1
|
Casciaro C, Hamada H, Bloise E, Matthews SG. The paternal contribution to shaping the health of future generations. Trends Endocrinol Metab 2025; 36:459-471. [PMID: 39562264 DOI: 10.1016/j.tem.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024]
Abstract
Paternal health and exposure to adverse environments in the period prior to conception have a profound impact on future generations. Adversities such as stress, diet, and toxicants influence offspring health. Emerging evidence indicates that epigenetic mechanisms including noncoding RNA, DNA methylation, and chromatin remodelling mediate these effects. Preclinical studies have contributed to advancing mechanistic understanding in the field; however, human research is limited and primarily observational. Here, we discuss the evidence linking paternal to offspring health and advocate for further research in this area, which may ultimately inform policy and healthcare guidelines to improve paternal preconception health and offspring outcomes.
Collapse
Affiliation(s)
| | - Hirotaka Hamada
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Gynecology and Obstetrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Enrrico Bloise
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Stephen G Matthews
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Sinai Health Systems, Toronto, ON, Canada.
| |
Collapse
|
2
|
Ajibare AJ, Odetayo AF, Akintoye OO, Olayaki LA. Zinc ameliorates acrylamide-induced oxidative stress and apoptosis in testicular cells via Nrf2/HO-1/NfkB and Bax/Bcl2 signaling pathway. Redox Rep 2024; 29:2341537. [PMID: 38629506 PMCID: PMC11025409 DOI: 10.1080/13510002.2024.2341537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Acrylamide is a toxic substance formed in some foods that require high-temperature cooking processes and has been implicated as a gonadotoxic agent. Zinc, on the other hand, is a known antioxidant with fertility-enhancing properties. Hence, this study was designed to explore the possible ameliorative effect of zinc in acrylamide-induced gonadotoxicity. METHODS Twenty-four male Wistar rats were randomized into control, acrylamide (10 mg/kg of acrylamide), acrylamide + 1 mg/kg of zinc, and acrylamide + 3 mg/kg of zinc. The administration was via the oral route and lasted for 56 days. RESULTS Zinc treatment ameliorated acrylamide-impaired sperm quality, normal testicular histoarchitecture, and hormonal balance, which was accompanied by increased testicular malondialdehyde and interleukin-1β and decreased testicular superoxide dismutase (SOD) and catalase (CAT). Furthermore, zinc prevented acrylamide-induced downregulation of testicular nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and B-cell lymphoma 2 (BCl2) expression and upregulation of testicular nuclear factor kappa B (NF-κB) and bcl-2-like protein 4 (bax) expression. CONCLUSION In conclusion, zinc may protect against acrylamide-induced testicular toxicity, mediated by its antioxidant, anti-inflammatory, and antiapoptotic effects.
Collapse
Affiliation(s)
- Ayodeji Johnson Ajibare
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, Lead City University, Ibadan, Nigeria
| | | | - Olabode Oluwadare Akintoye
- Department of Physiology, Faculty of Basic Medical Science, College of Medicine, Ekiti State University, Ado Ekiti, Nigeria
| | | |
Collapse
|
3
|
Liu YC, Li RC, Wang WK, Chen YZ, He QK, Xu ZR, Yang YF, Cheng SY, Wang HL, Qi ZQ, Xu CL, Liu Y. Acrylamide Exposure Impairs Ovarian Tricarboxylic Acid Cycle and Reduces Oocyte Quality in Mouse. ENVIRONMENTAL TOXICOLOGY 2024; 39:5074-5085. [PMID: 39082229 DOI: 10.1002/tox.24390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/29/2024] [Accepted: 06/01/2024] [Indexed: 10/17/2024]
Abstract
Acrylamide (AAM), a compound extensively utilized in various industrial applications, has been reported to induce toxic effects across multiple tissues in living organisms. Despite its widespread use, the impact of AAM on ovarian function and the mechanisms underlying these effects remain poorly understood. Here, we established an AAM-exposed mouse toxicological model using 21 days of intragastric AAM administration. AAM exposure decreased ovarian coefficient and impaired follicle development. Further investigations revealed AAM would trigger apoptosis and disturb tricarboxylic acid cycle in ovarian tissue, thus affecting mitochondrial electron transport function. Moreover, AAM exposure decreased oocyte and embryo development potential, mechanically associated with pericentrin and phosphorylated Aurora A cluster failure, leading to meiotic spindle assembly defects. Collectively, these results suggest that AAM exposure may lead to apoptosis, glucose metabolic disorders, and mitochondrial dysfunction in ovary tissue, ultimately compromising oocyte quality.
