127571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/03/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Cadmium (Cd) is a naturally occurring transition metal associated with oxidative stress in living organisms. Whereas Tetrapleura tetraptera (Tt), an ethnomedicinal plant is said to possess high antioxidant activity and used to treat various human diseases locally. Therefore, the study aimed to investigate the biological activity of the ethanolic pod extract of T. tetraptera in cadmium chloride-induced toxicity in Drosophila melanogaster. METHODS Six groups of adults (1-3 days old) D. melanogaster as shown: Control, Tt 2.5 mg/10 g diet, Tt 5 mg/10 g diet, CdCl2, CdCl2+ Tt 2.5 mg/10 diet and CdCl2+Tt 5 mg/10 g diet were exposed via diet for 7 days consisting of 50 flies per vial and 5 replicate per group. Thereafter, we evaluated markers for free radical generation, antioxidant, non-antioxidant activities, and emergence rates of the flies. The active compounds of Tt extract were molecularly docked against glutathione-S-transferase II. RESULTS The results indicated that CdCl2 significantly induced oxidative stress by increasing the levels of lipid peroxidation (LPO), hydrogen peroxide (H2O2), nitric oxide (NO) and decreasing the activity of GST without an effect on total thiol (T-SH) and non-protein thiols (NP-SHs) levels. However, co-treatment with T. tetraptera (2.5 mg/10 g diet) significantly decreased levels of LPO, H2O2, but increased GST activity. Also, co-treatment with T. tetraptera (5 mg/10 g diet) increased NPSH and T-SH levels by 18.6 % and 35.8 %. Furthermore, Co-treatment (5 mg/10 g diet) increased the rate of offspring emergence. CONCLUSION T. tetraptera ameliorated cadmium chloride-induced oxidative stress in Drosophila melanogaster and increased offspring hatching rate. T. tetraptera may therefore serve as a good regimen for the treatment of oxidative stress-related diseases induced by cadmium.
Collapse
Affiliation(s)
- Aghogho Oyibo
- Department of Biochemistry, Chrisland University, Abeokuta, Nigeria; Drosophila Research and Training Centre (DRTC), Ibadan, Nigeria; Focal area Human Metabolomic, Biochemistry Department, North-West University, Potchefstroom, South Africa.
| | | | - Odunayo A Taiwo
- Department of Biochemistry, Chrisland University, Abeokuta, Nigeria
| | - Omolaja Osoniyi
- Department of Biochemistry, Chrisland University, Abeokuta, Nigeria; Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile-ife, Nigeria
| |
Collapse
|
2
|
Adeyemi OE, Jaryum KH, Johnson TO. Elucidation and active ingredient identification of aqueous extract of Ficus exasperata Vahl leaf against bisphenol A-induced toxicity through in vivo and in silico assessments. In Silico Pharmacol 2024; 12:73. [PMID: 39144917 PMCID: PMC11319549 DOI: 10.1007/s40203-024-00248-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024] Open
Abstract
Bisphenol A (BPA), an endocrine-disrupting chemical, poses significant health problems due to its induction of oxidative stress, inflammation, etc. Whereas Ficus exasperata Vahl leaf (FEVL) was reported for its ethnopharmacological properties against several ailments owing to its antioxidant, anti-inflammatory properties, etc. Here, we aim to elucidate and identify the bioactive compounds of aqueous extract of FEVL (AEFEVL) against BPA-induced toxicity using in vivo and in silico assessments. To determine the BPA toxicity mechanism and safe doses of AEFEVL, graded doses of BPA (0-400 μM) and AEFEVL (0-2.0 mg/10 g diets) were separately fed to flies to evaluate survival rates and specific biochemical markers. The mitigating effect of AEFEVL (0.5 and 1.0 mg/10 g diet) against BPA (100 and 200 μM)-induced toxicity in the flies after 7-day exposure was also carried out. Additionally, molecular docking analysis of BPA and BPA-o-quinone (BPAQ) against selected antioxidant targets, and HPLC-MS-revealed AEFEVL compounds against Keap-1 and IKKβ targets, followed by ADMET analysis, was conducted. Emergence rate, climbing ability, acetylcholinesterase, monoamine oxidase-B, and glutathione-S-transferase activities, and levels of total thiols, non-protein thiols, nitric oxide, protein carbonyl, malondialdehyde, and cell viability were evaluated. BPA-induced altered biochemical and behavioral parameters were significantly mitigated by AEFEVL in the flies (p < 0.05). BPAQ followed by BPA exhibited higher inhibitory activity, and epigallocatechin (EGC) showed the highest inhibitory activity among the AEFEVL compounds with desirable ADMET properties. Conclusively, our findings revealed that EGC might be responsible for the mitigative effect displayed by AEFEVL in BPA-induced toxicity in D. melanogaster. Graphical abstract
