1
|
Michaelis V, Kasper S, Naperkowski L, Pusse J, Thiel A, Ebert F, Aschner M, Schwerdtle T, Haase H, Bornhorst J. The Impact of Zinc on Manganese Bioavailability and Cytotoxicity in HepG2 Cells. Mol Nutr Food Res 2023; 67:e2200283. [PMID: 36683243 DOI: 10.1002/mnfr.202200283] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
SCOPE Despite their essentiality, several studies have shown that either manganese (Mn) or zinc (Zn) overexposure may lead to detrimental health effects. Although Mn is transported by some of the SLC family transporters that translocate Zn, the role of Zn in hepatocellular Mn transport and Mn-induced toxicity have yet to be fully characterized. METHODS AND RESULTS The human hepatoma cell line, HepG2, is utilized. Total cellular Mn and Zn amounts are determined after cells are treated with Zn 2 or 24 h prior to Mn incubation for additional 24 h with inductively coupled plasma-based spectrometry and labile Zn is assessed with the fluorescent probe FluoZin-3. Furthermore, mRNA expression of genes involved in metal homeostasis, and mechanistic endpoints associated with Mn-induced cytotoxicity are addressed. These results suggest that Zn protects against Mn-induced cytotoxicity and impacts Mn bioavailability to a great extent when cells are preincubated with higher Zn concentrations for longer duration as characterized by decreased activation of caspase-3 as well as lactate dehydrogenase (LDH) release. CONCLUSIONS Zn protects against Mn-induced cytotoxicity in HepG2 cells possibly due to decreased Mn bioavailability. Additionally, mRNA expression of metal homeostasis-related genes indicates possible underlying pathways that should to be addressed in future studies.
Collapse
Affiliation(s)
- Vivien Michaelis
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119, Wuppertal, Germany
| | - Silja Kasper
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119, Wuppertal, Germany
| | - Lisa Naperkowski
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119, Wuppertal, Germany
| | - Jan Pusse
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119, Wuppertal, Germany
| | - Alicia Thiel
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119, Wuppertal, Germany
| | - Franziska Ebert
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Michael Aschner
- Department of Molecular Pharmacology, Neuroscience, and Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, 14558, Nuthetal, Germany
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Hajo Haase
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, 14558, Nuthetal, Germany
- Department of Food Chemistry and Toxicology, Berlin Institute of Technology, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119, Wuppertal, Germany
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, 14558, Nuthetal, Germany
| |
Collapse
|
2
|
Muñoz-Armenta G, Pérez-González E, Rodríguez-Meza GD, González-Ocampo HA. Health risk of consuming Sphoeroides spp. from the Navachiste Lagoon complex due to its trace metals and organochlorine pesticides content. Sci Rep 2022; 12:18393. [PMID: 36319660 PMCID: PMC9626642 DOI: 10.1038/s41598-022-22757-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022] Open
Abstract
The Navachiste complex (NAV) is impacted by neighbored human activities and is located in the southwestern coastal zone of the Gulf of California. The study determines the trace metal (TM) and organochlorine pesticides (OCP) health risk content in the edible tissue of Sphoeroides spp. from NAV. The daily intakes (EDI), target hazard quotient (THQ), hazard index (HI), and carcinogenic and non-carcinogenic risks were calculated. Twenty OCP and seven TM were detected. Cd, Cu, Fe, Mn, Pb, and Zn were above MRLs. The γ‒Chlordane was the most frequent OCP. The highest average concentration was for α‒HCH, followed by γ‒chlordane. With the high ratios of γ‒HCH, p, p'‒ DDD and p, p'‒DDD, and the absence of p, p'‒ DDT, the higher ratios for dieldrin and endrin than for aldrin, α‒ chlordane, γ‒chlordane, heptachlor, and heptachlor epoxide indicates historical contamination. In contrast, the residual products of methoxychlor, endosulfan, and its isomers indicate endosulfan's recent use. The TM EDI, THQ > 1 (at 120 g day-1), and the ILCR (> 1 × 10-6) were above minimum levels, showing a high-risk potential for cancer development in the long term.
Collapse
Affiliation(s)
- Gabriela Muñoz-Armenta
- Instituto Politécnico Nacional, CIIDIR-UNIDAD SINALOA, Blvd. Juan de Dios Batiz Paredes #250, 81101, Guasave, SIN, Mexico
| | - Ernestina Pérez-González
- Instituto Politécnico Nacional, CIIDIR-UNIDAD SINALOA, Blvd. Juan de Dios Batiz Paredes #250, 81101, Guasave, SIN, Mexico
| | - Guadalupe Durga Rodríguez-Meza
- Instituto Politécnico Nacional, CIIDIR-UNIDAD SINALOA, Blvd. Juan de Dios Batiz Paredes #250, 81101, Guasave, SIN, Mexico
| | | |
Collapse
|
3
|
Manganese-Induced Toxicity in C. elegans: What Can We Learn from the Transcriptome? Int J Mol Sci 2022; 23:ijms231810748. [PMID: 36142660 PMCID: PMC9502620 DOI: 10.3390/ijms231810748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
Manganese (Mn) is an essential ubiquitous transition metal and, when occupationally or environmentally overexposed, a well-known risk factor for several neurological pathologies. However, the molecular mechanisms underlying Mn-induced neurotoxicity are largely unknown. In this study, addressing RNA-Seq analysis, bioavailability and survival assays, key pathways of transcriptional responses to Mn overexposure were investigated in the model organism Caenorhabditis elegans (C. elegans), providing insights into the Mn-induced cellular stress and damage response. Comparative transcriptome analyses identified a large number of differentially expressed genes (DEGs) in nematodes exposed to MnCl2, and functional annotation suggested oxidative nucleotide damage, unfolded protein response and innate immunity as major damage response pathways. Additionally, a time-dependent increase in the transcriptional response after MnCl2 exposure was identified by means of increased numbers of DEGs, indicating a time-dependent response and activation of the stress responses in Mn neurotoxicity. The data provided here represent a powerful transcriptomic resource in the field of Mn toxicity, and therefore, this study provides a useful basis for further planning of targeted mechanistic studies of Mn-induced neurotoxicity that are urgently needed in the face of increasing industrially caused environmental pollution with Mn.
Collapse
|