Collapse
Affiliation(s)
- Yue-Cen Liu
- Medical College, Guangxi University, Nanning, Guangxi, China
| | - Rui-Cheng Li
- Medical College, Guangxi University, Nanning, Guangxi, China
| | - Wen-Ke Wang
- Medical College, Guangxi University, Nanning, Guangxi, China
| | - Yan-Zhu Chen
- Medical College, Guangxi University, Nanning, Guangxi, China
| | - Quan-Kuo He
- Medical College, Guangxi University, Nanning, Guangxi, China
| | - Zhi-Ran Xu
- Translational Medicine Research Center, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yi-Fan Yang
- Medical College, Guangxi University, Nanning, Guangxi, China
| | - Si-Yao Cheng
- Medical College, Guangxi University, Nanning, Guangxi, China
| | - Hai-Long Wang
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zhong-Quan Qi
- Medical College, Guangxi University, Nanning, Guangxi, China
| | - Chang-Long Xu
- Reproductive Medical Center of Nanning Second People's Hospital, Nanning, Guangxi, China
| | - Yu Liu
- Medical College, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
4
|
Zhang H, Liu Y, Wen Y, Wang H, Chen L. The antioxidant protective effect of resveratrol on long-term exposure to acrylamide-induced skeletal toxicity in female mice. Toxicol Res (Camb) 2024; 13:tfae109. [PMID: 39036523 PMCID: PMC11256996 DOI: 10.1093/toxres/tfae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/11/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024] Open
Abstract
Background Acrylamide (AA) is a toxic substance formed when cooking starch-based foods at high temperatures. Studies have shown that AA can cause neurotoxicity, reproductive toxicity and so on. However, there remains limited understanding of the potential skeletal toxicity of AA. Objective The aim of this study was to investigate the potential skeletal toxicity of AA, as well as the potential bone protective effects of Resveratrol (RVT). Methods Based on the daily intake of adult women, adult female mice was treated with AA at 0, 0.01, 0.1, 1 mg/kg/d or AA/RVT (1 mg/kg/d AA +10 mg/kg/d RVT) for 8 weeks, and skeletal toxicity were evaluated by RT-qPCR and histopathological techniques. Results The results found that exposure to AA (0.1 or 1 mg/kg/d) after 8 weeks, osteogenesis exhibited pathological damage characteristics such as inhibition of growth plate function, and reduction of fibrous tissue, and cartilage exhibited pathological damage characteristics such as irregular cell morphology and arrangement, and damage to the tidal line. The results of cellular functional gene testing showed a decrease in the expression of functional genes in osteoblasts and chondrocytes. Meanwhile, after further co-treatment with AA (1 mg/kg/d) and resveratrol (RVT) (10 mg/kg/d), we found that RVT restored AA-induced damage to osteogenesis and cartilage, and reduced the high apoptosis and oxidative stress levels in osteogenesis/cartilage after AA exposure. Conclusion In summary, this study confirmed the skeletal toxicity of AA on female adult mice, and further clarified the antioxidant protective effect of RVT on this toxicity.
Collapse
Affiliation(s)
- Haonan Zhang
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Yi Liu
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Yinxian Wen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, China
- Joint Disease Research Center of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, No. 115 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, China
- Joint Disease Research Center of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan 430071, China
| |
Collapse
|
5
|
Li Z, Zhao C, Cao C. Production and Inhibition of Acrylamide during Coffee Processing: A Literature Review. Molecules 2023; 28:molecules28083476. [PMID: 37110710 PMCID: PMC10143638 DOI: 10.3390/molecules28083476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Coffee is the third-largest beverage with wide-scale production. It is consumed by a large number of people worldwide. However, acrylamide (AA) is produced during coffee processing, which seriously affects its quality and safety. Coffee beans are rich in asparagine and carbohydrates, which are precursors of the Maillard reaction and AA. AA produced during coffee processing increases the risk of damage to the nervous system, immune system, and genetic makeup of humans. Here, we briefly introduce the formation and harmful effects of AA during coffee processing, with a focus on the research progress of technologies to control or reduce AA generation at different processing stages. Our study aims to provide different strategies for inhibiting AA formation during coffee processing and investigate related inhibition mechanisms.
