1
|
Yu S, Zhu X, Zhao X, Li Y, Niu X, Chen Y, Ying J. Improvement of chronic metabolic inflammation and regulation of gut homeostasis: Tea as a potential therapy. Pharmacol Ther 2025; 269:108828. [PMID: 40020787 DOI: 10.1016/j.pharmthera.2025.108828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 12/27/2024] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
Chronic metabolic inflammation is a common mechanism linked to the development of metabolic disorders such as obesity, diabetes, and cardiovascular disease (CVD). Chronic metabolic inflammation often related to alterations in gut homeostasis, and pathological processes involve the activation of endotoxin receptors, metabolic reprogramming, mitochondrial dysfunction, and disruption of intestinal nuclear receptor activity. Recent investigations into homeostasis and chronic metabolic inflammation have revealed a novel mechanism which is characterized by a timing interaction involving multiple components and targets. This article explores the positive impact of tea consumption on metabolic health of populations, with a special focus on the improvement of inflammatory indicators and the regulation of gut microbiota. Studies showed that tea consumption is related to the enrichment of gut microbiota. The relative proportion of Firmicutes/Bacteroidetes (F/B) is altered, while the abundance of Lactobacillus, Bifidobacterium, and A. muciniphila increased significantly in most of the studies. Thus, tea consumption could provide potential protection from the development of chronic diseases by improving gut homeostasis and reducing chronic metabolic inflammation. The direct impact of tea on intestinal homeostasis primarily targets lipopolysaccharide (LPS)-related pathways. This includes reducing the synthesis of intestinal LPS, inhibiting LPS translocation, and preventing the binding of LPS to TLR4 receptors to block downstream inflammatory pathways. The TLR4/MyD88/NF-κB p65 pathway is crucial for anti-metaflammatory responses. The antioxidant properties of tea are linked to enhancing mitochondrial function and mitigating mitochondria-related inflammation by eliminating free radicals, inhibiting NLRP3 inflammasomes, and modulating Nrf2/ARE activity. Tea also contributes to safeguarding the intestinal barrier through various mechanisms, such as promoting the synthesis of short-chain fatty acids in the intestine, activating intestinal aryl hydrocarbon receptor (AhR) and farnesoid X receptor (FXR), and improving enteritis. Functional components that improve chronic metabolic inflammation include tea polyphenols, tea pigments, TPS, etc. Tea metabolites such as 4-Hydroxyphenylacetic acid and 3,4-Dihydroxyflavan derivatives, etc., also contribute to anti-chronic metabolic inflammation effects of tea consumption. The raw materials and processing technologies affect the functional component compositions of tea; therefore, consuming different types of tea may result in varying action characteristics and mechanisms. However, there is currently limited elaboration on this aspect. Future research should conduct in-depth studies on the mechanism of tea and its functional components in improving chronic metabolic inflammation. Researchers should pay attention to whether there are interactions between tea and other foods or drugs, explore safe and effective usage and dosage, and investigate whether there are individual differences in the tea-drinking population leading to different effects of tea intervention. Ultimately, the application of tea drinking could be a universal therapy for regulating intestinal homeostasis, anti-chronic metabolic inflammatory responses, and promoting metabolic health.
Collapse
Affiliation(s)
- Shiyi Yu
- Nutrition and Health Research Institute, School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430000, China
| | - Xuan Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xiayu Zhao
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yan Li
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Xinghe Niu
- Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; COFCO Nutrition and Health Research Institute, Beijing 102209, China
| | - Yinghua Chen
- Nutrition and Health Research Institute, School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430000, China
| | - Jian Ying
- Nutrition and Health Research Institute, School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430000, China.
| |
Collapse
|
2
|
Xu Z, Tao Z, Guo Y. The role of tea in managing cardiovascular risk factors: potential benefits, mechanisms, and interventional strategies. Front Nutr 2025; 12:1530012. [PMID: 40342365 PMCID: PMC12058793 DOI: 10.3389/fnut.2025.1530012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/21/2025] [Indexed: 05/11/2025] Open
Abstract
Traditional major cardiovascular disease (CVD) risk factors include dyslipidemia, hypertension, smoking, diabetes, and obesity. Tea is rich in various bioactive substances such as tea polyphenols, theaflavins, and tea polysaccharides. Due to the regulatory effects on multiple pathways and its anti-inflammatory and antioxidant properties, these active substances have shown significant efficacy in regulating dyslipidemia, hypertension, diabetes, obesity, and cardiac autonomic function. Additionally, tea possesses anti-inflammatory and antithrombotic properties, making it a promising dietary supplement for nutritional interventions in the primary and secondary prevention of CVDs. However, the complex composition of tea, although shown to have certain effects in vivo, does not fully elucidate the specific mechanisms of action. Moreover, the varying application methods across different studies lead to differences in intervention effects and dose-response relationships, sometimes resulting in contradictory findings. This article reviews the potential benefits, mechanisms of action, and application methods of tea for cardiovascular risk factors, elucidating its potential as a nutritional intervention.
