1
|
Jia B, Yang W, Li H, Chang G, Zhang X, Zhang N, Wang S, Wei J, Li X, Gao W, Guo L. Ophiopogonis Radix fructan-selenium nanoparticles for dual amelioration of ulcerative colitis and anti-colon cancer. Int J Biol Macromol 2025; 307:142327. [PMID: 40118427 DOI: 10.1016/j.ijbiomac.2025.142327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/25/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Fructans demonstrate significant potential in preclinical models for treating inflammatory bowel disease and colorectal cancer by modulating gut microbiota homeostasis. In this research, ORP-SeNPs were prepared through a redox method. Their roles as colon-targeted delivery carriers and stabilizers were examined for treating inflammatory bowel disease and colorectal cancer. ORP-SeNPs showed potent scavenging activity against ABTS· and DPPH· radicals and dose-dependently inhibited colon cancer Caco-2 cell proliferation by arresting growth in the S phase. Moreover, ORP-SeNPs significantly alleviated intestinal inflammation by modulating inflammatory cytokine homeostasis, reducing oxidative stress, repairing the intestinal barrier, and suppressing NF-κB/STAT-3 pathway activation. This study establishes a theoretical foundation for employing mixed fructans as drug carriers to treat inflammatory bowel disease and colorectal cancer, extending the therapeutic applications of Ophiopogonis Radix in bowel disorders.
Collapse
Affiliation(s)
- Bohan Jia
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300193, China
| | - Wenna Yang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300193, China
| | - Hongyu Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300193, China
| | - Guanglu Chang
- Tianjin Key Laboratory of Modern Chinese Medicine Resources Research, Tianjin 300402, China
| | - Xuemin Zhang
- Tianjin Key Laboratory of Modern Chinese Medicine Resources Research, Tianjin 300402, China
| | - Nihui Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300193, China
| | - Shirui Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300193, China
| | - Jinchao Wei
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macau
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300193, China.
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300193, China.
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
2
|
Zhou Q, Gao J, Sun X, Du J, Wu Z, Liang D, Ling C, Fang B. Immunomodulatory Mechanisms of Tea Leaf Polysaccharide in Mice with Cyclophosphamide-Induced Immunosuppression Based on Gut Flora and Metabolomics. Foods 2024; 13:2994. [PMID: 39335922 PMCID: PMC11431025 DOI: 10.3390/foods13182994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Tea polysaccharides (TPSs) are receiving increasing attention because of their diverse pharmacological and biological activities. Here, we explored the immunoregulatory mechanisms of TPSs from fresh tea leaves in a mouse model of cyclophosphamide (CTX)-induced immunosuppression in terms of gut microbiota and metabolites. We observed that TPSs significantly increased the body weight and alleviated CTX-induced thymus atrophy in the immunosuppressed mice; they also increased the plasma levels of immunoglobulins A and M, interleukin (IL) 1β, IL-6, inducible nitric oxide synthase, and tumor necrosis factor α. Furthermore, we conducted 16S rDNA sequencing of cecal contents, resulting in the acquisition of 5008 high-quality bacterial 16S rDNA gene reads from the sequencing of mouse fecal samples. By analyzing the data, we found that TPSs regulated the gut microbiota structure and diversity and alleviated the CTX-induced dysregulation of gut microbiota. The colonic contents of mice were subjected to analysis using the UPLC-Q-TOF/MS/MS technique for the purpose of untargeted metabolomics. In the course of our metabolite identification analysis, we identified a total of 2685 metabolites in positive ion mode and 1655 metabolites in negative ion mode. The analysis of these metabolites indicated that TPSs improved CTX-induced metabolic disorders by regulating the levels of metabolites related to tryptophan, arginine, and proline metabolism. In conclusion, TPSs can alleviate CTX-induced immunosuppression by regulating the structural composition of gut microbiota, indicating the applicability of TPSs as novel innate immune modulators in health foods or medicines.
