1
|
Nair JJ, van Staden J. Anti-inflammatory effects of the plant family Amaryllidaceae. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:117943. [PMID: 38387683 DOI: 10.1016/j.jep.2024.117943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/24/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Members of the plant family Amaryllidaceae are widely recorded in traditional systems of medicine. Their usage for inflammatory conditions is most prominent, with substantive evidence emerging from several locations around the world. AIM OF THE STUDY This survey was undertaken to identify such plant taxa, highlight the countries from which they originate and afford details of the ailments against which they are utilized. The undertaking also sought to establish the in vitro and in vivo activities of Amaryllidaceae plant extracts in inflammation-based assays. Furthermore, it set out to unravel the molecular mechanisms used to explain these effects. MATERIALS AND METHODS Over six-hundred articles were identified in searches carried out on SciFinder, Scopus, ScienceDirect, PubMed and Google Scholar. These were condensed to around 170 that formulated the basis of the text. The keyword engaged was 'Amaryllidaceae' in conjunction with 'inflammation' or 'anti-inflammatory', as well as the names of individual genera combined with the latter two. RESULTS Fifty-one species from thirty-five countries were identified for their uses against inflammation. Twenty-four of such conditions were discernible, of which their applicability in wound healing and pain management was most conspicuous. The utilization of all plant parts was apparent, preparations of which were used primarily via topical application. Extracts of seventy-three species (from twenty-three genera) were examined in nearly thirty inflammation-based assays where their activities in vitro and in vivo were shown to be significant. They were effective in vivo against pain and swelling as well as wound healing, without detriment towards test subjects. The in vitro studies were carried out mainly in mononuclear cells such as macrophages, leukocytes, lymphocytes and neutrophils against which their cytotoxic effects were seen to be minimal. The modes of operation were shown to involve modulation of both pro-inflammatory (such as NF-κB, TNF-α, IL-6, IFN-γ, COX and NO) and anti-inflammatory (such as IL-10) factors. CONCLUSIONS The Amaryllidaceae is showcased as a platform highly conducive towards studies in the inflammation arena. Potent activities in instances were observed via in vitro and in vivo models of study, bolstered by the significant amounts of information emerging from traditional forms of medicine. It is conceivable that the family may yield future anti-inflammatory chemotherapeutics, particularly those related to its alkaloid principles.
Collapse
Affiliation(s)
- Jerald J Nair
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville, 3209, South Africa.
| | - Johannes van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville, 3209, South Africa.
| |
Collapse
|
2
|
Singh S A, Vellapandian C. Sub-chronic oral toxicity study of the alkaloid rich fraction from Luffa cylindrica fruit in Sprague-Dawley rats. Toxicol Rep 2024; 12:307-317. [PMID: 38495473 PMCID: PMC10944161 DOI: 10.1016/j.toxrep.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/23/2024] [Accepted: 03/02/2024] [Indexed: 03/19/2024] Open
Abstract
The loofah/sponge gourd Luffa cylindrica (L.), a member of the Cucurbitaceae family, is one of the neglected medicinal plants. Traditionally, Luffa cylindrica is prescribed for inducing labor. It has a long history of use in China for the treatment of fever, diabetes, dyspnea, and dysentery. This study investigated the toxicity profile of the alkaloid-rich fraction of Luffa cylindrica (ARF-LC) for the first time in Sprague Dawley rats. A total of 80 rats (40 male and 40 female rats) aged 13 weeks old and weighing 200-220 g were selected for this study. In SD rats, sub-chronic oral toxicity was investigated at doses of 100, 200, and 400 mg/kg/d for a total of 90 days, followed by a 30-day recovery period. The results showed no variation in body weight among the three dose groups compared to the control group. Treatment-related adverse events, such as alterations in hematology and serum biochemistry parameters and the histology of the liver were sporadic in the high-dose rats but within the reference range. However, these changes disappeared after the doses were withdrawn during the recovery period. In conclusion, the "no observed adverse effect level" (NOAEL) of oral administration of ARF-LC in SD rats was considered 400 mg/kg/d and can be studied for its potential in further in vivo chronic investigations.