Collapse
Affiliation(s)
- Olugbenga Eyitayo Adeyemi
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, University of Jos, Jos, Nigeria
- Department of Biochemistry, Federal College of Medical Laboratory Sciences (Technology), Jos, Nigeria
| | - Kiri Hashimu Jaryum
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, University of Jos, Jos, Nigeria
| | - Titilayo Omolara Johnson
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, University of Jos, Jos, Nigeria
| |
Collapse
|
3
|
Li X, Zang N, Zhang N, Pang L, Lv L, Meng X, Lv X, Leng J. DNA damage resulting from human endocrine disrupting chemical exposure: Genotoxicity, detection and dietary phytochemical intervention. CHEMOSPHERE 2023; 338:139522. [PMID: 37478996 DOI: 10.1016/j.chemosphere.2023.139522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/21/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
In recent years, exposure to endocrine disrupting chemicals (EDCs) has posed an increasing threat to human health. EDCs are major risk factors in the occurrence and development of many diseases. Continuous DNA damage triggers severe pathogenic consequences, such as cancer. Beyond their effects on the endocrine system, EDCs genotoxicity is also worthy of attention, owing to the high accessibility and bioavailability of EDCs. This review investigates and summarizes nearly a decade of DNA damage studies on EDC exposure, including DNA damage mechanisms, detection methods, population marker analysis, and the application of dietary phytochemicals. The aims of this review are (1) to systematically summarize the genotoxic effects of environmental EDCs (2) to comprehensively summarize cutting-edge measurement methods, thus providing analytical solutions for studies on EDC exposure; and (3) to highlight critical data on the detoxification and repair effects of dietary phytochemicals. Dietary phytochemicals decrease genotoxicity by playing a major role in the detoxification system, and show potential therapeutic effects on human diseases caused by EDC exposure. This review may support research on environmental toxicology and alternative chemo-prevention for human EDC exposure.
Collapse
Affiliation(s)
- Xiaoqing Li
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Ningzi Zang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Nan Zhang
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Lijian Pang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Ling Lv
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Xiansheng Meng
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Xiaodong Lv
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Jiapeng Leng
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China.
| |
Collapse
|
4
|
Chen Z, Wang F, Zhang W, Zhou S, Wen D, Mu R. Polysaccharides from Bletilla striata protect against mercury-induced gastrointestinal toxicology in adult Drosophila melanogaster via modulation of sestrin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114693. [PMID: 36848760 DOI: 10.1016/j.ecoenv.2023.114693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/11/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Oxidative stress was one of the major causes of heavy metal-induced toxicity in organisms. The polysaccharide from Bletilla striata (Orchidaceae) (BSP) has been recently recognized as a novel player in the management of oxidative stress response in organisms. Here, we took the midgut of adult Drosophila melanogaster (Diptera: Drosophilidae) (D. melanogaster), a functional equivalent to the mammalian intestine and stomach, as a model to evaluate the protective effects of BSP (50 μg/mL) on mercuric chloride-induced gastrointestinal toxicology in insects. As a result, BSP exposure significantly improved the survival rates and climbing ability of adult flies exposed to mercury. Further study demonstrated that BSP significantly alleviated the mercury-induced oxidative injury to midgut epithelium, at least partly, through increasing antioxidant enzyme activity (glutathione-S-transferase and superoxide dismutase), decreasing reactive oxidative species production, inhibiting cell death, restoring intestinal epithelial barrier and regulating intestinal stem cell-mediated tissue regeneration. Additionally, sestrin, an oxidative-stress gene, was required in mediating the protection of BSP against mercury-induced oxidative damage to midgut. This study suggested that BSP has great potential for future application in the treatment and prevention of heavy metal-induced gastrointestinal adversities in mammals.