Collapse
Affiliation(s)
- Qiaoyi Zhou
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Q.Z.); (D.L.)
| | - Jinjing Gao
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China (Z.W.)
| | - Xueyan Sun
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China (Z.W.)
| | - Junyuan Du
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China (Z.W.)
| | - Zhiyi Wu
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China (Z.W.)
| | - Dongxia Liang
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Q.Z.); (D.L.)
| | - Caijin Ling
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Q.Z.); (D.L.)
| | - Binghu Fang
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China (Z.W.)
| |
Collapse
|
3
|
Zhong B, Xu W, Gong M, Xian W, Xie H, Wu Z. Molecular mechanisms of selenite reduction by Lactiplantibacillus plantarum BSe: An integrated genomic and transcriptomic analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133850. [PMID: 38401219 DOI: 10.1016/j.jhazmat.2024.133850] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
The reduction of selenite [Se(Ⅳ)] by microorganisms is a green and efficient detoxification strategy. We found that Se(Ⅳ) inhibited exopolysaccharide and protein secretion by Lactiplantibacillus plantarum BSe and compromised cell integrity. In this study, L. plantarum BSe reduced Se(Ⅳ) by increasing related enzyme activity and electron transfer. Genomic analysis demonstrated that L. plantarum BSe should be able to reduce Se(Ⅳ). Further transcriptome analysis showed that L. plantarum BSe enhanced its tolerance to Se(Ⅳ) by upregulating the expression of surface proteins and transporters, thus reducing the extracellular Se(Ⅳ) concentration through related enzymatic reactions and siderophore-mediated pathways. Lactiplantibacillus plantarum BSe was able to regulate the expression of related genes involved in quorum sensing and a two-component system and then select appropriate strategies for Se(Ⅳ) transformation in response to varying environmental Se(Ⅳ) concentrations. In addition, azo reductase was linked to the reduction of Se(Ⅳ) for the first time. The present study established a multipath model for the reduction of Se(Ⅳ) by L. plantarum, providing new insights into the biological reduction of Se(Ⅳ) and the biogeochemical cycle of selenium.
Collapse
Affiliation(s)
- Bin Zhong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Weijun Xu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; Pan Asia (Jiangmen) Institute of Biological Engineering and Health, Jiangmen 529080, China
| | - Ming Gong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; Yiweyi Biological Manufacturing (Jiangmen) Co., LTD, Jiangmen 529080, China
| | - Wei Xian
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Hanyi Xie
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Zhenqiang Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China.
| |
Collapse
|
4
|
Yu J, Li S, Li M, Zhang Y, Tong D, Xu Y, Wang C, Xu J. Amelioration of nonylphenol-induced anxiety/depression-like behaviors in male rats using green tea and Zn-Se tea interventions. Toxicol Res (Camb) 2024; 13:tfae003. [PMID: 38229977 PMCID: PMC10788678 DOI: 10.1093/toxres/tfae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/28/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024] Open
Abstract
Objective This study aimed to investigate the effects of exposure to nonylphenol (NP) on anxiety/depression-like behaviors in rats and alleviation of those effects via green tea and zinc selenium (Zn-Se) tea interventions. Material and Methods Totally, 40 male specific-pathogen free (SPF) Sprague-Dawley (SD) male rats were randomly divided into four groups (n = 10 rats per group): control group (5 ml/kg corn oil), NP group (40 mg/kg NP), NP + GT group (40 mg/kg NP + 1 g/kg/day green tea), and NP + Zn-Se tea group (40 mg/kg NP + 1 g/kg/day ZST). All dose-based groups received oral gavage of either corn oil or drugs over a 6-month period: NP at a dosage of 40 mg/kg/day was administered to rats for the initial 3 months, followed by a combination of NP with green tea and NP with Zn-Se tea for the subsequent 3 months. Results Tea intervention resulted in weight loss in rats. The hippocampal tissue NP level in the tea group was slightly lower than that in the NP group. Following tea intervention, compared with the NP group, the residence time in the light-dark box test was shortened PGT = 0.048, P < 0.001), and the number of entries into the closed arm in the elevated plus maze test in the tea-treated group was significantly reduced. In addition, the immobility time in the central square in the open field test decreased. The sucrose preference index score in the sucrose preference test increased, and the immobility time in the forced swimming test was reduced (PGT = 0.049, PZST < 0.001). The effects of Zn-S e tea were superior to green tea. The damage to the hippocampal tissues in the group treated with tea was less than that in the NP group. The cellular arrangement was tighter with degeneration, deepstaining, and pyknotic nerve cells were visible. The nuclei in the NP group were atrophied, and the cells were sparsely arranged. Compared with the control group, serum brain-derived neurotrophic factor (BDNF) level was lower in the NP group. The serum corticosterone level in the NP group was elevated. Compared with the NP group, serum corticosterone level was reduced in the NP + Zn-Se tea group. Conclusion Chronic NP exposure induced anxiety/depression-like behaviors in rats. Green tea effectively reduced the damage to the hippocampus and prefrontal cortex induced by NP. The effects of Zn-Se tea were slightly more noticeable than those of conventional green tea. Highlights 1) Chronic NP exposure induced anxiety/depression-like behaviors in rats.2) Zn-Se tea reduced the damage of hippocampal and prefrontal cortex induced by NP.3) NP-induced depression accompanied by the changes of BDNF, CORT and neuropathology.