Collapse
Affiliation(s)
- Ankul Singh S
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu, Tamil Nadu, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu, Tamil Nadu, India
| |
Collapse
|
3
|
Paiva MJM, Nascimento GNL, Damasceno IAM, Santos TT, Silveira D. Pharmacological and toxicological effects of Amaryllidaceae. BRAZ J BIOL 2023; 83:e277092. [PMID: 38126586 DOI: 10.1590/1519-6984.277092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/05/2023] [Indexed: 12/23/2023] Open
Abstract
The Amaryllidaceae family is widely distributed in the tropics, presenting biological activity attributed mostly to alkaloids, such as an important inhibitory activity of acetylcholinesterase (AChE), antifungal, antibacterial, and cytotoxic activities. The present study aims to review the spectrum of action of the main biological activities and toxicity of secondary metabolites found in Amaryllidaceae through a literature review, using Prisma and the descriptors "Pharmacological effects of Amaryllidaceae" and "Amaryllidaceae family" and "Pharmacological actions of Amaryllidaceae", used in English and Portuguese. The literature search was done in March and May 2023. Original works published from 2012 to 2023, available in full, and presenting experimental and clinical studies were included. After the selection considering the inclusion and exclusion criteria, 60 articles fulfilled the defined criteria. From a pharmacological point of view, the highlight is due to the alkaloid galantamine, which has the potential- and is already used - for treating Alzheimer's. The toxicological aspect must be considered and evaluated carefully, as alkaloids have been associated with adverse effects such as nausea, vomiting, diarrhea, abdominal pain, and cardiovascular, neurological, and respiratory changes. Furthermore, some studies indicate that consuming these plants in significant quantities can lead to hepatic and renal toxicity. Therefore, the therapeutical use of this family's plant drugs and derivatives requires further studies to elucidate its effects and point out metabolites with therapeutic potential.
Collapse
Affiliation(s)
- M J M Paiva
- Universidade de Brasília - UnB, Faculdade de Ciências da Saúde, Laboratório de Produtos Naturais, Brasília, DF, Brasil
| | - G N L Nascimento
- Universidade Federal do Tocantins - UFT, Laboratório de Ciências Básicas e da Saúde, Palmas, TO, Brasil
| | - I A M Damasceno
- Universidade de Brasília - UnB, Faculdade de Ciências da Saúde, Laboratório de Produtos Naturais, Brasília, DF, Brasil
| | - T T Santos
- Universidade Federal do Oeste da Bahia - UFOB, Centro Multidisciplinar de Luís Eduardo Magalhães, Curso de Bacharelado em Engenharia de Biotecnologia, Luís Eduardo Magalhães, BA, Brasil
| | - D Silveira
- Universidade de Brasília - UnB, Faculdade de Ciências da Saúde, Laboratório de Produtos Naturais, Brasília, DF, Brasil
| |
Collapse
|
4
|
Piñeiro M, Ortiz JE, Spina Zapata RM, Barrera PA, Sosa MA, Roitman G, Bastida J, Feresin GE. Antiparasitic Activity of Hippeastrum Species and Synergistic Interaction between Montanine and Benznidazole against Trypanosoma cruzi. Microorganisms 2023; 11:microorganisms11010144. [PMID: 36677436 PMCID: PMC9864487 DOI: 10.3390/microorganisms11010144] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Hippeastrum species have a wide range of biological properties. In Argentina, this genus comprises ten widely distributed species. PURPOSE To evaluate the antiparasitic and anticholinesterase activities and chemical profiles of seven Argentinean Hippeastrum species and determine the synergism between the major isolated alkaloid-montanine-and benznidazole in anti-Trypanosoma cruzi activity. METHODS The antiparasitic activity was evaluated through antiproliferative and viability assays against T. cruzi epimastigotes. Synergism assays were performed using the Chou-Talalay method. AChE and BuChE inhibitory activities were also assessed. The alkaloid composition was obtained using GC-MS analysis. RESULTS All extracts showed strong growth inhibition of T. cruzi epimastigote proliferation. The extracts from H. aglaiae, H. aulicum, and H. hybrid stand out for their potent and total growth inhibition, which was comparable to benznidazole. The H. reticulatum extract showed strong Acetylcholinesterase (AChE) inhibitory activities, while five species showed moderate Butyrylcholinesterase (BuChE) inhibition. Fifteen alkaloids were identified by means of GC-MS. Regarding the synergism assessment, the highest synergistic effect was obtained from the combination of montanine and benznidazole. CONCLUSION Hippeastrum species bulb extracts from Argentina were shown to be a good source of antiparasitic alkaloids and cholinesterase inhibitors. The synergism between montanine and benznidazole emerges as a potential combination for future studies to treat Chagas disease.
