1
|
Engeli BE, Lachenmeier DW, Diel P, Guth S, Villar Fernandez MA, Roth A, Lampen A, Cartus AT, Wätjen W, Hengstler JG, Mally A. Cannabidiol in Foods and Food Supplements: Evaluation of Health Risks and Health Claims. Nutrients 2025; 17:489. [PMID: 39940347 PMCID: PMC11820564 DOI: 10.3390/nu17030489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Cannabidiol (CBD) is a cannabinoid present in the hemp plant (Cannabis sativa L.). Non-medicinal CBD oils with typically 5-40% CBD are advertised for various alleged positive health effects. While such foodstuffs containing cannabinoids are covered by the Novel Food Regulation in the European Union (EU), none of these products have yet been authorized. Nevertheless, they continue to be available on the European market. METHODS The Permanent Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG) reviewed the currently available data on adverse and potential beneficial effects of CBD in the dose range relevant for foods. RESULTS Increased liver enzyme activities were observed in healthy volunteers following administration of 4.3 mg CBD/kg bw/day and higher for 3-4 weeks. As lower doses were not tested, a no observed adverse effect level (NOAEL) could not be derived, and the dose of 4.3 mg/kg bw/day was identified as the lowest observed adverse effect level (LOAEL). Based on the CBD content and dose recommendations of CBD products on the market, the SKLM considered several exposure scenarios and concluded that the LOAEL for liver toxicity may be easily reached, e.g., via consumption of 30 drops of an oil containing 20% CBD, or even exceeded. A critical evaluation of the available data on potential beneficial health effects of CBD in the dose range at or below the LOAEL of 4.3 mg/kg bw/day revealed no scientific evidence that would substantiate health claims, e.g., in relation to physical performance, the cardiovascular, immune, and nervous system, anxiety, relaxation, stress, sleep, pain, or menstrual health. CONCLUSIONS The SKLM concluded that consumption of CBD-containing foods/food supplements may not provide substantiated health benefits and may even pose a health risk to consumers.
Collapse
Affiliation(s)
- Barbara E. Engeli
- Federal Food Safety and Veterinary Office (FSVO), Division Knowledge Foundation, Section Risk Assessment, Schwarzenburgstr 155, 3003 Bern, Switzerland;
| | - Dirk W. Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weißenburger Str. 3, 76187 Karlsruhe, Germany;
| | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany;
| | - Sabine Guth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr. 67, 44139 Dortmund, Germany; (S.G.); (M.A.V.F.); (A.R.); (J.G.H.)
| | - Maria A. Villar Fernandez
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr. 67, 44139 Dortmund, Germany; (S.G.); (M.A.V.F.); (A.R.); (J.G.H.)
| | - Angelika Roth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr. 67, 44139 Dortmund, Germany; (S.G.); (M.A.V.F.); (A.R.); (J.G.H.)
| | - Alfonso Lampen
- Risk Assessment Strategies, Bundesinstitut für Risikobewertung (BfR), Max-Dohrn-Str. 8–10, 10589 Berlin, Germany;
| | | | - Wim Wätjen
- Institut für Agrar-und Ernährungswissenschaften, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany;
| | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr. 67, 44139 Dortmund, Germany; (S.G.); (M.A.V.F.); (A.R.); (J.G.H.)
| | - Angela Mally
- Department of Toxicology, University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany
| |
Collapse
|
2
|
Santos ALO, Santiago MB, Silva NBS, Souza SL, Almeida JMD, Martins CHG. The antibacterial and antibiofilm role of cannabidiol against periodontopathogenic bacteria. J Appl Microbiol 2025; 136:lxae316. [PMID: 39737707 DOI: 10.1093/jambio/lxae316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/18/2024] [Accepted: 12/28/2024] [Indexed: 01/01/2025]
Abstract
AIMS Bacterial resistance and systemic risks associated with periodontitis underscore the need for novel antimicrobial agents. Cannabis sativa is a promising source of antimicrobial molecules, and cannabidiol (CBD) attracts significant interest. This study evaluated the antibacterial and antibiofilm activity of CBD against periodontopathogens, and assessed its toxicity in vivo model. METHODS AND RESULTS Antibacterial activity was determined by the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Biofilm inhibition was determined the minimum inhibitory concentration of biofilm (MICB50). Toxicity was assessed using Caeonorhabditis elegans. The periodontopathogens tested were Actinomyces naeslundii (ATCC 19039), Peptostreptococcus anaerobius (ATCC 27337), Veillonella parvula (ATCC 17745), Fusobacterium nucleatum (ATCC 10953), and Aggregatibacter actinomycetemcomitans (ATCC 43717). CBD exhibited antibacterial effects with MICs of 0.39 to 3.12 µg ml-1 and MICB50 of 0.39 µg ml-1 to 1.56 µg ml-1 against biofilms, without toxicity below 375 µg ml-1. CONCLUSION The results suggest that CBD is a non-toxic product with antibacterial and antibiofilm potential, exhibiting promise as a therapeutic alternative for oral diseases.