Collapse
Affiliation(s)
- Jie Yu
- School of Public Health, Zunyi Medical University, No. 6 Xuefu Road, Xinpu New District, Zunyi City, Guizhou Province 5643006, P. R. of China
| | - Shengnan Li
- School of Public Health, Zunyi Medical University, No. 6 Xuefu Road, Xinpu New District, Zunyi City, Guizhou Province 5643006, P. R. of China
| | - Mizhuan Li
- School of Public Health, Zunyi Medical University, No. 6 Xuefu Road, Xinpu New District, Zunyi City, Guizhou Province 5643006, P. R. of China
| | - Yujie Zhang
- School of Public Health, Zunyi Medical University, No. 6 Xuefu Road, Xinpu New District, Zunyi City, Guizhou Province 5643006, P. R. of China
| | - Dayan Tong
- School of Public Health, Zunyi Medical University, No. 6 Xuefu Road, Xinpu New District, Zunyi City, Guizhou Province 5643006, P. R. of China
| | - Yuzhu Xu
- School of Public Health, Zunyi Medical University, No. 6 Xuefu Road, Xinpu New District, Zunyi City, Guizhou Province 5643006, P. R. of China
| | - Chengxing Wang
- School of Public Health, Zunyi Medical University, No. 6 Xuefu Road, Xinpu New District, Zunyi City, Guizhou Province 5643006, P. R. of China
| | - Jie Xu
- School of Public Health, Zunyi Medical University, No. 6 Xuefu Road, Xinpu New District, Zunyi City, Guizhou Province 5643006, P. R. of China
| |
Collapse
|
5
|
Xu J, Zhang Y, Zhang M, Wei X, Zhou Y. Effects of foliar selenium application on Se accumulation, elements uptake, nutrition quality, sensory quality and antioxidant response in summer-autumn tea. Food Res Int 2024; 175:113618. [PMID: 38128974 DOI: 10.1016/j.foodres.2023.113618] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 12/23/2023]
Abstract
Summer-autumn tea is characterized by high polyphenol content and low amino acid content, resulting in bitter and astringent teast. However, these qualities often lead to low economic benefits, ultimately resulting in a wastage of tea resources. The study focused on evaluating the effects of foliar spraying of glucosamine selenium (GLN-Se) on summer-autumn tea. This foliar fertilizer was applied to tea leaves to assess its impact on plant development, nutritional quality, elemental uptake, organoleptic quality, and antioxidant responses. The results revealed that GlcN-Se enhanced photosynthesis and yield by improving the antioxidant system. Additionally, the concentration of GlcN-Se positively correlated with the total and organic selenium contents in tea. The foliar application of GlcN-Se reduced toxic heavy metal content and increased the levels of macronutrients and micronutrients, which facilitated adaptation to environmental changes and abiotic stresses. Furthermore, GlcN-Se significantly improved both non-volatile and volatile components of tea leaves, resulting in a sweet aftertaste and nectar aroma in the tea soup. To conclude, the accurate and rational application of exogenous GlcN-Se can effectively enhance the selenium content and biochemical status of tea. This improvement leads to enhanced nutritional quality and sensory characteristics, making it highly significant for the tea industry.