Collapse
Affiliation(s)
- Mauricio Piñeiro
- Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan, Av. Libertador General San Martin 1109 O, San Juan CP 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires (CABA), Godoy Cruz CP 2290, Argentina
| | - Javier E. Ortiz
- Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan, Av. Libertador General San Martin 1109 O, San Juan CP 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires (CABA), Godoy Cruz CP 2290, Argentina
| | - Renata M. Spina Zapata
- Facultad de Ciencias Médicas, Instituto de Histología y Embriología “Dr. Mario H. Burgos”, Universidad Nacional de Cuyo-CONICET, Mendoza CP 5500, Argentina
| | - Patricia A. Barrera
- Facultad de Ciencias Médicas, Instituto de Histología y Embriología “Dr. Mario H. Burgos”, Universidad Nacional de Cuyo-CONICET, Mendoza CP 5500, Argentina
| | - Miguel A. Sosa
- Facultad de Ciencias Médicas, Instituto de Histología y Embriología “Dr. Mario H. Burgos”, Universidad Nacional de Cuyo-CONICET, Mendoza CP 5500, Argentina
| | - Germán Roitman
- Facultad de Turismo y Urbanismo, Universidad Nacional de San Luis, Av. del Libertador San Martín 721 Villa de Merlo, San Luis CP D5881DFN, Argentina
| | - Jaume Bastida
- Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Gabriela E. Feresin
- Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan, Av. Libertador General San Martin 1109 O, San Juan CP 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires (CABA), Godoy Cruz CP 2290, Argentina
- Correspondence:
| |
Collapse
|
5
|
Tallini LR, Osorio EH, Berkov S, Torras-Claveria L, Rodríguez-Escobar ML, Viladomat F, Meerow AW, Bastida J. Chemical Survey of Three Species of the Genus Rauhia Traub (Amaryllidaceae). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11243549. [PMID: 36559661 PMCID: PMC9787901 DOI: 10.3390/plants11243549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/29/2022] [Accepted: 12/11/2022] [Indexed: 05/14/2023]
Abstract
Plant biodiversity is an important source of compounds with medicinal properties. The alkaloid galanthamine, first isolated from Galanthus woronowii (Amaryllidaceae), is approved by the FDA for the palliative treatment of mild to moderate Alzheimer's disease due to its acetylcholinesterase (AChE) inhibitory activity. Obtaining this active pharmaceutical ingredient, still sourced on an industrial scale from the Amaryllidaceae species, is a challenge for pharmaceutical companies due to its low natural yield and the high cost of its synthesis. The aim of this work was to determine the alkaloid profile of three different Rauhia (Amaryllidaceae) species collected in Peru, and to assess the potential application of their extracts for the treatment of Alzheimer's disease. The alkaloids were identified by gas chromatography coupled to mass spectrometry (GC-MS), and the AChE inhibitory activity of the extracts was analyzed. Thirty compounds were quantified from the Rauhia species, the R. multiflora extract being the most interesting due to its high diversity of galanthamine-type structures. The R. multiflora extract was also the most active against AChE, with the half maximal inhibitory concentration (IC50) values of 0.17 ± 0.02 μg·mL-1 in comparison with the IC50 values of 0.53 ± 0.12 μg·mL-1 for galanthamine, used as a reference. Computational experiments were carried out on the activity of the galanthamine-type alkaloids identified in R. multiflora toward five different human AChE structures. The simulation of the molecules 3-O-acetylgalanthamine, 3-O-acetylsanguinine, narwedine, and lycoraminone on the 4EY6 crystal structure theoretically showed a higher inhibition of hAChE and different interactions with the active site compared to galanthamine. In conclusion, the results of this first alkaloid profiling of the Rauhia species indicate that R. multiflora is an important natural source of galanthamine-type structures and could be used as a model for the development of biotechnological tools necessary to advance the sustainable production of galanthamine.