Collapse
Affiliation(s)
- Ziming Xu
- Xiyuan Hospital Affiliated to China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhu Tao
- Xiyuan Hospital Affiliated to China Academy of Chinese Medical Sciences, Beijing, China
- The Chinese Journal of Integrated Traditional and Western Medicine Press, Beijing, China
| | - Yan Guo
- Xiyuan Hospital Affiliated to China Academy of Chinese Medical Sciences, Beijing, China
- The Chinese Journal of Integrated Traditional and Western Medicine Press, Beijing, China
- WHO Collaborating Center for Traditional Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Wei K, Wei Q, Wei Y, Peng L, Cheng L, Zhu Y, Wang Y, Wei X. Chemical Basis and Molecular Mechanism of Aged Qingzhuan Tea Alleviating DSS-Induced Colitis. Mol Nutr Food Res 2024:e2400734. [PMID: 39676441 DOI: 10.1002/mnfr.202400734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/31/2024] [Indexed: 12/17/2024]
Abstract
SCOPE Inflammatory bowel disease (IBD) poses a serious threat to human health. Qingzhuan tea (QZT), especially aged QZT, was concerned to have a potential effect on the prevention of colitis. In this study, we aim to assess the feasibility of different aged QZT on the alleviation of colitis induced by DSS. METHODS AND RESULTS A comprehensive investigation into the efficacy of QZT of different aging years was conducted by establishing the animal model of colitis and the cellular inflammation model. The results demonstrated that QZT aged 0-20 years could significantly alleviate the symptoms of colitis. Notably, QZT aged for 5 years (A5) and 10 years (A10) was particularly effective in downregulating the levels of proinflammatory cytokines, via suppressing the activation of the NF-κB p65 pathway and upregulating the expression of the Nrf2/ARE pathway. The additional upregulation of gut microbiota including Allobaculum and Lactobacillus and superior alleviation on mitochondrial damage may be the mechanisms for A10 to show the better activity than A0 on alleviating colitis. CONCLUSION Our study highlights the potential of QZT, especially A5 and A10, and provides valuable insights for the development of functional foods targeting colitis.
Collapse
Affiliation(s)
- Kang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Qiurong Wei
- Chibi People's Hospital, Chibi, Hubei, PR China
| | - Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Lanlan Peng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Lizeng Cheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yuzhi Zhu
- Yangloudong Tea Industry Co. LTD, Yangloudong Tea Culture Ecological Industrial Park, Chibi, Hubei, PR China
| | - Yuanfeng Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, PR China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|
4
|
Abbasi F, De-la-Torre GE, KalantarHormozi MR, Schmidt TC, Dobaradaran S. A review of endocrine disrupting chemicals migration from food contact materials into beverages. CHEMOSPHERE 2024; 355:141760. [PMID: 38537710 DOI: 10.1016/j.chemosphere.2024.141760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/18/2024]
Abstract
A significant and pressing issue revolves around the potential human exposure to endocrine disrupting chemicals (EDCs), which pose a substantial risk primarily through contaminated beverages. However, a comprehensive review for comparison of the migration rates of EDCs into these matrixes is currently lacking. This study reviews the beverages contamination with EDCs, including phthalates (PAEs), bisphenol A (BPA), hormone-like compounds, elements, and other organic EDCs. Also, the EDCs migration into milk and other dairy products, coffee, tea, and cold beverages related to their release from contact materials, preparation components, and storage conditions are briefly summarized. The data illustrates that besides the contamination of raw materials, the presence of EDCs associated with the type of food contact materials (FCMs)and their migration rate is increased with acidity, temperature, and storage time. The highest concentration of PAEs was detected from plastic and synthetic polymer films, while BPA strongly leaches from epoxy resins and canned metal. Furthermore, the presence of elements with endocrine disrupting characteristics was confirmed in cold beverages, soft drinks, hot drink and milk. Moreover, hormone-like compounds have been found to be released from coffee preparation components. Despite the few data about the migration rate of other EDCs including UV-stabilizers, surfactants, and antibacterial compounds into beverages, their presence was reported into milk, coffee, and different beverages, especially in packed samples. Studies on the EDCs leaching have primarily focused on PAEs and BPA, while other compounds require further investigation. Regardless, the possible risk that EDCs pose to humans through beverage consumption cannot be overlooked.