Collapse
Affiliation(s)
- Zhi Chen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China.
| | - Fen Wang
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Wen Zhang
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Shuangshuang Zhou
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Di Wen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China.
| | - Ren Mu
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China.
| |
Collapse
|
5
|
Chen Z, Wang F, Wen D, Mu R. Exposure to bisphenol A induced oxidative stress, cell death and impaired epithelial homeostasis in the adult Drosophila melanogaster midgut. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114285. [PMID: 36402076 DOI: 10.1016/j.ecoenv.2022.114285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Recently, the chemical compound Bisphenol A (BPA) has been attracting worldwide attention due to its various toxic effects in animals, including reprotoxicity, neurotoxicity, hepatoxicity, and nephrotoxicity. Here, the midgut of adult Drosophila melanogaster (D. melanogaster), an invertebrate model organism, was employed to investigate the gastrointestinal toxicity of BPA in D. melanogaster and explore its underlying mechanisms of action in insects. As a result, exposure of flies to 0.5 mM BPA resulted in a dramatic morphological alteration of D. melanogaster midgut and decrease in survival rates and climbing ability of flies. Further study indicated that BPA induced high levels of oxidative stress in D. melanogaster midgut due to the imbalance between the production of reactive oxygen species and the activities of cellular antioxidant enzymes, including glutathione-S-transferase, catalase and superoxide dismutase. Oxidative stress induced by BPA then caused intestinal epithelial cell death and gut barrier dysfunction and elevated gut permeability, leading to oxidative injury of midgut epithelium. Antioxidant vitamin E alleviated midgut injury induced by BPA. Subsequently, BPA-induced oxidative injury of midgut further stimulated the proliferation of intestinal stem cell (ISC) and ISC-mediated midgut regeneration, but did not alter cell fate determination of ISCs in Drosophila midgut. Meanwhile, activation of Jun N-terminal kinase signal pathway was found to be required for BPA-induced cell death and tissue regeneration in midgut. Collectively, the present study provided additional evidence from an invertebrate model organism that BPA exposure induced gastrointestinal toxicity in D. melanogaster and further extended our understanding of the molecular mechanisms mediating BPA toxicity in insects.
Collapse
Affiliation(s)
- Zhi Chen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China.
| | - Fen Wang
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Di Wen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China.
| | - Ren Mu
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China.
| |
Collapse
|
6
|
Sirasanagandla SR, Al-Huseini I, Sakr H, Moqadass M, Das S, Juliana N, Abu IF. Natural Products in Mitigation of Bisphenol A Toxicity: Future Therapeutic Use. Molecules 2022; 27:molecules27175384. [PMID: 36080155 PMCID: PMC9457803 DOI: 10.3390/molecules27175384] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Bisphenol A (BPA) is a ubiquitous environmental toxin with deleterious endocrine-disrupting effects. It is widely used in producing epoxy resins, polycarbonate plastics, and polyvinyl chloride plastics. Human beings are regularly exposed to BPA through inhalation, ingestion, and topical absorption routes. The prevalence of BPA exposure has considerably increased over the past decades. Previous research studies have found a plethora of evidence of BPA’s harmful effects. Interestingly, even at a lower concentration, this industrial product was found to be harmful at cellular and tissue levels, affecting various body functions. A noble and possible treatment could be made plausible by using natural products (NPs). In this review, we highlight existing experimental evidence of NPs against BPA exposure-induced adverse effects, which involve the body’s reproductive, neurological, hepatic, renal, cardiovascular, and endocrine systems. The review also focuses on the targeted signaling pathways of NPs involved in BPA-induced toxicity. Although potential molecular mechanisms underlying BPA-induced toxicity have been investigated, there is currently no specific targeted treatment for BPA-induced toxicity. Hence, natural products could be considered for future therapeutic use against adverse and harmful effects of BPA exposure.