Collapse
Affiliation(s)
- Anna Livia Oliveira Santos
- Laboratory of Antimicrobial Testing (LEA), Institute of Biomedical Sciences (ICBM), Universidade Federal de Uberlândia (UFU), Uberlândia, MG 38405-320, Brazil
| | - Mariana Brentini Santiago
- Laboratory of Antimicrobial Testing (LEA), Institute of Biomedical Sciences (ICBM), Universidade Federal de Uberlândia (UFU), Uberlândia, MG 38405-320, Brazil
| | - Nagela Bernadelli Sousa Silva
- Laboratory of Antimicrobial Testing (LEA), Institute of Biomedical Sciences (ICBM), Universidade Federal de Uberlândia (UFU), Uberlândia, MG 38405-320, Brazil
| | - Sara Lemes Souza
- Laboratory of Antimicrobial Testing (LEA), Institute of Biomedical Sciences (ICBM), Universidade Federal de Uberlândia (UFU), Uberlândia, MG 38405-320, Brazil
| | - Joaquim Maurício Duarte Almeida
- Laboratory of Vegetable Cultivation (LCV), Campus Centro-Oeste Dona Lindu, Federal University of São João del Rei, Divinópolis, MG 35501-296, Brazil
| | - Carlos Henrique Gomes Martins
- Laboratory of Antimicrobial Testing (LEA), Institute of Biomedical Sciences (ICBM), Universidade Federal de Uberlândia (UFU), Uberlândia, MG 38405-320, Brazil
| |
Collapse
|
3
|
Piao JJ, Kim S, Shin D, Lee HJ, Jeon KH, Tian WJ, Hur KJ, Kang JS, Park HJ, Cha JY, Song A, Park SH, Rajasekaran M, Bae WJ, Yoon SK, Kim SW. Cannabidiol Alleviates Chronic Prostatitis and Chronic Pelvic Pain Syndrome via CB2 Receptor Activation and TRPV1 Desensitization. World J Mens Health 2025; 43:228-238. [PMID: 38449457 PMCID: PMC11704163 DOI: 10.5534/wjmh.230352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/26/2024] [Accepted: 02/15/2024] [Indexed: 03/08/2024] Open
Abstract
PURPOSE This study elucidates the mechanism of the physiological effect of cannabidiol (CBD) by assessing its impact on lipopolysaccharide (LPS)-induced inflammation in RWPE-1 cells and prostatitis-induced by 17β-estradiol and dihydrotestosterone in a rat model, focusing on its therapeutic potential for chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). MATERIALS AND METHODS RWPE-1 cells were stratified in vitro into three groups: (1) controls, (2) cells with LPS-induced inflammation, and (3) cells with LPS-induced inflammation and treated with CBD. Enzyme-linked immunosorbent assays and western blots were performed on cellular components and supernatants after administration of CBD. Five groups of six Sprague-Dawley male rats were assigned: (1) control, (2) CP/CPPS, (3) CP/CPPS and treated with 50 mg/kg CBD, (4) CP/CPPS and treated with 100 mg/kg CBD, and (5) CP/CPPS and treated with 150 mg/kg CBD. Prostatitis was induced through administration of 17β-estradiol and dihydrotestosterone. After four weeks of CBD treatment, a pain index was evaluated, and prostate tissue was collected for subsequent histologic examination and western blot analysis. RESULTS CBD demonstrated efficacy in vivo for CP/CPPS and in vitro for inflammation. It inhibited the toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) pathway by activating the CB2 receptor, reducing expression of interleukin-6, tumor necrosis factor-alpha, and cyclooxygenase-2 (COX2) (p<0.01). CBD exhibited analgesic effects by activating and desensitizing the TRPV1 receptor. CONCLUSIONS CBD inhibits the TLR4/NF-κB pathway by activating the CB2 receptor, desensitizes the TRPV1 receptor, and decreases the release of COX2. This results in relief of inflammation and pain in patients with CP/CPPS, indicating CBD as a potential treatment for CP/CPPS.
