1
|
Karpińska-Tymoszczyk M, Surma M, Danowska-Oziewicz M, Kurp L, Jabłońska M, Kusek K, Sawicki T. The Effects of Enriching Shortbread Cookies with Dried Sea Buckthorn Fruit on the Physicochemical and Sensory Properties. Molecules 2024; 29:5148. [PMID: 39519787 PMCID: PMC11548027 DOI: 10.3390/molecules29215148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The present study evaluated the physicochemical parameters, polyphenolics content, levels of heat-induced compounds (acrylamide, furfural, 5-hydroxymethylfurfural), antioxidant properties, as well as sensory quality of shortbread cookies enriched with dried sea buckthorn fruit (SBF). The SBF-enriched cookies were prepared by replacing 1, 2, 3, or 5% of the flour with dried sea buckthorn fruit. Our results showed the presence of 12 phenolic acids and 5 flavonoids in the SBF, while two phenolic acids and two flavonoids were detected in the cookies. Most of the compounds were identified in the cookies enriched with 5% SBF. Among the phenolic acids, benzoic acid was the most abundant, while among the flavonoids, quercetin was the most abundant. 5-hydroxymethylofurfural was not detected in any cookies, and the addition of SBF contributed to the presence of furfural in baked products and increased the amount of acrylamide, and their content increased with the amount of SBF addition. The addition of sea buckthorn fruit at 5% distinctly exceeded the benchmark level of acrylamide in the cookies and worsened their sensory quality. It should also be noted that SBF significantly (p < 0.05) improved the antioxidant potential determined by two tests, ABTS and DPPH. The SBF-enriched cookies were characterized by significantly higher values of crispness and browning index compared to the control cookies. The results of the study indicate that SBF can be successfully used as a component of bakery products. In conclusion, the cookies with SBF can show improved technological and functional properties and constitute an added value bakery product that could provide health benefits.
Collapse
Affiliation(s)
- Mirosława Karpińska-Tymoszczyk
- Department of Human Nutrition, University of Warmia and Mazury in Olsztyn, Słoneczna 45f, 10-718 Olsztyn, Poland; (M.D.-O.); (L.K.); (M.J.)
| | - Magdalena Surma
- Department of Plant Products Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, 30-149 Krakow, Poland; (M.S.)
| | - Marzena Danowska-Oziewicz
- Department of Human Nutrition, University of Warmia and Mazury in Olsztyn, Słoneczna 45f, 10-718 Olsztyn, Poland; (M.D.-O.); (L.K.); (M.J.)
| | - Lidia Kurp
- Department of Human Nutrition, University of Warmia and Mazury in Olsztyn, Słoneczna 45f, 10-718 Olsztyn, Poland; (M.D.-O.); (L.K.); (M.J.)
| | - Monika Jabłońska
- Department of Human Nutrition, University of Warmia and Mazury in Olsztyn, Słoneczna 45f, 10-718 Olsztyn, Poland; (M.D.-O.); (L.K.); (M.J.)
| | - Karolina Kusek
- Department of Plant Products Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, 30-149 Krakow, Poland; (M.S.)
| | - Tomasz Sawicki
- Department of Human Nutrition, University of Warmia and Mazury in Olsztyn, Słoneczna 45f, 10-718 Olsztyn, Poland; (M.D.-O.); (L.K.); (M.J.)
| |
Collapse
|
2
|
Jabłońska M, Karpińska-Tymoszczyk M, Surma M, Narwojsz A, Reszka M, Błaszczak W, Sawicki T. Enrichment of shortcrust pastry cookies with bee products: polyphenol profile, in vitro bioactive potential, heat-induced compounds content, colour parameters and sensory changes. Sci Rep 2024; 14:23652. [PMID: 39384866 PMCID: PMC11464765 DOI: 10.1038/s41598-024-74811-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
Bee products, including bee pollen (BP) and bee bread (BB) are natural sources that contain a diverse range of bioactive compounds. The objective of this study was to investigate the potential of BP and BB to enhance the functional properties of shortcrust pastry cookies. The impact on BP and BB on the colour parameters, polyphenolic compounds content, heat-induced compounds content (acrylamide, furfural, 5-hydroxymethylfurfural (HMF)), antioxidant properties, and inhibitory effects against advanced glycation end products (AGEs) formation and acetylcholinesterase (AChE) activity was examine by enriching cookies with 3 and 10% of BP or BB. The incorporation of BP or BB resulted in a notable darkening of the cookies. The spectroscopic and chromatographic analyses revealed that the cookies enriched with bee products exhibited an elevated content of phenolic compounds. The antioxidant activity (AA) of the enriched cookies exhibited an average increase of 2- to 3-fold in the ABTS test and 2-fold in the DPPH test. All cookies exhibited inhibitory potential against AGEs formation, witch inhibitory rates ranging from 10.64 to 46.22% in the BSA-GLU model and 1.75-19.33% in BSA-MGO model. The cookies enriched with 10% BP were characterised by to the highest level of AChE activity inhibition (13.72%). The incorporation of BB and BP resulted in elevated concentration of acrylamide, furfural, and HMF. Our findings suggest that bee products may serve as a valuable addition to food ingredients, significantly enhancing the functional properties of shortcrust pastry cookies. However, further investigation is necessary to address the increased level of heat-induced compounds.