Collapse
Affiliation(s)
- Srinivasa Rao Sirasanagandla
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Isehaq Al-Huseini
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Hussein Sakr
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Marzie Moqadass
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Srijit Das
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
- Correspondence: or
| | - Norsham Juliana
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | - Izuddin Fahmy Abu
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kuala Lumpur 50250, Malaysia
| |
Collapse
|
7
|
Zhang K, Wen Q, Li T, Zhang Y, Huang J, Huang Q, Gao L. Effect of covalent conjugation with chlorogenic acid and luteolin on allergenicity and functional properties of wheat gliadin. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Mączka W, Grabarczyk M, Wińska K. Can Antioxidants Reduce the Toxicity of Bisphenol? Antioxidants (Basel) 2022; 11:antiox11020413. [PMID: 35204295 PMCID: PMC8869647 DOI: 10.3390/antiox11020413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/18/2022] Open
Abstract
BPA is still the subject of extensive research due to its widespread use, despite its significant toxicity resulting not only from its negative impact on the endocrine system but also from disrupting the organism’s oxidative homeostasis. At the molecular level, bisphenol A (BPA) causes an increased production of ROS and hence a change in the redox balance, mitochondrial dysfunction, and modulation of cell signaling pathways. Importantly, these changes accumulate in animals and humans, and BPA toxicity may be aggravated by poor diet, metabolic disorders, and coexisting diseases. Accordingly, approaches using antioxidants to counteract the negative effects of BPA are being considered. The preliminary results that are described in this paper are promising, however, it should be emphasized that further studies are required to determine the optimal dosage and treatment regimen to counteract BPA toxicity. It also seems necessary to have a more holistic approach showing, on the one hand, the influence of BPA on the overall human metabolism and, on the other hand, the influence of antioxidants in doses that are acceptable with the diet on BPA toxicity. This is due in part to the fact that in many cases, the positive effect of antioxidants in in vitro studies is not confirmed by clinical studies. For this reason, further research into the molecular mechanisms of BPA activity is also recommended.
Collapse
|
9
|
Chen H, Chen J, Shi X, Li L, Xu S. Naringenin protects swine testis cells from bisphenol A-induced apoptosis via Keap1/Nrf2 signaling pathway. Biofactors 2022; 48:190-203. [PMID: 34914851 DOI: 10.1002/biof.1814] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022]
Abstract
Bisphenol A (BPA) has caused serious pathologies in varying organs of humans and animals, especially reproductive organs. Naringenin (NRG) is a flavanone compound that has shown protective effects against several environmental chemicals through suppression of oxidative stress and activation of nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. Herein, we described the discovery path of NRG inhibition on apoptosis in BPA exposed swine testis (ST) cells through targeting Kelch-like ech-associated protein (Keap1). We found that NRG could specifically bound to the active residues of DGR domain in Keap1, thereby activating Nrf2 signaling pathway, and then increasing the levels of SOD, GPx and CAT, and finally inhibiting oxidative stress and mitochondrial apoptosis induced by BPA in ST cells. Altogether, our results showed that NRG inhibits oxidative stress and mitochondrial apoptosis induced by BPA in ST cells by targeting Keap1/Nrf2 signaling pathway, indicating that NRG could serve as an antagonistic therapy against BPA.