Collapse
Affiliation(s)
- Jia Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Yayuan Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, NO. 100 Haiquan Road, Shanghai 201418, PR China
| | - Mengke Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| | - Yiming Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, NO. 100 Haiquan Road, Shanghai 201418, PR China.
| |
Collapse
|
6
|
Yang B, Zhang H, Ke W, Jiang J, Xiao Y, Tian J, Zhu X, Zong L, Fang W. Effect of Soil Acidification on the Production of Se-Rich Tea. PLANTS (BASEL, SWITZERLAND) 2023; 12:2882. [PMID: 37571035 PMCID: PMC10420883 DOI: 10.3390/plants12152882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Selenium (Se)-enriched tea is a well-regarded natural beverage that is often consumed for its Se supplementation benefits. However, the production of this tea, particularly in Se-abundant tea plantations, is challenging due to soil acidification. Therefore, this study aimed to investigate the effects of changes in Se under acidified soil conditions. Eight tea plantation soil monitoring sites in Southern Jiangsu were first selected. Simulated acid rain experiments and experiments with different acidification methods were designed and soil pH, as well as various Al-ion and Se-ion concentrations were systematically determined. The data were analyzed using R statistical software, and a correlation analysis was carried out. The results indicated that as the pH value dropped, exchangeable selenium (Exc-Se) and residual selenium (Res-Se) were transformed into acid-soluble selenium (Fmo-Se) and manganese oxide selenium (Om-Se). As the pH increased, exchange state aluminum (Alex) and water-soluble aluminum (Alw) decreased, Fmo-Se and Om-Se declined, and Exc-Se and Res-Se increased, a phenomenon attributed to the weakened substitution of Se ions by Al ions. In the simulated acid rain experiment, P1 compared to the control (CK), the pH value of the YJW tea plantation decreased by 0.13, Exc-Se decreased by 4 ug mg-1, Res-Se decreased by 54.65 ug kg-1, Fmo-Se increased by 2.78 ug mg-1, and Om-Se increased by 5.94 ug mg-1 while Alex increased by 28.53 mg kg-1. The decrease in pH led to an increase in the content of Alex and Alw, which further resulted in the conversion of Exc-Se to Fmo-Se and Om-Se. In various acidification experiments, compared with CK, the pH value of T6 decreased by 0.23, Exc-Se content decreased by 8.35 ug kg-1, Res-Se content decreased by 40.62 ug kg-1, and Fmo-Se content increased by 15.52 ug kg-1 while Alex increased by 33.67 mg kg-1, Alw increased by 1.7 mg kg-1, and Alh decreased by 573.89 mg kg-1. Acidification can trigger the conversion of Exc-Se to Fmo-Se and Om-Se, while the content of available Se may decrease due to the complexation interplay between Alex and Exc-Se. This study provides a theoretical basis for solving the problem of Se-enriched in tea caused by soil acidification.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China (H.Z.); (W.K.); (J.J.); (Y.X.); (J.T.); (X.Z.); (L.Z.)
| |
Collapse
|
7
|
Sun Y, Wang Z, Gong P, Yao W, Ba Q, Wang H. Review on the health-promoting effect of adequate selenium status. Front Nutr 2023; 10:1136458. [PMID: 37006921 PMCID: PMC10060562 DOI: 10.3389/fnut.2023.1136458] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Selenium is an essential microelement involved in various biological processes. Selenium deficiency increases the risk of human immunodeficiency virus infection, cancer, cardiovascular disease, and inflammatory bowel disease. Selenium possesses anti-oxidant, anti-cancer, immunomodulatory, hypoglycemic, and intestinal microbiota-regulating properties. The non-linear dose-response relationship between selenium status and health effects is U-shaped; individuals with low baseline selenium levels may benefit from supplementation, whereas those with acceptable or high selenium levels may face possible health hazards. Selenium supplementation is beneficial in various populations and conditions; however, given its small safety window, the safety of selenium supplementation is still a subject of debate. This review summarizes the current understanding of the health-promoting effects of selenium on the human body, the dietary reference intake, and evidence of the association between selenium deficiency and disease.