Collapse
Affiliation(s)
- Monika Jabłońska
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45F, 10-718, Olsztyn, Poland.
| | - Mirosława Karpińska-Tymoszczyk
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45F, 10-718, Olsztyn, Poland
| | - Magdalena Surma
- Department of Plant Products Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149, Kraków, Poland
| | - Agnieszka Narwojsz
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45F, 10-718, Olsztyn, Poland
| | - Mateusz Reszka
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45F, 10-718, Olsztyn, Poland
| | - Wioletta Błaszczak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Tomasz Sawicki
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45F, 10-718, Olsztyn, Poland.
| |
Collapse
|
3
|
Végh R, Csóka M, Sörös C, Sipos L. Underexplored food safety hazards of beekeeping products: Key knowledge gaps and suggestions for future research. Compr Rev Food Sci Food Saf 2024; 23:e13404. [PMID: 39136999 DOI: 10.1111/1541-4337.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 08/15/2024]
Abstract
These days, a growing consumer demand and scientific interest can be observed for nutraceuticals of natural origin, including apiculture products. Due to the growing emphasis on environmental protection, extensive research has been conducted on the pesticide and heavy metal contamination of bee products; however, less attention is devoted on other food safety aspects. In our review, scientific information on the less-researched food safety hazards of honey, bee bread, royal jelly, propolis, and beeswax are summarized. Bee products originating from certain plants may inherently contain phytotoxins, like pyrrolizidine alkaloids, tropane alkaloids, matrine alkaloids, grayanotoxins, gelsemium alkaloids, or tutin. Several case studies evidence that bee products can induce allergic responses to sensitive individuals, varying from mild to severe symptoms, including the potentially lethal anaphylaxis. Exposure to high temperature or long storage may lead to the formation of the potentially toxic 5-hydroxymethylfurfural. Persistent organic pollutants, radionuclides, and microplastics can potentially be transferred to bee products from contaminated environmental sources. And lastly, inappropriate beekeeping practices can lead to the contamination of beekeeping products with harmful microorganisms and mycotoxins. Our review demonstrates the necessity of applying good beekeeping practices in order to protect honeybees and consumers of their products. An important aim of our work is to identify key knowledge gaps regarding the food safety of apiculture products.
Collapse
Affiliation(s)
- Rita Végh
- Department of Nutrition Science, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Mariann Csóka
- Department of Nutrition Science, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Csilla Sörös
- Department of Food Chemistry and Analysis Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - László Sipos
- Department of Postharvest, Institute of Food Science and Technology, Commercial and Sensory Science, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
- Institute of Economics, Centre of Economic and Regional Studies, Hungarian Research Network (HUN-REN), Budapest, Hungary
| |
Collapse
|
4
|
Schaeffer C, Schummer C, Scholer S, van Nieuwenhuyse A, Pincemaille J. Evaluation of environmental contamination in beeswax products. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1244:124243. [PMID: 39068867 DOI: 10.1016/j.jchromb.2024.124243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Beeswaxes are used as a coating agent or as a wrapping material for food products making them potentially ingested by consumers. There is no regulation yet in Europe giving maximum levels of contaminants in this type of product. Nevertheless, being a natural product, they are exposed to environmental pollution, thus it appears necessary to establish their contamination rate in order to evaluate potential human exposure. In this study, a method of extraction of different environmental contaminants including pesticides, phthalates, PAHs and phenols was developed. Based on a hot Soxhlet extraction, followed by cleaning steps, the method was validated for the quantitation of the cited contaminants by LC-MS/MS and GC-(MS)/MS. Three different types of waxes were analyzed including typical white waxes (Cera Alba) and yellow waxes (Cera Flava). It was shown that all waxes had the presence of at least one contaminant and that phthalates, in particular DEHP, was present in all beeswax samples. Insecticides were found in majority among all the classes of pesticides screened. The yellow waxes were found to be contaminated with the highest rates of PAHs (60%), pesticides (75%) and phenols (40%). The detection frequency of PAHs, in contrast to phthalates, was the lowest for all the types of waxes combined.