Collapse
Affiliation(s)
- Fariba Abbasi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| | | | | | - Torsten C Schmidt
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Universitatsstr. ¨ 5, Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Universitatsstr. ¨ 5, Essen, 45141, Germany
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Universitatsstr. ¨ 5, Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Universitatsstr. ¨ 5, Essen, 45141, Germany; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
5
|
Deng H, Liu J, Xiao Y, Wu JL, Jiao R. Possible Mechanisms of Dark Tea in Cancer Prevention and Management: A Comprehensive Review. Nutrients 2023; 15:3903. [PMID: 37764687 PMCID: PMC10534731 DOI: 10.3390/nu15183903] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Tea is one of the most popular drinks in the world. Dark tea is a kind of post-fermented tea with unique sensory characteristics that is produced by the special fermentation of microorganisms. It contains many bioactive substances, such as tea polyphenols, theabrownin, tea polysaccharides, etc., which have been reported to be beneficial to human health. This paper reviewed the latest research on dark tea's potential in preventing and managing cancer, and the mechanisms mainly involved anti-oxidation, anti-inflammation, inhibiting cancer cell proliferation, inducing cancer cell apoptosis, inhibiting tumor metastasis, and regulating intestinal flora. The purpose of this review is to accumulate evidence on the anti-cancer effects of dark tea, the corresponding mechanisms and limitations of dark tea for cancer prevention and management, the future prospects, and demanding questions about dark tea's possible contributions as an anti-cancer adjuvant.
Collapse
Affiliation(s)
- Huilin Deng
- Department of Food Science and Engineering, Institute of Science and Technology, Jinan University, 601 Huangpu Road, Guangzhou 510632, China; (H.D.); (J.L.)
| | - Jia Liu
- Department of Food Science and Engineering, Institute of Science and Technology, Jinan University, 601 Huangpu Road, Guangzhou 510632, China; (H.D.); (J.L.)
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Macau, China;
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China;
| | - Rui Jiao
- Department of Food Science and Engineering, Institute of Science and Technology, Jinan University, 601 Huangpu Road, Guangzhou 510632, China; (H.D.); (J.L.)
| |
Collapse
|
6
|
Jiao Y, Song Y, Yan Z, Wu Z, Yu Z, Zhang D, Ni D, Chen Y. The New Insight into the Effects of Different Fixing Technology on Flavor and Bioactivities of Orange Dark Tea. Molecules 2023; 28:molecules28031079. [PMID: 36770746 PMCID: PMC9920512 DOI: 10.3390/molecules28031079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Peach leaf orange dark tea (ODT) is a fruity tea made by removing the pulp from peach leaf orange and placing dry Qingzhuan tea into the husk, followed by fixing them together and drying. Since the quality of traditional outdoor sunlight fixing (SL) is affected by weather instability, this study explored the feasibility of two new fixing methods, including hot air fixing (HA) and steam fixing (ST). Results showed that fixing method had a great impact on ODT shape, aroma, and taste. Compared with SL and ST, HA endowed ODT with higher fruit aroma, mellow taste, better coordination, and higher sensory evaluation score. Physical-chemical composition analysis showed that SL-fixed orange peel was higher than HA- or ST-fixed peel in the content of polyphenols, flavonoids, soluble protein, hesperidin and limonin, while HA has a higher content of volatile substances and contains more alcohols, aldehydes and ketones, and acid and esters than ST and SL. Activity analysis showed that HA was superior to ST or SL in comprehensive antioxidant activity and inhibitory activity against α-glucosidase. Comprehensive results demonstrated that HA has better performance in improving ODT quality and can replace the traditional SL method in production.