Collapse
Affiliation(s)
- Jun Jie Piao
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Korea
| | - Soomin Kim
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Korea
| | - Dongho Shin
- Department of Urology, Catholic Kwandong University College of Medicine, Incheon, Korea
| | | | - Kyung-Hwa Jeon
- College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Wen Jie Tian
- Department of Urology, The Second Hospital of Jilin University, Changchun, China
| | - Kyung Jae Hur
- Department of Urology, Daegu Fatima Hospital, Daegu, Korea
| | | | - Hyun-Je Park
- Yuhan Natural Product R&D Center, Yuhan Care Co., Ltd., Yongin, Korea
| | - Joo Young Cha
- Yuhan Natural Product R&D Center, Yuhan Care Co., Ltd., Yongin, Korea
| | - Aeri Song
- Yuhan Natural Product R&D Center, Yuhan Care Co., Ltd., Yongin, Korea
| | - Sang-Hyuck Park
- Institute of Cannabis Research, Colorado State University-Pueblo, Pueblo, CO, USA
| | - Mahadevan Rajasekaran
- Department of Urology, San Diego VA Health Care System & University of California, San Diego, CA, USA
| | - Woong Jin Bae
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Korea
| | - Sungjoo Kim Yoon
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Korea.
| | - Sae Woong Kim
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Korea
- Green Medicine Co., Ltd, Busan, Korea.
| |
Collapse
|
4
|
Rašić D, Zandona A, Katalinić M, Češi M, Kopjar N. Assessing the Potential Synergistic/Antagonistic Effects of Citrinin and Cannabidiol on SH-SY5Y, HepG2, HEK293 Cell Lines, and Human Lymphocytes. Toxins (Basel) 2024; 16:534. [PMID: 39728792 PMCID: PMC11679033 DOI: 10.3390/toxins16120534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
The increasing use of Cannabis sativa products for medicinal, dietary, and recreational purposes has raised concerns about mycotoxin contamination in cannabis and hemp. Mycotoxins persist in these products' post-processing, posing health risks via multiple exposure routes. This study investigated cytotoxic and genotoxic interactions between cannabidiol (CBD) and the mycotoxin citrinin (CIT) using human cell models: SH-SY5Y, HepG2, HEK293, and peripheral blood lymphocytes. IC50 values and membrane disruption were initially assessed, followed by an evaluation of genotoxicity in lymphocytes using the Comet Assay and Cytokinesis Blocked Micronucleus Cytome Assay. Obtained findings demonstrate that cell-type sensitivity varied across treatments, with combined CBD and CIT exposure exhibiting distinct interactions. Lactate dehydrogenase (LDH) release remained minimal, suggesting cytotoxicity did not stem from membrane disruption but likely involved intracellular pathways. In lymphocytes, CBD alone produced negligible cyto/genotoxic effects and weak antiproliferative responses, whereas CIT displayed clear toxic impacts. DNA damage indicates that CIT may induce genome instability through indirect mechanisms rather than direct DNA interaction, with evidence of potential aneuploidic effects from the CBMN Cyt Assay. Combined exposure led to a reduction in CIT-induced DNA and cytogenetic damage, suggesting CIT's potential interference with the beneficial properties of CBD. These results provide a foundation for further toxicological assessments and highlight the necessity of standardized mycotoxin monitoring in cannabis-derived products.
Collapse
Affiliation(s)
- Dubravka Rašić
- Division of Toxicology, Institute for Medical Research and Occupational Health, HR-10 000 Zagreb, Croatia; (A.Z.); (M.K.); (N.K.)
| | - Antonio Zandona
- Division of Toxicology, Institute for Medical Research and Occupational Health, HR-10 000 Zagreb, Croatia; (A.Z.); (M.K.); (N.K.)
| | - Maja Katalinić
- Division of Toxicology, Institute for Medical Research and Occupational Health, HR-10 000 Zagreb, Croatia; (A.Z.); (M.K.); (N.K.)
| | - Martin Češi
- Independent Researcher, Kauzlarićev Prilaz 9, HR-10 000 Zagreb, Croatia;
| | - Nevenka Kopjar
- Division of Toxicology, Institute for Medical Research and Occupational Health, HR-10 000 Zagreb, Croatia; (A.Z.); (M.K.); (N.K.)