Collapse
Affiliation(s)
- Luciana R. Tallini
- Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27–31, 08028 Barcelona, Spain
| | - Edison H. Osorio
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 Calle 67, Ibagué 730001, Colombia
| | - Strahil Berkov
- Institute of Biodiversity and Ecosystem Research at the Bulgarian Academy of Sciences, Department of Plant and Fungal Diversity, 23 Acad, G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Laura Torras-Claveria
- Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27–31, 08028 Barcelona, Spain
| | - María L. Rodríguez-Escobar
- Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27–31, 08028 Barcelona, Spain
| | - Francesc Viladomat
- Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27–31, 08028 Barcelona, Spain
| | - Alan W. Meerow
- School of Life Sciences, Arizona State University, Tempe, AZ 85282, USA
| | - Jaume Bastida
- Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27–31, 08028 Barcelona, Spain
- Correspondence:
| |
Collapse
|
6
|
Gomes-Copeland KKP, Meireles CG, Gomes JVD, Torres AG, Sinoti SBP, Fonseca-Bazzo YM, Magalhães PDO, Fagg CW, Simeoni LA, Silveira D. Hippeastrum stapfianum (Kraenzl.) R.S.Oliveira & Dutilh (Amaryllidaceae) Ethanol Extract Activity on Acetylcholinesterase and PPAR-α/γ Receptors. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223179. [PMID: 36432907 PMCID: PMC9693985 DOI: 10.3390/plants11223179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 05/14/2023]
Abstract
Hippeastrum stapfianum (Kraenzl.) R.S.Oliveira & Dutilh (Amaryllidaceae) is an endemic plant species from the Brazilian savannah with biological and pharmacological potential. This study evaluated the effects of ethanol extract from H. stapfianum leaves on acetylcholinesterase enzyme activity and the action on nuclear receptors PPAR-α and PPAR-γ. A gene reporter assay was performed to assess the PPAR agonist or antagonist activity with a non-toxic dose of H. stapfianum ethanol extract. The antioxidant capacity was investigated using DPPH• scavenging and fosfomolybdenium reduction assays. The identification of H. stapfianum's chemical composition was performed by gas chromatography-mass spectrometry (GC-MS) and HPLC. The ethanol extract of H. stapfianum activated PPAR-α and PPAR-γ selectively, inhibited the acetylcholinesterase enzyme, and presented antioxidant activity in an in vitro assay. The major compounds identified were lycorine, 7-demethoxy-9-O-methylhostasine, and rutin. Therefore, H. stapfianum is a potential source of drugs for Alzheimer's disease due to its ability to activate PPAR receptors, acetylcholinesterase inhibition activity, and antioxidant attributes.
Collapse
Affiliation(s)
- Kicia Karinne Pereira Gomes-Copeland
- Laboratory of Natural Products, Faculty of Health Sciences, University of Brasilia, Brasília 70910-900, DF, Brazil
- Correspondence: (K.K.P.G.-C.); (D.S.); Tel.: +55-61-31071939 (D.S.)
| | - Cinthia Gabriel Meireles
- Laboratory of Molecular Pharmacology, Health Sciences Faculty, University of Brasilia, Brasília 70910-900, DF, Brazil
| | - João Victor Dutra Gomes
- Laboratory of Natural Products, Faculty of Health Sciences, University of Brasilia, Brasília 70910-900, DF, Brazil
| | - Amanda Gomes Torres
- Laboratory of Natural Products, Faculty of Health Sciences, University of Brasilia, Brasília 70910-900, DF, Brazil
| | - Simone Batista Pires Sinoti
- Laboratory of Molecular Pharmacology, Health Sciences Faculty, University of Brasilia, Brasília 70910-900, DF, Brazil
| | - Yris Maria Fonseca-Bazzo
- Laboratory of Natural Products, Faculty of Health Sciences, University of Brasilia, Brasília 70910-900, DF, Brazil
| | - Pérola de Oliveira Magalhães
- Laboratory of Natural Products, Faculty of Health Sciences, University of Brasilia, Brasília 70910-900, DF, Brazil
| | | | - Luiz Alberto Simeoni
- Laboratory of Natural Products, Faculty of Health Sciences, University of Brasilia, Brasília 70910-900, DF, Brazil
| | - Dâmaris Silveira
- Laboratory of Natural Products, Faculty of Health Sciences, University of Brasilia, Brasília 70910-900, DF, Brazil
- Correspondence: (K.K.P.G.-C.); (D.S.); Tel.: +55-61-31071939 (D.S.)
