1
|
Bridgeman L, Juan C, Berrada H, Severin I, Juan-García A. Evaluating the Genotoxicity and Mutagenicity of Food Contaminants: Acrylamide, Penitrem A, and 3-Acetyldeoxynivalenol in Individual and Combined Exposure In Vitro. J Appl Toxicol 2025. [PMID: 40326165 DOI: 10.1002/jat.4805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/16/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
This study aimed to evaluate the genotoxic effects of food contaminants exposure in human neuroblastoma SH-SY5Y cells using the micronucleus (MN) assay and Ames test. Acrylamide (AA), penitrem A (PEN A), and 3-acetyldeoxynivalenol (3-ADON) were tested both individually and in combination. Since humans are likely to be exposed to these substances simultaneously through diet, it is crucial to investigate their combined effects of the compounds rather than just their individual toxicities. The results demonstrated significant increases in MN frequency for all individual treatments and in a dose-dependent manner for AA and 3-ADON. Combined treatments also resulted in higher MN frequencies, particularly for AA + 3-ADON and PEN A + 3-ADON respect to the control. However, the Ames test revealed no mutagenic potential for any of the individual or combined treatments, consistent with previous studies. These findings suggest that while food contaminants induce chromosomal damage (MN induction), they do not cause gene mutations. Nonetheless, the lack of single mutations activity does not exclude the potential health risks of combined mycotoxin exposure, especially given the observed genotoxicity due to the DNA damage through chromosomal aberrations. Future studies focused on the mechanism of action should investigate the combined effects of food contaminants in more detail to better assess their potential health risks.
Collapse
Affiliation(s)
- Luna Bridgeman
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, València, Spain
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, València, Spain
| | - Houda Berrada
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, València, Spain
| | - Isabelle Severin
- Derttech "Packtox", Nutox team, Inserm U1231, L'Institut Agro Dijon, Dijon, France
| | - Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, València, Spain
| |
Collapse
|
2
|
Penalva-Olcina R, Juan C, Fernández-Franzón M, Vehniäinen ER, Juan-García A. Daphnia magna model for the study of mycotoxins present in food: Gliotoxin, ochratoxin A and its combination. Food Chem Toxicol 2024; 189:114740. [PMID: 38759715 DOI: 10.1016/j.fct.2024.114740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Mycotoxins are low molecular weight compounds present in food and feed. Although their effects on human health have been widely described, their mechanisms of action are still undefined. Gliotoxin (GTX) and ochratoxin A (OTA) are among the most dangerous mycotoxins produced by Aspergillus spp. Therefore, their toxicity was studied in the Daphnia magna model, which has high capacity to predict cytotoxicity and assess ecotoxicity, comparable to mammalian models. The study consisted of a series of tests to evaluate the effects of mycotoxins GTX, OTA and their combinations at different dilutions on Daphnia magna that were conducted according to standardized OECD 202 and 211 guidelines. The following assays were carried out: acute toxicity test, heartbeat, delayed toxicity test, reproduction, growth rate test. Reproducibility was determined by observing the offspring after 21 days of GTX exposure. In acute and delayed toxicity transcript levels of genes involved in xenobiotic metabolism (mox, gst, abcb1, and abcc5), and oxidative stress (vtg-SOD) were analyzed by qPCR. GTX showed acute toxicity and decreased heart rate in D. magna compared to OTA. On the other hand, OTA showed a delayed effect as evidenced by the immobility test. Both mycotoxins showed to increase genes involved in xenobiotic metabolism, while only the mycotoxin mixture increased oxidative stress. These results suggest that the mycotoxins tested could have negative impact on the environment and human health.