| |
Collapse
|
5
|
Wisotzki E, Franke H, Sproll C, Walch SG, Lachenmeier DW. Updated Risk Assessment of Cannabidiol in Foods Based on Benchmark Dose-Response Modeling. Molecules 2024; 29:4733. [PMID: 39407661 PMCID: PMC11477611 DOI: 10.3390/molecules29194733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Cannabidiol (CBD), a non-psychotropic main component of the Cannabis plant, has been approved as a drug in the European Union (EU) under the name "Epidyolex". However, its approval process as a food ingredient under the Novel Food Regulation was paused by the European Food Safety Authority (EFSA) due to a lack of safety data. Nevertheless, there is a growing, unregulated market in which CBD is advertised with various health claims and dosage instructions. Of particular concern is its toxic effect on the liver and possible reproductive toxicity in humans. Studies suitable for calculating the benchmark dose were identified from the available data. Animal studies yielded a benchmark dose lower confidence limit (BMDL) of 43 mg/kg bw/day, which translates into a safe human dose of approximately 15 mg/day. Only the Lowest-Observed-Adverse-Effect Level (LOAEL) of 4.3 mg/kg bw/day could be identified from the human data. This updated risk assessment confirmed a health-based guidance value (HBGV) of 10 mg/day based on human LOAEL. Despite the existing data gaps, preliminary regulation appears advisable because the current form of the gray CBD market is unacceptable from the standpoint of consumer safety and protection.
Collapse
Affiliation(s)
- Eva Wisotzki
- Postgraduate Study of Toxicology and Environmental Protection, Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstrasse 16–18, 04107 Leipzig, Germany; (E.W.); (H.F.)
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany; (C.S.); (S.G.W.)
| | - Heike Franke
- Postgraduate Study of Toxicology and Environmental Protection, Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstrasse 16–18, 04107 Leipzig, Germany; (E.W.); (H.F.)
| | - Constanze Sproll
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany; (C.S.); (S.G.W.)
| | - Stephan G. Walch
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany; (C.S.); (S.G.W.)
| | - Dirk W. Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany; (C.S.); (S.G.W.)
| |
Collapse
|
6
|
Chen S, Li Y, Li X, Wu Q, Puig M, Moulin F, Gingrich J, Guo L. Metabolism and liver toxicity of cannabidiol. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2024; 42:238-254. [PMID: 38904421 PMCID: PMC11404724 DOI: 10.1080/26896583.2024.2366741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Increasing public interest has resulted in the widespread use of non-pharmaceutical cannabidiol (CBD) products. The sales of CBD products continue to rise, accompanied by concerns regarding unsubstantiated benefits, lack of product quality control, and potential health risks. Both animal and human studies have revealed a spectrum of toxicological effects linked to the use of CBD. Adverse effects related to exposure of humans to CBD include changes in appetite, gastrointestinal discomfort, fatigue, and elevated liver aminotransferase enzymes. Animal studies reported changes in organ weight, reproduction, liver function, and the immune system. This review centers on human-derived data, including clinical studies and in vitro investigations. Animal studies are also included when human data is not available. The objective is to offer an overview of CBD-related hepatotoxicity, metabolism, and potential CBD-drug interactions, thereby providing insights into the current understanding of CBD's impact on human health. It's important to note that this review does not serve as a risk assessment but seeks to summarize available information to contribute to the broader understanding of potential toxicological effects of CBD on the liver.
Collapse
Affiliation(s)
- Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration (FDA), Jefferson, Arkansas, USA
| | - Yuxi Li
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration (FDA), Jefferson, Arkansas, USA
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. FDA, Jefferson, Arkansas, USA
| | - Qiangen Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration (FDA), Jefferson, Arkansas, USA
| | - Montserrat Puig
- Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. FDA, Silver Spring, Maryland, USA
| | - Frederic Moulin
- Division of Hepatology and Nutrition, Office of New Drugs, Center for Drug Evaluation and Research, U.S. FDA, Silver Spring, Maryland, USA
| | - Jeremy Gingrich
- Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. FDA, College Park, Maryland, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration (FDA), Jefferson, Arkansas, USA
| |
Collapse
|
7
|
Pinto TG, Dos Anjos Rosario B, de Moraes Malinverni AC, Xavier R, Ferreira YAM, Pisani LP, de Aquino PEA, de Barros Viana GS, de Souza DV, de Barros Viana M, Ribeiro DA. Cytogenotoxicity and inflammatory response in liver of rats exposed to different doses of cannabis nano emulsions. Arch Toxicol 2024; 98:1877-1890. [PMID: 38494580 DOI: 10.1007/s00204-024-03712-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
Cannabis is the most used illicit substance for recreational purposes around the world. However, it has become increasingly common to witness the use of approved cannabis preparations for symptoms management in various diseases. The aim of this study was to investigate the effects of cannabis nano emulsion in the liver of Wistar rats, with different proportions of delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD). For this, a total of 40 male Wistar rats were distributed into 5 groups, as follows (n = 8 per group): Control: G1, Experimental group (G2): treated with cannabis nano emulsion (THC and CBD) at a dose of 2.5 mg/kg, Experimental group (G3): treated with cannabis nano emulsion (THC and CBD) at a dose of 5 mg/kg, Experimental group (G4): treated with cannabis nano emulsion (CBD) at a dose of 2.5 mg/kg; Experimental group (G5): treated with cannabis nano emulsion (CBD) at a dose of 5 mg/kg. Exposure to the nano emulsion was carried out for 21 days, once a day, orally (gavage). Our results showed that cannabis nano emulsions at higher doses (5 mg/kg), regardless of the composition, induced histopathologic changes in the liver (G3 and G5) in comparison with the control group. In line with that, placental glutathione S-transferase (GST-P) positive foci increased in both G3 and G5 (p < 0.05), as well as the immune expression of Ki-67, vascular endothelial growth factor (VEGF) and p53 (p < 0.05). Also, the nano emulsion intake induced an increase in the number of micronucleated hepatocytes in G5 (p < 0.05) whereas G3 showed an increase in binucleated cells (p < 0.05). As for metanuclear alterations, karyolysis and pyknosis had an increased frequency in G3 (p < 0.05). Taken together, the results show that intake of cannabis nano emulsion may induce degenerative changes and genotoxicity in the liver in higher doses, demonstrating a clear dose-response relationship.