Collapse
Affiliation(s)
- Ying Sun
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Zhineng Wang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Pin Gong
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi’an, China
- Pin Gong,
| | - Wenbo Yao
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi’an, China
- Wenbo Yao,
| | - Qian Ba
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Qian Ba,
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Hui Wang,
| |
Collapse
|
8
|
Yang G, Meng Q, Shi J, Zhou M, Zhu Y, You Q, Xu P, Wu W, Lin Z, Lv H. Special tea products featuring functional components: Health benefits and processing strategies. Compr Rev Food Sci Food Saf 2023; 22:1686-1721. [PMID: 36856036 DOI: 10.1111/1541-4337.13127] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 12/08/2022] [Accepted: 01/31/2023] [Indexed: 03/02/2023]
Abstract
The functional components in tea confer various potential health benefits to humans. To date, several special tea products featuring functional components (STPFCs) have been successfully developed, such as O-methylated catechin-rich tea, γ-aminobutyric acid-rich tea, low-caffeine tea, and selenium-rich tea products. STPFCs have some unique and enhanced health benefits when compared with conventional tea products, which can meet the specific needs and preferences of different groups and have huge market potential. The processing strategies to improve the health benefits of tea products by regulating the functional component content have been an active area of research in food science. The fresh leaves of some specific tea varieties rich in functional components are used as raw materials, and special processing technologies are employed to prepare STPFCs. Huge progress has been achieved in the research and development of these STPFCs. However, the current status of these STPFCs has not yet been systematically reviewed. Here, studies on STPFCs have been comprehensively reviewed with a focus on their potential health benefits and processing strategies. Additionally, other chemical components with the potential to be developed into special teas and the application of tea functional components in the food industry have been discussed. Finally, suggestions on the promises and challenges for the future study of these STPFCs have been provided. This paper might shed light on the current status of the research and development of these STPFCs. Future studies on STPFCs should focus on screening specific tea varieties, identifying new functional components, evaluating health-promoting effects, improving flavor quality, and elucidating the interactions between functional components.
Collapse
Affiliation(s)
- Gaozhong Yang
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qing Meng
- College of Food Science, Southwest University, Chongqing, China
| | - Jiang Shi
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Mengxue Zhou
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yin Zhu
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Qiushuang You
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ping Xu
- Institute of Tea Science, Zhejiang University, Hangzhou, China
| | - Wenliang Wu
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Haipeng Lv
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
9
|
Wang M, Sun X, Wang Y, Deng X, Miao J, Zhao D, Sun K, Li M, Wang X, Sun W, Qin J. Construction of Selenium Nanoparticle-Loaded Mesoporous Silica Nanoparticles with Potential Antioxidant and Antitumor Activities as a Selenium Supplement. ACS OMEGA 2022; 7:44851-44860. [PMID: 36530304 PMCID: PMC9753530 DOI: 10.1021/acsomega.2c04975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/17/2022] [Indexed: 06/17/2023]
Abstract
Excessive reactive oxygen species (ROS) can damage cells and affect normal cell functions, which are related to various diseases. Selenium nanoparticles are a potential selenium supplement for their good biocompatibility and antioxidant activity. However, their poor stability has become an obstacle for further applications. In this study, mesoporous silica nanoparticles (MSNs) were prepared as a carrier of selenium nanoparticles. Pluronic F68 (PF68) was used for the surface modification of the compounds to prevent the leakage of the selenium nanoparticles. The prepared MSN@Se@PF68 nanoparticles were characterized by transmission electron microscopy, energy-dispersive X-ray spectroscopy, dynamic light scattering, X-ray photoelectron spectroscopy, confocal micro-Raman spectroscopy, and Fourier transform infrared spectroscopy. The MSN@Se@PF68 nanoparticles showed excellent antioxidant activity in HeLa tumor cells and zebrafish larvae. The cytotoxicity of MSN@Se@PF68 nanoparticles was concentration- and time-dependent in HeLa tumor cells. The MSN@Se@PF68 nanoparticles showed a negligible cytotoxicity of ≤2 μg/mL at 48 h. At a concentration of 50 μg/mL, the cell viability of the HeLa tumor cells decreased to about 50%. The results indicated that the MSN@Se@PF68 nanoparticles could be a potential antitumor agent. The embryonic development of zebrafish cocultured with the MSN@Se@PF68 nanoparticles showed that there was no lethal or obvious teratogenic toxicity. The results implied that the MSN@Se@PF68 nanoparticles could be a safe selenium supplement and have the potential for antioxidant and antitumor activity.