Collapse
Affiliation(s)
- Raquel Penalva-Olcina
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, Av. Vicent Andrés Estellés S/n, 46100, Burjassot, University of Valencia, València, Spain; Department of Biological and Environmental Science, PO Box 35, FI-40014, University of Jyväskylä, Jyväskylä, Finland
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, Av. Vicent Andrés Estellés S/n, 46100, Burjassot, University of Valencia, València, Spain
| | - Mónica Fernández-Franzón
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, Av. Vicent Andrés Estellés S/n, 46100, Burjassot, University of Valencia, València, Spain
| | - Eeva-Riikka Vehniäinen
- Department of Biological and Environmental Science, PO Box 35, FI-40014, University of Jyväskylä, Jyväskylä, Finland
| | - Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, Av. Vicent Andrés Estellés S/n, 46100, Burjassot, University of Valencia, València, Spain.
| |
Collapse
|
3
|
Zhao D, Huang P, Yu L, He Y. Pharmacokinetics-Pharmacodynamics Modeling for Evaluating Drug-Drug Interactions in Polypharmacy: Development and Challenges. Clin Pharmacokinet 2024; 63:919-944. [PMID: 38888813 DOI: 10.1007/s40262-024-01391-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Polypharmacy is commonly employed in clinical settings. The potential risks of drug-drug interactions (DDIs) can compromise efficacy and pose serious health hazards. Integrating pharmacokinetics (PK) and pharmacodynamics (PD) models into DDIs research provides a reliable method for evaluating and optimizing drug regimens. With advancements in our comprehension of both individual drug mechanisms and DDIs, conventional models have begun to evolve towards more detailed and precise directions, especially in terms of the simulation and analysis of physiological mechanisms. Selecting appropriate models is crucial for an accurate assessment of DDIs. This review details the theoretical frameworks and quantitative benchmarks of PK and PD modeling in DDI evaluation, highlighting the establishment of PK/PD modeling against a backdrop of complex DDIs and physiological conditions, and further showcases the potential of quantitative systems pharmacology (QSP) in this field. Furthermore, it explores the current advancements and challenges in DDI evaluation based on models, emphasizing the role of emerging in vitro detection systems, high-throughput screening technologies, and advanced computational resources in improving prediction accuracy.
Collapse
Affiliation(s)
- Di Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310000, China
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Ping Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Li Yu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310000, China.
| |
Collapse
|
4
|
de Sá SVM, Sousa Monteiro C, Fernandes JO, Pinto E, Faria MA, Cunha SC. Evaluating the human neurotoxicity and toxicological interactions impact of co-occurring regulated and emerging mycotoxins. Food Res Int 2024; 184:114239. [PMID: 38609220 DOI: 10.1016/j.foodres.2024.114239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024]
Abstract
Mycotoxins can inflict harmful effects on diverse organs, and mounting evidence indicates their potential involvement in human neurodegenerative diseases. Given the common occurrence of these toxins in food, there is an increasing demand for a comprehensive assessment of their combined toxicity to enhance our understanding of their potential hazards. This research investigates mycotoxin exposure from widely consumed cereal-based products, including enniatin B (ENNB), sterigmatocystin (STG), aflatoxin B1 (AFB1), cyclopiazonic acid (CPZ), citrinin (CIT), and ochratoxin A (OTA). Employing the median-effect equation based on Chou and Talalay's mass-action law, we assessed their cytotoxicity in human SH-SY5Y neuronal cells. Notably, ENNB displayed the highest neurotoxicity (IC50 = 3.72 µM), followed by OTA (9.10 µM) and STG (9.99 µM). The combination of OTA + STG exhibited the highest toxicity (IC50 = 3.77 µM), while CPZ + CIT showed the least detrimental effect. Approximately 70 % of tested binary combinations displayed synergistic or additive effects, except for ENNB + STG, ENNB + AFB1, and CPZ + CIT, which showed antagonistic interactions. Intriguingly, the senary combination displayed moderate antagonism at the lowest exposure and moderate synergism at higher doses. OTA exhibited predominantly synergistic interactions, comprising approximately 90 %, a noteworthy finding considering its prevalence in food. Conversely, ENNB interactions tended to be antagonistic. The most remarkable synergy occurred in the STG and CIT combination, enabling a 50-fold reduction in CIT dosage for an equivalent toxic effect. These findings highlight the biological relevance of robust synergistic interactions, emphasizing the need to assess human exposure hazards accurately, particularly considering frequent mycotoxin co-occurrence in environmental and food settings.
