1
|
Fu F, Li X, Chen Y, Li L, Dou J, Liang K, Chen Y, Lu Y, Huang Y. Genotoxicity and cytotoxicity evaluation of a heat-not-burn product. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 897:503784. [PMID: 39054007 DOI: 10.1016/j.mrgentox.2024.503784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 07/27/2024]
Abstract
'Heat-not-burn' products (HnBP) contain lower levels of harmful substances than traditional cigarettes, but the use of these products warrants further toxicological evaluation. We have compared the cytotoxicity and genotoxicity of a heat-not burn product with conventional cigarettes, in vivo and in vitro. Male Sprague Dawley rats were exposed to mainstream smoke from conventional cigarettes or a HnBP, for 4 or 28 days, followed by isolation of bone marrow polychromatic erythrocytes (PCE) and histological examination of the testes. Chinese hamster lung fibroblast cells were exposed in vitro to total particulate matter from cigarette smoke obtained through Cambridge filters. The cytotoxicity and genotoxicity of total particulate matter were assessed by the neutral red uptake assay, chromosome aberration assay, in vitro micronucleus test, comet assay, and Ames assay. In the short-term exposure rat models, only the conventional-cigarettes group showed a significant increase in the ratio of micronuclei to total PCE. There was no significant difference in rat testis histology in the long-term exposure models. In vitro, in the neutral red uptake assay, the HnBP product showed lower cytotoxicity than conventional cigarettes. Conventional cigarettes showed greater genotoxicity in the chromosome aberration assay, high-dose Ames tests with exogenous metabolic activation, and micronucleus tests. In summary, our results suggest that HnBP have lower cytotoxicity and genotoxicity than conventional cigarettes.
Collapse
Affiliation(s)
- Fudong Fu
- Department of Pulmonary and Critical Care Medicine, and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyu Li
- Department of Pulmonary and Critical Care Medicine, and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Younan Chen
- Department of Pulmonary and Critical Care Medicine, and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lan Li
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiexiong Dou
- Sichuan Center for Disease Control and Prevention, Chengdu 610044, China
| | - Kun Liang
- Harmful Components and Tar Reduction in Cigarette Key Laboratory of Sichuan Province, Chengdu 610101, China; New Tobacco Products Engineering and Technology Research Center of Sichuan Province, Chengdu 610101 China
| | - Yexian Chen
- Harmful Components and Tar Reduction in Cigarette Key Laboratory of Sichuan Province, Chengdu 610101, China; New Tobacco Products Engineering and Technology Research Center of Sichuan Province, Chengdu 610101 China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuchuan Huang
- Harmful Components and Tar Reduction in Cigarette Key Laboratory of Sichuan Province, Chengdu 610101, China; New Tobacco Products Engineering and Technology Research Center of Sichuan Province, Chengdu 610101 China.
| |
Collapse
|
2
|
Ushio M, Ishikawa T, Matsuura T, Mori IC, Kawai-Yamada M, Fukao Y, Nagano M. MHP1 and MHL generate odd-chain fatty acids from 2-hydroxy fatty acids in sphingolipids and are related to immunity in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111840. [PMID: 37619867 DOI: 10.1016/j.plantsci.2023.111840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/02/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
In plants, the 2-hydroxy fatty acids (HFAs) of sphingolipids are important for plant growth and stress responses. Although the synthetic pathway of HFAs is well understood, their degradation has not yet been elucidated. In Saccharomyces cerevisiae, Mpo1 has been identified as a dioxygenase that degrades HFAs. This study examined the functions of two homologs of yeast Mpo1, MHP1 and MHL, in Arabidopsis thaliana. The mhp1 and mhp1mhl mutants showed a dwarf phenotype compared to that of the wild type. Lipid analysis of the mutants revealed the involvement of MHP1 and MHL in synthesizing odd-chain fatty acids (OCFAs), possibly by the degradation of HFAs. OCFAs are present in trace amounts in plants; however, their physiological significance is largely unknown. RNA sequence analysis of the mhp1mhl mutant revealed that growth-related genes decreased, whereas genes involved in stress response increased. Additionally, the mhp1mhl mutant had increased expression of defense-related genes and increased resistance to infection by Pseudomonas syringae pv. tomato DC3000 (Pto), and Pto carrying the effector AvrRpt2. Phytohormone analysis demonstrated that jasmonic acid in mhp1mhl was higher than that in the wild type. These results indicate that MHP1 and MHL are involved in synthesizing OCFAs and immunity in Arabidopsis.