| |
Collapse
|
7
|
Martinez-Peinado N, Ortiz JE, Cortes-Serra N, Pinazo MJ, Gascon J, Tapia A, Roitman G, Bastida J, Feresin GE, Alonso-Padilla J. Anti-Trypanosoma cruzi activity of alkaloids isolated from Habranthus brachyandrus (Amaryllidaceae) from Argentina. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154126. [PMID: 35489322 DOI: 10.1016/j.phymed.2022.154126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/05/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Chagas disease, caused by the parasite Trypanosoma cruzi, affects over six million people worldwide, mainly in Latin American countries. Currently available drugs have variable efficacy in the chronic phase and significant side effects, so there is an urgent need for safer chemotherapeutic treatments. Natural products provide privileged structures that could serve as templates for the synthesis of new drugs. Among them, Amaryllidaceae plants have proved to be a potential natural source of therapeutical agents due to their rich diversity in alkaloids. PURPOSE To identify alkaloids with anti-T. cruzi activity from Habranthus brachyandrus (Baker) Sealy (Amaryllidaceae, subfamily Amaryllidoideae) collected in Argentina. METHODS An H. brachyandrus alkaloid extract was tested against T. cruzi, and its cytotoxicity profile was evaluated against two mammalian cell lines to ascertain its selectivity against the parasite and potential liver toxicity. It was also assessed by a stage-specific anti-amastigote assay and analysed by GC/MS to determine its alkaloid profile. The isolated alkaloids were also tested using the aforementioned assays. RESULTS The extract showed high and specific activity against T. cruzi. The alkaloids lycoramine, galanthindole, 8-O-demethylmaritidine, 8-O-demethylhomolycorine, nerinine, trisphaeridine, deoxytazettine, and tazettamide were identified by means of GC-MS. In addition, hippeastidine (also named aulicine), tazzetine, ismine, and 3-epimacronine were isolated. The alkaloid ismine was specifically active against the parasite and had low toxicity against HepG2 cells, but did not show anti-amastigote activity. CONCLUSION The extract had specific anti-T. cruzi activity and the isolated alkaloid ismine was partially responsible of it. These results encourage further exploration of H. brachyandrus alkaloids in search of novel starting points for Chagas disease drug development.
Collapse
Affiliation(s)
- Nieves Martinez-Peinado
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic-University of Barcelona, Barcelona 08036, Spain; CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Spain
| | - Javier E Ortiz
- Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan, Av. Libertador General San Martin 1109 O, San Juan, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) CABA, Argentina
| | - Nuria Cortes-Serra
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic-University of Barcelona, Barcelona 08036, Spain; CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Spain
| | - Maria Jesus Pinazo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic-University of Barcelona, Barcelona 08036, Spain; CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Spain
| | - Joaquim Gascon
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic-University of Barcelona, Barcelona 08036, Spain; CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Spain
| | - Alejandro Tapia
- Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan, Av. Libertador General San Martin 1109 O, San Juan, Argentina
| | - German Roitman
- Facultad de Turismo y Urbanismo, Universidad Nacional de San Luis, Av. del Libertador San Martín 721 (D5881DFN) Villa de Merlo, San Luis, Argentina
| | - Jaume Bastida
- Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l´Alimentació, Universitat de Barcelona, Barcelona 08028, Spain
| | - Gabriela E Feresin
- Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan, Av. Libertador General San Martin 1109 O, San Juan, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) CABA, Argentina.