Collapse
Affiliation(s)
- Soraia V M de Sá
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Carolina Sousa Monteiro
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - José O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Eugénia Pinto
- Laboratory of Microbiology, Biological Sciences Department, Faculty of Pharmacy of University of Porto, Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal
| | - Miguel A Faria
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Sara C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
5
|
Johansson Y, Andreassen M, Hartsch M, Wagner S, Forsby A. Attenuated neuronal differentiation caused by acrylamide is not related to oxidative stress in differentiated human neuroblastoma SH-SY5Y cells. Food Chem Toxicol 2024; 187:114623. [PMID: 38554842 DOI: 10.1016/j.fct.2024.114623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/15/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Acrylamide (ACR) is a known neurotoxicant and developmental neurotoxicant. As a soft electrophile, ACR reacts with thiol groups in cysteine. One hypothesis of ACR induced neurotoxicity and developmental neurotoxicity (DNT) is conjugation with reduced glutathione (GSH) leading to GSH depletion, increased reactive oxygen species (ROS) production and further oxidative stress and cellular damage. In this regard, we have investigated the effect of ACR on neuronal differentiation, glutathione levels and ROS production in the human neuroblastoma SH-SY5Y cell model. After 9 days of differentiation and exposure, ACR significantly impaired area neurites per cell at non-cytotoxic concentrations (0.33 μM and 10 μM). Furthermore, 10 μM ACR dysregulated 9 mRNA markers important for neuronal development, 5 of them being associated with cytoskeleton organization and axonal guidance. At the non-cytotoxic concentrations that significantly attenuate neuronal differentiation, ACR did neither decrease the level of GSH or total glutathione levels, nor increased ROS production. In addition, the expression of 5 mRNA markers for cellular stress was assessed with no significant altered regulation after ACR exposure up to 320 μM. Thus, ACR-induced DNT is not due to GSH depletion and increased ROS production, neither at non-cytotoxic nor cytotoxic concentrations, in the SH-SH5Y model during differentiation.
Collapse
Affiliation(s)
- Ylva Johansson
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden.
| | - Mathilda Andreassen
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| | - Muriel Hartsch
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| | - Stella Wagner
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| | - Anna Forsby
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| |
Collapse
|
6
|
Bridgeman L, Juan C, Berrada H, Juan-García A. Effect of Acrylamide and Mycotoxins in SH-SY5Y Cells: A Review. Toxins (Basel) 2024; 16:87. [PMID: 38393165 PMCID: PMC10892127 DOI: 10.3390/toxins16020087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Thermal processes induce the formation of undesired toxic components, such as acrylamide (AA), which has been shown to induce brain toxicity in humans and classified as Group 2A by the International Agency of Research in Cancer (IARC), as well as some mycotoxins. AA and mycotoxins' toxicity is studied in several in vitro models, including the neuroblastoma cell line model SH-SY5Y cells. Both AA and mycotoxins occur together in the same food matrix cereal base (bread, pasta, potatoes, coffee roasting, etc.). Therefore, the goal of this review is to deepen the knowledge about the neurological effects that AA and mycotoxins can induce on the in vitro model SH-SY5Y and its mechanism of action (MoA) focusing on the experimental assays reported in publications of the last 10 years. The analysis of the latest publications shows that most of them are focused on cytotoxicity, apoptosis, and alteration in protein expression, while others are interested in oxidative stress, axonopathy, and the disruption of neurite outgrowth. While both AA and mycotoxins have been studied in SH-SY5Y cells separately, the mixture of them is starting to draw the interest of the scientific community. This highlights a new and interesting field to explore due to the findings reported in several publications that can be compared and the implications in human health that both could cause. In relation to the assays used, the most employed were the MTT, axonopathy, and qPCR assays. The concentration dose range studied was 0.1-10 mM for AA and 2 fM to 200 µM depending on the toxicity and time of exposure for mycotoxins. A healthy and varied diet allows the incorporation of a large family of bioactive compounds that can mitigate the toxic effects associated with contaminants present in food. Although this has been reported in some publications for mycotoxins, there is still a big gap for AA which evidences that more investigations are needed to better explore the risks for human health when exposed to AA and mycotoxins.
Collapse
Affiliation(s)
| | | | | | - Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, University of Valencia, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 València, Spain; (L.B.); (C.J.); (H.B.)
| |
Collapse
|