Collapse
Affiliation(s)
- Charline Schaeffer
- Laboratoire National de Santé, Service de Surveillance Alimentaire, Département des Laboratoires de protection de la Santé, 1, rue Louis Rech, Dudelange 3555, Luxembourg
| | - Claude Schummer
- Laboratoire National de Santé, Service de Surveillance Alimentaire, Département des Laboratoires de protection de la Santé, 1, rue Louis Rech, Dudelange 3555, Luxembourg
| | - Sarada Scholer
- Laboratoire National de Santé, Service de Surveillance Alimentaire, Département des Laboratoires de protection de la Santé, 1, rue Louis Rech, Dudelange 3555, Luxembourg
| | - An van Nieuwenhuyse
- Laboratoire National de Santé, Département des Laboratoires de Protection de la Santé, 1, rue Louis Rech, Dudelange 3555, Luxembourg
| | - Justine Pincemaille
- Laboratoire National de Santé, Service de Surveillance Alimentaire, Département des Laboratoires de protection de la Santé, 1, rue Louis Rech, Dudelange 3555, Luxembourg.
| |
Collapse
|
5
|
Li J, Jiang L, Shu Y, Song S, Xu L, Kuang H, Xu C, Guo L. Quantitative immunochromatographic assay for rapid and cost-effective on-site detection of benzo[a]pyrene in oilfield chemicals. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134100. [PMID: 38522202 DOI: 10.1016/j.jhazmat.2024.134100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Contamination of oilfield chemicals (OFCs) by benzo[a]pyrene (B[a]P) is increasingly becoming a severe environmental security issue. There is an urgent need to develop a rapid and accurate method for B[a]P detection in OFCs. In this study, B[a]P hapten was designed using computer aided molecular design. A high-affinity, specific, and matrix-insensitive monoclonal antibody (mAb) with IC50 values of 6.77 ng/mL was obtained. Based on this mAb, we developed a rapid gold nanoparticle-based immunochromatographic strip assay (GICA) with double T-line mode for on-site detection of B[a]P in OFCs samples. The GICA exhibited excellent detection performance in OFCs samples with strong acidity, strong alkalinity, and deep color. Under optimal conditions, the proposed method detected B[a]P in OFCs at 0.42-300 mg/kg, and limit of detection was 0.23-1.07 mg/kg. The recovery rate was 88-106% with a coefficient of variation of 1.46-6.35%. Confirmed by natural positive OFCs samples and high-performance liquid chromatography, this GICA is accurate and reliable, with great potential for rapid and cost-effective on-site detection.
Collapse
Affiliation(s)
- Jinyan Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Luming Jiang
- PetroChina Research Institute of Petroleum Exploration & Development, Beijing 10083, China; Key Laboratory of Oilfield Chemicals, CNPC, Beijing 10083, China
| | - Yong Shu
- PetroChina Research Institute of Petroleum Exploration & Development, Beijing 10083, China; Key Laboratory of Oilfield Chemicals, CNPC, Beijing 10083, China
| | - Shanshan Song
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liguang Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hua Kuang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lingling Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
6
|
Shi CF, Han F, Jiang X, Zhang Z, Li Y, Wang J, Sun S, Liu JY, Cao J. Benzo[b]fluoranthene induces male reproductive toxicity and apoptosis via Akt-Mdm2-p53 signaling axis in mouse Leydig cells: Integrating computational toxicology and experimental approaches. Food Chem Toxicol 2023; 179:113941. [PMID: 37473983 DOI: 10.1016/j.fct.2023.113941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
This study aims to explore the male reproductive toxicity of Benzo[b]fluoranthene (BbF) and related mechanisms. The results of computational toxicology analysis indicated male reproductive toxicity of BbF was related to apoptosis of Leydig cells and that Akt/p53 pathway might play a key role. In experiments, BbF induced testosterone decline, decreased concentration and motility of sperm and aggravated testicular pathological injury in mice. Besides, BbF led to apoptosis in Leydig cells, and decreased expressions of p-Akt and Bcl2, while improving the expressions of p53, Bax and Cleaved Caspase-3 in vivo and in vitro. Further, compared with BbF group, Akt activator SC79 significantly reduced cell apoptosis rate, improved cell viability, promoted the expressions of p-Akt and p-Mdm2, and reversed the above molecular expressions. Similarly, p53 inhibitor Pifithrin-α also significantly enhanced the cell vitality, alleviated the apoptosis of TM3 cells induced by BbF, and decreased the expressions of Bax and Cleaved Caspase-3, with the up-regulation of Bcl2. To sum up, by inhibiting Akt-Mdm2 signaling, BbF activated the p53-mediated mitochondrial apoptosis pathway, further inducing the apoptosis of Leydig cells, therefore resulting in testosterone decline and male reproductive damage. Besides, this study provided a valid mode integrating computational toxicology and experimental approaches in toxicity testing.
Collapse
Affiliation(s)
- Chao-Feng Shi
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xiao Jiang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhonghao Zhang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yingqing Li
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jiankang Wang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Shengqi Sun
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jin-Yi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|