Collapse
Affiliation(s)
- Meng Wang
- School
of Life Science and Medicine, Shandong University
of Technology, Zibo 255000, P. R. China
| | - Xiangling Sun
- School
of Life Science and Medicine, Shandong University
of Technology, Zibo 255000, P. R. China
| | - Ying Wang
- School
of Life Science and Medicine, Shandong University
of Technology, Zibo 255000, P. R. China
| | - Xuan Deng
- School
of Life Science and Medicine, Shandong University
of Technology, Zibo 255000, P. R. China
| | - Jianing Miao
- School
of Life Science and Medicine, Shandong University
of Technology, Zibo 255000, P. R. China
| | - Donghe Zhao
- School
of Life Science and Medicine, Shandong University
of Technology, Zibo 255000, P. R. China
| | - Kunqi Sun
- School
of Life Science and Medicine, Shandong University
of Technology, Zibo 255000, P. R. China
| | - Minrui Li
- School
of Life Science and Medicine, Shandong University
of Technology, Zibo 255000, P. R. China
| | - Xiaoyi Wang
- School
of Public Health, Jining Medical University, Jining 272067, P. R. China
| | - Wenlong Sun
- School
of Life Science and Medicine, Shandong University
of Technology, Zibo 255000, P. R. China
| | - Jie Qin
- School
of Life Science and Medicine, Shandong University
of Technology, Zibo 255000, P. R. China
| |
Collapse
|
10
|
Ouyang J, Peng Y, Gong Y. New Perspectives on Sleep Regulation by Tea: Harmonizing Pathological Sleep and Energy Balance under Stress. Foods 2022; 11:3930. [PMID: 36496738 PMCID: PMC9738644 DOI: 10.3390/foods11233930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/09/2022] Open
Abstract
Sleep, a conservative evolutionary behavior of organisms to adapt to changes in the external environment, is divided into natural sleep, in a healthy state, and sickness sleep, which occurs in stressful environments or during illness. Sickness sleep plays an important role in maintaining energy homeostasis under an injury and promoting physical recovery. Tea, a popular phytochemical-rich beverage, has multiple health benefits, including lowering stress and regulating energy metabolism and natural sleep. However, the role of tea in regulating sickness sleep has received little attention. The mechanism underlying tea regulation of sickness sleep and its association with the maintenance of energy homeostasis in injured organisms remains to be elucidated. This review examines the current research on the effect of tea on sleep regulation, focusing on the function of tea in modulating energy homeostasis through sickness sleep, energy metabolism, and damage repair in model organisms. The potential mechanisms underlying tea in regulating sickness sleep are further suggested. Based on the biohomology of sleep regulation, this review provides novel insights into the role of tea in sleep regulation and a new perspective on the potential role of tea in restoring homeostasis from diseases.
Collapse
Affiliation(s)
- Jin Ouyang
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Yuxuan Peng
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
- College of Physical Education, Hunan City University, Yiyang 413002, China
| | - Yushun Gong
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
11
|
Process optimization, structural characterization, and antioxidant activities of black pigment extracted from Enshi selenium-enriched Sesamum indicum L. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
12
|
Xiang J, Rao S, Chen Q, Zhang W, Cheng S, Cong X, Zhang Y, Yang X, Xu F. Research Progress on the Effects of Selenium on the Growth and Quality of Tea Plants. PLANTS 2022; 11:plants11192491. [PMID: 36235356 PMCID: PMC9573726 DOI: 10.3390/plants11192491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022]
Abstract
Selenium (Se) is an essential trace element for humans and animals, and it plays an important role in immune regulation and disease prevention. Tea is one of the top three beverages in the world, and it contains active ingredients such as polyphenols, theanine, flavonoids, and volatile substances, which have important health benefits. The tea tree has suitable Se aggregation ability, which can absorb inorganic Se and transform it into safe and effective organic Se through absorption by the human body, thereby improving human immunity and preventing the occurrence of many diseases. Recent studies have proven that 50~100.0 mg/L exogenous Se can promote photosynthesis and absorption of mineral elements in tea trees and increase their biomass. The content of total Se and organic selenides in tea leaves significantly increases and promotes the accumulation of polyphenols, theanine, flavonoids, and volatile secondary metabolites, thereby improving the nutritional quality of tea leaves. This paper summarizes previous research on the effects of exogenous Se treatment on the growth and quality of tea trees to provide a theoretical basis and technical support for the germplasm selection and exploitation of Se-rich tea.