Collapse
Affiliation(s)
- Thiago Guedes Pinto
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Barbara Dos Anjos Rosario
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | | | - Rosana Xavier
- Department of Pathology, Paulista Medical School, Federal University of Sao Paulo, UNIFESP, Sao Paulo, SP, Brazil
| | - Yasmin Alaby Martins Ferreira
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Luciana Pellegrini Pisani
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | | | | | - Daniel Vitor de Souza
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Milena de Barros Viana
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil
| | - Daniel Araki Ribeiro
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Rua Silva Jardim, 136, Room 332, Vila Mathias, Santos, SP, 11050-020, Brazil.
| |
Collapse
|
8
|
Kulpa J, Henderson RG, Schwotzer D, Dye W, Trexler KR, McDonald J, Lefever TW, Bonn-Miller MO. Toxicological Evaluation and Pain Assessment of Four Minor Cannabinoids Following 14-Day Oral Administration in Rats. Cannabis Cannabinoid Res 2023; 8:S25-S41. [PMID: 37721989 DOI: 10.1089/can.2023.0049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023] Open
Abstract
Introduction: Despite growing consumer interest and market availability, the safety of minor cannabinoids, generally present in low concentrations in Cannabis sativa L., is not well understood. Materials and Methods: Cannabichromene (CBC; 3.2, 10, 17, 22, 32, or 100 mg/kg-bw/day), cannabinol (CBN; 1, 3.2, 10, 17, 32, or 100 mg/kg-bw/day), delta-8-tetrahydrocannabinol (D8-THC; 0.32, 1, 3.2, or 10 mg/kg-bw/day), tetrahydrocannabivarin (THCV; 3.2, 10, 17, 22, 32, or 100 mg/kg-bw/day), and vehicle (medium-chain triglyceride oil) preparations were administered via oral gavage once daily for 14 days to Sprague Dawley rats. Changes in behavior, body weight, food consumption, clinical pathology, organ weights, body temperature, and thermal pain sensitivity (tail flick assay) were assessed. Select organ tissues were collected at terminal necropsy and fixed for histopathological examination. Results: No treatment-related deaths were observed throughout the study, and cannabinoids were generally well tolerated. While some significant trends in body weight differences from controls (increases and decreases) were observed, these occurred independently of food consumption. Overall, differences in serum chemistry and hematology parameters between cannabinoid groups and their respective control groups were considered to occur due to biological variation among rats. No treatment-related gross abnormalities were observed in examined organs. Significant changes in absolute and relative organ weights occurred primarily in males and were generally of negligible magnitude. There were no biologically significant histopathological observations. While pain tolerance was significantly improved in animals treated with D8-THC (3.2 and 10 mg/kg-bw/day, day 14), results across minor cannabinoids were inconsistent and warrant further study. Conclusion: Minor cannabinoids were well tolerated across 14 days of daily oral administration at the doses assessed. Modest, dose-dependent trends in relative organ weights and serum chemistry parameters warrant exploration at higher oral doses. These data will assist in dose selection for future studies investigating the long-term safety and effects of CBC, CBN, D8-THC, and THCV.
Collapse
Affiliation(s)
| | | | | | - Wendy Dye
- Lovelace Biomedical, Albuquerque, New Mexico, USA
| | | | | | | | | |
Collapse
|