Collapse
Affiliation(s)
- Zelin Li
- Department of Food Science and Engineering, College of Life Sciences, Southwest Forestry University, Kunming 650224, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Chunyan Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Changwei Cao
- Department of Food Science and Engineering, College of Life Sciences, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
6
|
Yu Y, Zhang D, Xu J, Zhang D, Yang L, Xia R, Wang SL. Adolescence is a sensitive period for acrylamide-induced sex hormone disruption: Evidence from NHANES populations and experimental mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114413. [PMID: 36516620 DOI: 10.1016/j.ecoenv.2022.114413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Acrylamide (AA) is widely contaminated in environment and diet. However, the association of AA and sex hormones has rarely been investigated, especially in adolescents, a period of particular susceptibility to sex hormone disruption. In this study, survey-weighted multivariate linear regression models were conducted to determine the association between AA Hb biomarkers [HbAA and glycidamide (HbGA)] and sex hormones [total testosterone (TT) and estradiol (E2)] in a total of 3268 subjects from National Health and Nutrition Examination Survey (NHANES) 2013-2016 waves. Additionally, adult and pubertal mice were treated with AA to assess the effect of AA on sex hormones and to explore the potential mechanisms. Among all the subjects, significant negative patterns for HbGA and sex hormones were identified only in youths (6-19 years old), with the lowest β being - 0.53 (95% CI: -0.80 to -0.26) for TT in males and - 0.58 (95% CI: -0.93 to -0.23) for E2 in females. Stratified analysis further revealed significant negative associations between HbGA and sex hormones in adolescents, with the lowest β being - 0.58 (95% CI: -1.02 to -0.14) for TT in males and - 0.54 (95% CI: -1.03 to -0.04) for E2 in females, while there were no significant differences between children or late adolescents. In mice, the levels of TT and E2 were dramatically reduced in AA-treated pubertal mice but not in adult mice. AA disturbed the expression of genes in the hypothalamic-pituitary-gonadal (HPG) axis, induced apoptosis of hypothalamus-produced gonadotropin-releasing hormone (GnRH) neurons in the hypothalamus and reduced serum and hypothalamic GnRH levels in pubertal mice. Our study indicates AA could reduce TT and E2 levels by injuring GnRH neurons and disrupting the HPG axis in puberty, which manifested as severe endocrine disruption on adolescents. Our findings reinforce the idea that adolescence is a vulnerable stage in AA-induced sex hormone disruption.
Collapse
Affiliation(s)
- Yongquan Yu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Di Zhang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Jiayi Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Daiwei Zhang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Liu Yang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Rong Xia
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Shou-Lin Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
| |
Collapse
|
7
|
Gao Y, Zhang D, Wang P, Qu X, Xu J, Yu Y, Zhou X. Acrylamide-induced meiotic arrest of spermatocytes in adolescent mice by triggering excessive DNA strand breaks: Potential therapeutic effects of resveratrol. Hum Exp Toxicol 2023; 42:9603271231188293. [PMID: 37550604 DOI: 10.1177/09603271231188293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Background: Baked carbohydrate-rich foods are the main source of acrylamide (AA) in the general population and are widely consumed by teenagers. Considering the crucial development of the reproductive system during puberty, the health risks posed by AA in adolescent males have raised public concern.Methods: In this study, we exposed 3-week-old male pubertal mice to AA for 4 weeks to evaluate its effect on spermatogenesis using computer-assisted sperm analysis (CASA) and historical analysis. Flow cytometric analysis and meiocyte spreading assay were conducted to assess meiosis in mice. The expression of meiosis-related proteins and double-strand break (DSB) proteins were evaluated by immunoblot analyses. Additionally, isolated spermatocytes were used to explore the role of resveratrol in AA-induced damages of meiosis.Results: Our results showed that AA decreased the testicular and epididymal indexes, reduced sperm count and motility, and induced morphological disruption of the testes in pubertal mice. Subsequent meiotic analysis revealed that AA increased the proportion of 4C spermatocytes and decreased the proportion of 1C spermatids. The expression levels of meiosis-related proteins (SYCP3, Cyclin A1 and CDK2) were downregulated, and signaling proteins (γH2AX, p-CHK2 and p-ATM) expression levels were upregulated in AA-treated mice testes. Similar expression patterns were observed in primary spermatocytes treated with AA and these effects were reversed significantly by resveratrol.Conclusions: Our results indicate that AA induces meiotic arrest via persistent activation of DSBs, which may contribute to AA-compromised spermatogenesis. Resveratrol could serve as a potential therapeutic agent against AA-induced meiotic toxicity. These data highlight the importance of natural product supplementation for treating AA-related reproductive toxicity.
Collapse
Affiliation(s)
- Y Gao
- Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - D Zhang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - P Wang
- Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - X Qu
- Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - J Xu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Y Yu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - X Zhou
- Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|