Collapse
Affiliation(s)
- Marina Ushio
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakuraku, Saitama 338-8570, Japan
| | - Takakazu Matsuura
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki 710-0046, Japan
| | - Izumi C Mori
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki 710-0046, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakuraku, Saitama 338-8570, Japan
| | - Yoichiro Fukao
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan; College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Minoru Nagano
- College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan.
| |
Collapse
|
3
|
Hu X, Cong P, Song Y, Wang X, Zhang H, Meng N, Fan X, Xu J, Xue C. Comprehensive Lipid Profile of Eight Echinoderm Species by RPLC-Triple TOF-MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:8230-8240. [PMID: 37196222 DOI: 10.1021/acs.jafc.3c00823] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Echinoderms are of broad interest for abundant bioactive lipids. The comprehensive lipid profiles in eight echinoderm species were obtained by UPLC-Triple TOF-MS/MS with characterization and semi-quantitative analysis of 961 lipid molecular species in 14 subclasses of 4 classes. Phospholipids (38.78-76.83%) and glycerolipids (6.85-42.82%) were the main classes in all investigated echinoderm species, with abundant ether phospholipids, whereas the proportion of sphingolipids was higher in sea cucumbers. Two sulfated lipid subclasses were detected in echinoderms for the first time; sterol sulfate was rich in sea cucumbers, whereas sulfoquinovosyldiacylglycerol existed in the sea star and sea urchins. Furthermore, PC(18:1/24:2), PE(16:0/14:0), and TAG(50:1e) could be used as lipid markers to distinguish eight echinoderm species. In this study, the differentiation of eight echinoderms was achieved by lipidomics and revealed the uniqueness of the natural biochemical fingerprints of echinoderms. The findings will help evaluate the nutritional value in the future.
Collapse
Affiliation(s)
- Xinxin Hu
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Peixu Cong
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Yu Song
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Xincen Wang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong 266003, China
- Institute of Nutrition and Health, Qingdao University, No. 308 Ningxia Road, Qingdao, Shandong 266071, China
| | - Hongwei Zhang
- Technology Center of Qingdao Customs District, Qingdao, Shandong 266002, China
| | - Nan Meng
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Xiaowei Fan
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong 266003, China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao, Shandong 266237, China
| |
Collapse
|
4
|
Beekrum L, Amonsou E, Mellem J. Safety evaluation of Amphora sp., a marine microalgal diatom isolated from the Cape coastal waters, South Africa. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
5
|
Chemical Characterization and In Vivo Toxicological Safety Evaluation of Emu Oil. Nutrients 2022; 14:nu14112238. [PMID: 35684037 PMCID: PMC9182831 DOI: 10.3390/nu14112238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, the physicochemical properties, fatty acid composition, antioxidant activities, and in vitro as well as in vivo toxicological safety of emu oil were investigated. Emu oil was shown to have a low acid and peroxide value, low amounts of carotenoid and phenolic compounds, and high doses of oleic acid and linoleic acid. Furthermore, in a bacterial reverse mutation assay, emu oil demonstrated no change in the amount of revertant colonies for all strains. In a chromosomal assay, no aberrations occurred in any of the emu oil treatment groups (1.25, 2.5, and 5 μg/mL). In the bone marrow micronucleus test, emu oil up to 20 mL/kg showed no significant increase in the incidence of micronucleated polychromatic erythrocytes. Moreover, emu oil up to 19.3 mg/kg body weight did not affect body weight in an acute oral toxicity study. These results are crucial for the adoption of emu oil as an alternative source of edible oil.
Collapse
|