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic-University of Barcelona, Barcelona 08036, Spain; CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Spain.
| |
Collapse
|
8
|
Chen J, Hu R, Bao Q, Shang D, Yu L, Chan PWH, Rao W. Ligand-controlled chemoselectivity in gold-catalyzed cascade cyclization of 1,4-diene-tethered 2-alkynylbenzaldehydes. Org Chem Front 2022. [DOI: 10.1039/d2qo01346k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A synthetic method that relies on the gold(i)-catalyzed cascade annulation of skipped 1,4-diene-tethered 2-alkynylbenzaldehydes for the chemo- and stereoselective assembly polycyclic bridged-pyrrolidines and -azepines is described.
Collapse
Affiliation(s)
- Jichao Chen
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Rui Hu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qing Bao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Dandan Shang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Yu
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | | | - Weidong Rao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
9
|
Tallini LR, Giordani RB, de Andrade JP, Bastida J, Zuanazzi JAS. Structural Diversity and Biological Potential of Alkaloids from the Genus Hippeastrum, Amaryllidaceae: an Update. REVISTA BRASILEIRA DE FARMACOGNOSIA : ORGAO OFICIAL DA SOCIEDADE BRASILEIRA DE FARMACOGNOSIA 2021; 31:648-657. [PMID: 34924642 PMCID: PMC8670614 DOI: 10.1007/s43450-021-00211-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/27/2021] [Indexed: 11/30/2022]
Abstract
The subfamily Amaryllidoideae, Amaryllidaceae, presents an exclusive group of structures known as Amaryllidaceae alkaloids, which have a broad spectrum of biological activities. These plants are classified into 59 genera, including Hippeastrum Herb., which comprises approximately 60 species distributed mainly in South America, being widely used as ornamental plants due to the beauty of its flowers. This review presents an update about the alkaloid profiling of Hippeastrum extracts published between 2012 and 2021, as well as an approach to the biological potential of these compounds. GRAPHICAL ABSTRACT SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s43450-021-00211-z.
Collapse
Affiliation(s)
- Luciana R. Tallini
- Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000 Brazil
- Grup de Productes Naturals, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Raquel B. Giordani
- Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, RN 59012-570 Brazil
| | - Jean Paulo de Andrade
- Instituto de Investigación Interdisciplinaria, Vicerrectoría Académica, Universidad de Talca, Campus Talca, 3460000 Talca, Chile
| | - Jaume Bastida
- Grup de Productes Naturals, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - José Angelo S. Zuanazzi
- Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000 Brazil
| |
Collapse
|
10
|
Ren K, Feng T, Shi H, Ma J, Jin Y. Determination of narciclasine in mouse blood by UPLC-MS/MS and its application to a pharmacokinetic study. ACTA CHROMATOGR 2021. [DOI: 10.1556/1326.2021.00865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Narciclasine is a 7-hydroxy derivative of lycorisidine. It was the first alkaloid isolated from the stem of narcissus (Amaryllidaceae) in 1967. Six mice were given narciclasine (5 mg/kg) by intravenous administration. A UPLC-MS/MS method was developed to determine narciclasine in mouse blood. Tectorigenin (internal standard, IS) and narciclasine were gradient eluted by mobile phase of methanol and 0.1% formic acid in a BEH C18 column. The multiple reaction monitoring (MRM) of m/z 308.1→248.1 for narciclasine and m/z 301.1→286.0 for IS with an electrospray ionization (ESI) source was used for quantitative determination. The calibration curve ranged from 1 to 6,000 ng/mL. The accuracy was from 92.5 to 107.3%, and the matrix effect was between 103.6 and 107.4%. The developed UPLC-MS/MS method was successfully applicated to a pharmacokinetic study of narciclasine in mice after intravenous administration (5 mg/kg).
Collapse
Affiliation(s)
- Ke Ren
- 1 Department of Pharmacy, Ningbo YinZhou No.2 Hospital, Ningbo, China
| | - Tiantian Feng
- 2 School of Basic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Hai Shi
- 1 Department of Pharmacy, Ningbo YinZhou No.2 Hospital, Ningbo, China
| | - Jianshe Ma
- 2 School of Basic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yongxi Jin
- 3 Department of Rehabilitation, Wenzhou Municipal Hospital of Traditional Chinese Medicine, Wenzhou, China
| |
Collapse
|
11
|
Li N, Jiang H, Yang J, Wang C, Wu L, Hao Y, Liu Y. Characterization of phenolic compounds and anti-acetylcholinase activity of coconut shells. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|