Collapse
Affiliation(s)
- Huijie Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin, China
| | - Jianqing Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Lu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
10
|
Comparison of interaction mechanism between chlorogenic acid/luteolin and glutenin/gliadin by multi-spectroscopic and thermodynamic methods. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Akamo AJ, Akinloye DI, Ugbaja RN, Adeleye OO, Dosumu OA, Eteng OE, Antiya MC, Amah G, Ajayi OA, Faseun SO. Naringin prevents cyclophosphamide-induced erythrocytotoxicity in rats by abrogating oxidative stress. Toxicol Rep 2021; 8:1803-1813. [PMID: 34760624 PMCID: PMC8567332 DOI: 10.1016/j.toxrep.2021.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/30/2021] [Accepted: 10/24/2021] [Indexed: 01/02/2023] Open
Abstract
Earlier reports have shown that Cyclophosphamide (CYCP), an anti-malignant drug, elicited cytotoxicity; and that naringin has several beneficial potentials against oxidative stress and dyslipidaemias. We investigated the influence of naringin on free radical scavenging, cellular integrity, cellular ATP, antioxidants, oxidative stress, and lipid profiles in the CYCP-induced erythrocytotoxicity rat model. Rats were pretreated orally by gavage for fourteen consecutive days with three doses (50, 100, and 200 mg/kg) naringin before single CYCP (200 mg/kg, i.p.) administration. Afterwards, the rats were sacrificed. Naringin concentrations required for 50 % scavenging hydrogen peroxide and nitric oxide radical were 0.27 mg/mL and 0.28 mg/mL, respectively. Naringin pretreatment significantly (p < 0.05) protected erythrocytes plasma membrane architecture and integrity by abolishing CYCP-induced decrease in the activity of erythrocyte LDH (a marker of ATP). Pretreatment with naringin remarkably (p < 0.05) reversed CYCP-induced decreases in the erythrocytes glutathione levels, activities of glutathione-S-transferase, catalase, glutathione peroxidase, and glutathione reductase; attenuated CYCP-mediated increases in erythrocytes levels of malondialdehyde, nitric oxide, and major lipids (cholesterol, triacylglycerol, phospholipids, and non-esterified fatty acids). Taken together, different acute pretreatment doses of naringin might avert CYCP-mediated erythrocytes dysfunctions via its antioxidant, free-radical scavenging, and anti-dyslipidaemia properties.
Collapse
Key Words
- AP-1, activator protein 1
- ATP, adenosine triphosphate
- Antioxidants
- BHT, butylated hydroxytoluene
- C31H28N2Na4O13S, xylenol tetrasodium
- C5FeN6Na2O, sodium nitroprusside
- CAT, catalase
- CDNB, 1-chloro-2,4-dinitrobenzene
- CYCP, cyclophosphamide
- Cu(NO3)2.3H2O, copper II nitrate
- Cyclophosphamide
- DNA, deoxyribonucleic acid
- DTNB, 5,5ˈ-dithiobis(2-nitrobenzoic acid)
- Erythrocytotoxicity
- FeSO4.7H2O, Iron (II) sulfate heptahydrate
- G6PDH, glucose-6-phosphate dehydrogenase
- GSH, reduced glutathione
- GSPx, glutathione peroxidase
- GSR, glutathione reductase
- GSSG, oxidized glutathione
- GST, glutathione-S-transferase
- H2O2, hydrogen peroxide
- H3PO3, phosphoric acid
- HO•, hydroxyl radical
- HSCs, hepatic stellate cells
- K2HPO4, dipotassium hydrogen phosphate
- KCl, potassium chloride
- LDH, lactate dehydrogenase
- Lipid profile
- MAPKs, mitogen-activated protein kinases
- MDA, malondialdehyde
- MMP, matrix metalloprotease
- NAD+, nicotinamide adenine dinucleotide
- NADH, nicotinamide adenine dinucleotide reduced
- NADPH, nicotinamide adenine dinucleotide phosphate reduced
- NF-κB, nuclear factor kappa B
- NH4OH, ammonium hydroxide
- NO, nitric oxide
- NO2−, nitrite
- NO3−, nitrate
- NOAEL, no-observed-adverse-effect level
- Na2HPO4, disodium hydrogen phosphate
- NaH2PO4, sodium dihydrogen phosphate
- Naringin
- Nrf2, nuclear factor-erythroid factor 2-related factor 2