Collapse
Affiliation(s)
- Juan Xiang
- College of Horticulture and Gardening, Yangtze University, Jinzhou 434025, China
| | - Shen Rao
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qiangwen Chen
- College of Horticulture and Gardening, Yangtze University, Jinzhou 434025, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jinzhou 434025, China
| | - Shuiyuan Cheng
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xin Cong
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi 445000, China
| | - Yue Zhang
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi 445000, China
| | - Xiaoyan Yang
- Henry Fok School of Biology and Agricultural, Shaoguan University, Shaoguan 512005, China
- Correspondence: (X.Y.); (F.X.)
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jinzhou 434025, China
- Correspondence: (X.Y.); (F.X.)
| |
Collapse
|
13
|
Li H, Wang Y, Chen Y, Wang S, Zhao Y, Sun J. Arabinogalactan from Ixeris chinensis (Thunb.) Nakai as a stabilizer to decorate SeNPs and enhance their anti-hepatocellular carcinoma activity via the mitochondrial pathway. J Carbohydr Chem 2022. [DOI: 10.1080/07328303.2022.2105860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hongyan Li
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, China
| | - Yifan Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, China
| | - Yan Chen
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, China
| | - Shuxin Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, China
| | - Yifan Zhao
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, China
| | - Jinyuan Sun
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
14
|
Evaluation of the Brewing Characteristics, Digestion Profiles, and Neuroprotective Effects of Two Typical Se-Enriched Green Teas. Foods 2022; 11:foods11142159. [PMID: 35885402 PMCID: PMC9318317 DOI: 10.3390/foods11142159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
As a functional beverage, selenium (Se)-enriched green tea (Se-GT) has gained increasing popularity for its superior properties in promoting health. In this study, we compared the brewing characteristics, in vitro digestion profiles, and protective effects on neurotoxicity induced through the amyloid-beta (Aβ) peptide of two typical Se-GTs (Enshi Yulu (ESYL) and Ziyang Maojian (ZYMJ), representing the typical low-Se green tea and high-Se green tea, respectively). ESYL and ZYMJ showed similar chemical component leaching properties with the different brewing methods, and the optimized brewing conditions were 5 min, 90 °C, 50 mL/g, and first brewing. The antioxidant activities of the tea infusions had the strongest positive correlation with the tea polyphenols among all of the leaching substances. The tea infusions of ESYL and ZYMJ showed similar digestive behaviors, and the tea polyphenols in the tea infusions were almost totally degraded or transferred after 150 min of dynamic digestion. Studies conducted in a cell model of Alzheimer’s disease (AD) showed that the extract from the high-Se green tea was more effective for neuroprotection compared with the low-Se green tea. Overall, our results revealed the best brewing conditions and digestion behaviors of Se-GT and the great potential of Se-GT or Se-enriched green extract (Se-GTE) to be used as promising AD-preventive beverages or food ingredients.
Collapse
|
15
|
Role of Herbal Teas in Regulating Cellular Homeostasis and Autophagy and Their Implications in Regulating Overall Health. Nutrients 2021; 13:nu13072162. [PMID: 34201882 PMCID: PMC8308238 DOI: 10.3390/nu13072162] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 02/06/2023] Open
Abstract
Tea is one of the most popular and widely consumed beverages worldwide, and possesses numerous potential health benefits. Herbal teas are well-known to contain an abundance of polyphenol antioxidants and other ingredients, thereby implicating protection and treatment against various ailments, and maintaining overall health in humans, although their mechanisms of action have not yet been fully identified. Autophagy is a conserved mechanism present in organisms that maintains basal cellular homeostasis and is essential in mediating the pathogenesis of several diseases, including cancer, type II diabetes, obesity, and Alzheimer’s disease. The increasing prevalence of these diseases, which could be attributed to the imbalance in the level of autophagy, presents a considerable challenge in the healthcare industry. Natural medicine stands as an effective, safe, and economical alternative in balancing autophagy and maintaining homeostasis. Tea is a part of the diet for many people, and it could mediate autophagy as well. Here, we aim to provide an updated overview of popular herbal teas’ health-promoting and disease healing properties and in-depth information on their relation to autophagy and its related signaling molecules. The present review sheds more light on the significance of herbal teas in regulating autophagy, thereby improving overall health.
Collapse
|