Collapse
Affiliation(s)
- Yuanfang Jiao
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yulin Song
- Zigui County Agricultural and Rural Bureau, Yichang 443600, China
| | - Zhi Yan
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan 430070, China
| | - Zhuanrong Wu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Yu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - De Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Dejiang Ni
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (D.N.); (Y.C.); Tel.: +86-181-7122-7832 (D.N.); +86-186-9616-9236 (Y.C.)
| | - Yuqiong Chen
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (D.N.); (Y.C.); Tel.: +86-181-7122-7832 (D.N.); +86-186-9616-9236 (Y.C.)
| |
Collapse
|
7
|
Ouyang J, Peng Y, Gong Y. New Perspectives on Sleep Regulation by Tea: Harmonizing Pathological Sleep and Energy Balance under Stress. Foods 2022; 11:3930. [PMID: 36496738 PMCID: PMC9738644 DOI: 10.3390/foods11233930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/09/2022] Open
Abstract
Sleep, a conservative evolutionary behavior of organisms to adapt to changes in the external environment, is divided into natural sleep, in a healthy state, and sickness sleep, which occurs in stressful environments or during illness. Sickness sleep plays an important role in maintaining energy homeostasis under an injury and promoting physical recovery. Tea, a popular phytochemical-rich beverage, has multiple health benefits, including lowering stress and regulating energy metabolism and natural sleep. However, the role of tea in regulating sickness sleep has received little attention. The mechanism underlying tea regulation of sickness sleep and its association with the maintenance of energy homeostasis in injured organisms remains to be elucidated. This review examines the current research on the effect of tea on sleep regulation, focusing on the function of tea in modulating energy homeostasis through sickness sleep, energy metabolism, and damage repair in model organisms. The potential mechanisms underlying tea in regulating sickness sleep are further suggested. Based on the biohomology of sleep regulation, this review provides novel insights into the role of tea in sleep regulation and a new perspective on the potential role of tea in restoring homeostasis from diseases.
Collapse
Affiliation(s)
- Jin Ouyang
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Yuxuan Peng
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
- College of Physical Education, Hunan City University, Yiyang 413002, China
| | - Yushun Gong
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
8
|
Lu R, Sugimoto T, Tsuboi T, Sekikawa T, Tanaka M, Lyu X, Yokoyama S. Sichuan dark tea improves lipid metabolism and prevents aortic lipid deposition in diet-induced atherosclerosis model rats. Front Nutr 2022; 9:1014883. [PMID: 36505232 PMCID: PMC9729532 DOI: 10.3389/fnut.2022.1014883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/28/2022] [Indexed: 11/25/2022] Open
Abstract
Background and aims Sichuan dark tea (ST), Zangcha, is a traditional fermented Chinese tea found in Sichuan and Tibet and claimed for beneficial effects against lifestyle-related metabolic disorders. We examined the effects of ST on lipid metabolism and atherosclerosis. Methods and results Sichuan dark tea was given to fat-rich diet-induced atherosclerosis model rats in comparison with dark-fermented Chinese Pu-erh tea (PT) and Japanese green tea (GT). After 8 weeks of feeding, ST and PT induced an increase in high-density lipoprotein (HDL)-cholesterol and a decrease in glucose, and ST decreased triglyceride in plasma. ST also induced low pH in the cecum. There was no significant change in their body weight among the fat-feeding groups but a decrease was found in the visceral fat and liver weight in the ST group. Accordingly, ST reduced lipid deposition in the aorta in comparison with PT and GT. ST increased mRNA of LXRα, PPARα, PPARγ, and ABCA1 in the rat liver. The extract of ST stimulated the AMPK pathway to increase the expression of ABCA1 in J774 cells and increased expression of lipoprotein lipase and hormone-sensitive lipase in 3T3L1 cells, consistent with its anti-atherogenic effects in rats. High-performance liquid chromatography analysis showed unique spectra of original specific compounds of caffeine and catechins in each tea extract, but none of them was likely responsible for these effects. Conclusion Sichuan dark tea increases plasma HDL and reduces plasma triglyceride to decrease atherosclerosis through AMPK activation. Further study is required to identify specific components for the effects of this tea preparation.
Collapse
Affiliation(s)
- Rui Lu
- Food and Nutritional Sciences, Chubu University, Kasugai, Japan
| | - Takumi Sugimoto
- Food and Nutritional Sciences, Chubu University, Kasugai, Japan
| | - Tomoe Tsuboi
- Food and Nutritional Sciences, Chubu University, Kasugai, Japan
| | | | - Mamoru Tanaka
- Food and Nutritional Sciences, Chubu University, Kasugai, Japan
| | - Xiaohua Lyu
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Shinji Yokoyama
- Food and Nutritional Sciences, Chubu University, Kasugai, Japan,*Correspondence: Shinji Yokoyama,
| |
Collapse
|