- O2HbFe2+, oxyhemoglobin
- O2•–, superoxide radical
- OONO−, peroxynitrite radical
- Oxidative stress
- PBS, phosphate-buffered saline
- PUFA, Polyunsaturated fatty acids
- R-Smad, Smad activated receptor
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- SOD, superoxide dismutase
- TBA, 2-thiobarbituric acid
- TBARS, thiobarbituric acid reactive substances
- TGF-β, transforming growth factor-β
- TLR, toll-like receptor
- TROOH, total hydroperoxide
- VLDL, very low density lipoprotein
- eNOS, endothelial nitric oxide synthase
- i.p., intraperitoneally
- mRNA, messenger ribonucleic acid
- metHb, methemoglobin
- α-SMA, alpha smooth muscle actin
- •NO, nitric oxide radical
Collapse
Affiliation(s)
- Adio J. Akamo
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Dorcas I. Akinloye
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Regina N. Ugbaja
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Oluwagbemiga O. Adeleye
- Department of Animal Production and Health, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Oluwatosin A. Dosumu
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Ofem E. Eteng
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Moses C. Antiya
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Gogonte Amah
- Department of Biochemistry, Benjamin Carson (SRN) School of Medicine, Babcock University, Ilisan, Ogun State, Nigeria
| | - Oluwafunke A. Ajayi
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Samuel O. Faseun
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| |
Collapse
|
12
|
Adesanoye OA, Farodoye OM, Adedara AO, Falobi AA, Abolaji AO, Ojo OO. Beneficial actions of esculentin-2CHa(GA30) on high sucrose-induced oxidative stress in Drosophila melanogaster. Food Chem Toxicol 2021; 157:112620. [PMID: 34656695 DOI: 10.1016/j.fct.2021.112620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/21/2021] [Accepted: 10/13/2021] [Indexed: 01/12/2023]
Abstract
Hyperglycaemia-induced oxidative stress plays a critical role in the development of diabetes and its complications. This study investigated actions of esculentin-2CHa(GA30) on high sucrose-induced oxidative stress in adult Drosophila melanogaster. Adult flies were exposed to diets containing graded concentrations of sucrose in the presence or absence of esculentin-2CHa(GA30) (5.0-10 μmol/kg diet) for 7 days. Effects of high sucrose diet and/or esculentin-2CHa(GA30) on survival and longevity of flies, and markers of oxidative stress, antioxidant status and glucose were assessed. High-sucrose diet (15-30%) and esculentin-2CHa(GA30) (5-10 μmol/kg diet) enhanced the percentage of surviving flies by 33.5%-46.2% (P < 0.01) and 7.4%-26.9% (P < 0.01) respectively. Concentration-dependent reduction in total thiol (19.3-51.3%, P < 0.01), reduced glutathione (22.6-54.9%, P < 0.05-0.01), catalase activity (36.8-57.3%, P < 0.05-0.01) and elevated glucose concentration (1.8-2.9-fold, P < 0.001) were observed in high sucrose-fed flies. Esculentin-2CHa(GA30) alone did not affect levels of total thiol, reduced glutathione, glucose and catalase activity. Improved survival (1.2-1.3-fold, P < 0.05-0.01) and longevity (1.3-fold) were observed in flies treated with the peptide (5.0 and 7.5 μmol/kg diet). Feeding on sucrose and esculentin-2CHa(1-30) (5.0 and 7.0 μmol/kg diet) for 7 days increased total thiol (2 - 3-fold, P < 0.001) and reduced glutathione (1.6-1.8-fold, P < 0.05) levels. Reduced catalase activity (21.4-36.4%, P < 0.01) and reduced glucose level (38.6-49.4%, P < 0.01) were observed in peptide-treated flies. Esculentin-2CHa(1-30) inhibited sucrose-induced generation of hydrogen peroxide (7.5-13.7%, P < 0.05) and nitric oxide (22.3-42.9%, P < 0.01) in adult flies. Overall, findings from this study offered further insights into the anti-oxidative properties of esculentin-2CHa(GA30).
Collapse
Affiliation(s)
- Omolola A Adesanoye
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Oluwabukola M Farodoye
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeola O Adedara
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ayodele A Falobi
- Diabetes Research Laboratory, Research Institute in Healthcare Sciences, University of Wolverhampton, WV1 1LY, United Kingdom
| | - Amos O Abolaji
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Opeolu O Ojo
- Diabetes Research Laboratory, Research Institute in Healthcare Sciences, University of Wolverhampton, WV1 1LY, United Kingdom.
| |
Collapse
|
13
|
Oyebode OT, Abolaji AO, Faleke HO, Olorunsogo OO. Methanol fraction of Ficus mucoso (welw) prevents iron-induced oxidative damage and alters mitochondrial dysfunction in Drosophila melanogaster. Drug Chem Toxicol 2021; 45:2644-2652. [PMID: 34592861 DOI: 10.1080/01480545.2021.1979997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The present study investigated the antioxidant and cyto-/mito-protective roles of Methanol Fraction of Ficus mucoso (MFFM) in iron-induced oxidative damage in Drosophila melanogaster. At first, 10-day survival rates were carried out separately on FeSO4 and MFFM, respectively, after which ameliorative effects of MFFM were investigated on FeSO4-induced toxicity for 5 days using biochemical and behavioral markers. Additionally, mitochondria were isolated from treated D. melanogaster to assess mitochondrial Permeability Transition (mPT) pore opening. The results showed that FeSO4 significantly reduced survival rate, total thiol level and activities of catalase and glutathione-S-transferase in D. melanogaster. In addition, treatment with FeSO4 caused increased generation of H2O2, NO (nitrite/nitrates) and acetylcholinesterase (AChE) activity compared with control (p < 0.05). Conversely, MFFM restored FeSO4-induced inhibition of glutathione-S-transferase and catalase activities, as well as glutathione and total thiol levels. FeSO4-induced elevation of AChE activity as well as H2O2 and NO (nitrites/nitrates) levels were ameliorated by MFFM with improved climbing activity. Interestingly, MFFM prevented FeSO4-induced mitochondrial Permeability Transition (mPT) pore opening, and elevated mitochondrial ATPase activity and mitochondrial lipid peroxides generation in D. melanogaster. Taken together, our results demonstrated that iron impaired anti-stress defence capacity, altered behavioral functions, increased generation of mitochondrial malondialdehyde and activated opening of the mPT pore in D. melanogaster. Conversely, methanol fraction of F. mucoso protected against iron-induced cyto-/mito-toxic effects. F. mucoso possibly contain bioactive agents which might be useful in the management of disorders associated with oxidative stress induced by iron and or related metals.
Collapse
Affiliation(s)
- Olubukola T Oyebode
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Amos O Abolaji
- Molecular Drug Metabolism and Toxicology, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Hammed O Faleke
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria.,Molecular Drug Metabolism and Toxicology, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Olufunso O Olorunsogo
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
14
|
Micropillar/Microwell Chip Assessment for Detoxification of Bisphenol A with Korean Pear ( Pyrus pyrifolia). MICROMACHINES 2020; 11:mi11100922. [PMID: 33022928 PMCID: PMC7599539 DOI: 10.3390/mi11100922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 11/17/2022]
Abstract
A micropillar/microwell chip platform with 3D cultured liver cells has been used for HTP screening of hepatotoxicity of bisphenol A (BPA), an endocrine-disrupting chemical. We previously found the hepatotoxicity of BPA is alleviated by alcohol dehydrogenase (ADH) and aldehyde dehydrogenase 2 (ALDH2). In this study, we have tested potential BPA detoxification with Korean pear (Pyrus pyrifolia) extract, stimulators of ADH and ALDH, as well as arbutin, a reference compound in the pears, on the micropillar/microwell chip platform with human liver cells. Surprisingly, the toxicity of BPA was reduced in the presence of Korean pear extract, indicated by significantly increased IC50 values. The IC50 value of BPA with Korean pear extract tested against HepG2 cells was shifted from 151 to 451 μM, whereas those tested against Hep3B cells was shifted from 110 to 204 μM. Among the tested various concentrations, 1.25, 2.5, and 5 mg/mL of the extract significantly reduced BPA toxicity (Ps < 0.05). However, there was no such detoxification effects with arbutin. This result was supported by changes in protein levels of ADH in the liver cells.
Collapse
|