1
|
Indarte M, Puentes R, Maruggi M, Ihle NT, Grandjean G, Scott M, Ahmed Z, Meuillet EJ, Zang S, Lemos R, Du-Cuny L, Layng FIAL, Correa RG, Bankston LA, Liddington RC, Kirkpatrick L, Powis G. An Inhibitor of the Pleckstrin Homology Domain of CNK1 Selectively Blocks the Growth of Mutant KRAS Cells and Tumors. Cancer Res 2019; 79:3100-3111. [PMID: 31040156 DOI: 10.1158/0008-5472.can-18-2372] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/03/2018] [Accepted: 04/26/2019] [Indexed: 12/11/2022]
Abstract
Cnk1 (connector enhancer of kinase suppressor of Ras 1) is a pleckstrin homology (PH) domain-containing scaffold protein that increases the efficiency of Ras signaling pathways, imparting efficiency and specificity to the response of cell proliferation, survival, and migration. Mutated KRAS (mut-KRAS) is the most common proto-oncogenic event, occurring in approximately 25% of human cancers and has no effective treatment. In this study, we show that selective inhibition of Cnk1 blocks growth and Raf/Mek/Erk, Rho and RalA/B signaling in mut-KRAS lung and colon cancer cells with little effect on wild-type (wt)-KRAS cells. Cnk1 inhibition decreased anchorage-independent mut-KRas cell growth more so than growth on plastic, without the partial "addiction" to mut-KRAS seen on plastic. The PH domain of Cnk1 bound with greater affinity to PtdIns(4,5)P2 than PtdIns(3,4,5)P3, and Cnk1 localized to areas of the plasma membranes rich in PtdIns, suggesting a role for the PH domain in the biological activity of Cnk1. Through molecular modeling and structural modification, we identified a compound PHT-7.3 that bound selectively to the PH domain of Cnk1, preventing plasma membrane colocalization with mut-KRas. PHT-7.3 inhibited mut-KRas, but not wild-type KRas cancer cell and tumor growth and signaling. Thus, the PH domain of Cnk1 is a druggable target whose inhibition selectively blocks mutant KRas activation, making Cnk1 an attractive therapeutic target in patients with mut-KRAS-driven cancer. SIGNIFICANCE: These findings identify a therapeutic strategy to selectively block oncogenic KRas activity through the PH domain of Cnk1, which reduces its cell membrane binding, decreasing the efficiency of Ras signaling and tumor growth.
Collapse
Affiliation(s)
| | - Roisin Puentes
- Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, California
| | - Marco Maruggi
- Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, California
| | | | - Geoffrey Grandjean
- Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, California
| | | | | | | | | | - Robert Lemos
- Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, California
| | | | - Fabiana I A L Layng
- Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, California
| | - Ricardo G Correa
- Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, California
| | - Laurie A Bankston
- Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, California
| | - Robert C Liddington
- Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, California
| | | | - Garth Powis
- Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, California.
| |
Collapse
|
2
|
Fritz RD, Radziwill G. CNK1 and other scaffolds for Akt/FoxO signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1971-7. [PMID: 21320536 DOI: 10.1016/j.bbamcr.2011.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/01/2011] [Accepted: 02/05/2011] [Indexed: 11/28/2022]
Abstract
FoxO transcription factors mediate anti-proliferative and pro-apoptotic signals and act as tumor suppressors in cancer. Posttranslational modifications including phosphorylation and acetylation regulate FoxO activity by a cytoplasmic-nuclear shuttle mechanism. Scaffold proteins coordinating signaling pathways in time and space play a critical role in this process. CNK1 acts as a scaffold protein in several signaling pathways controlling the function of FoxO proteins. An understanding of CNK1 and other scaffolds in the FoxO signaling network will provide insights how to release the tumor suppressor function of FoxO as a possibility to block oncogenic pathways. This article is part of a Special Issue entitled: P13K-AKT-FoxO axis in cancer and aging.
Collapse
Affiliation(s)
- Rafael D Fritz
- Department of Biomedicine, Institute of Biochemistry and Genetics, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland.
| | | |
Collapse
|
3
|
Fritz RD, Varga Z, Radziwill G. CNK1 is a novel Akt interaction partner that promotes cell proliferation through the Akt-FoxO signalling axis. Oncogene 2010; 29:3575-82. [PMID: 20383191 DOI: 10.1038/onc.2010.104] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 02/11/2010] [Accepted: 03/01/2010] [Indexed: 12/17/2022]
Abstract
The scaffold proteins connector enhancer of KSR (CNK) participate in Raf-, Rho- and NF-kappaB-dependent signalling and promote cell differentiation and invasion. In this study, we demonstrate that CNK1 downregulation inhibits, whereas CNK1 overexpression stimulates the proliferation of breast cancer cells and human embryonic kidney cells, respectively. This stimulatory effect depends on a functional phosphatidylinositol-3 kinase (PI3K) pathway because treatment of cells with the PI3K inhibitor, LY294002, abrogates CNK1-induced proliferation. CNK1 interacts with the PI3K effector Akt and knockdown of CNK1 decreases Akt activity in breast cancer cells. CNK1 controls Akt-dependent phosphorylation and transcriptional activity of FoxO, which is a negative regulator of proliferation. Consistent with this, CNK1-induced cell proliferation is blocked by FoxO overexpression. Moreover, CNK1 regulates anchorage-independent proliferation and focus formation of breast cancer cells. CNK1 is predominantly localized at the plasma membrane of breast cancer cells, whereas in non-transformed mammary epithelial cells, CNK1 is cytoplasmatic. Accordingly, CNK1 is found preferentially at the plasma membrane in carcinoma in situ and invasive breast cancer tumours compared with normal breast tissue sections. Analysis of multiple breast cancer samples reveals that CNK1-negative tumours show less Akt activity. Thus, CNK1 promotes oncogenic signalling through Akt in breast cancer cell lines and tumours.
Collapse
Affiliation(s)
- R D Fritz
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
4
|
Abstract
The RAS-RAF-MEK-extracellular-regulated kinase (RAS/ERK) pathway is a major intracellular route used by metazoan cells to channel to downstream targets a diverse array of signals, including those controlling cell proliferation and survival. Recent findings suggest that the pathway is assembled by specific scaffolding proteins that in turn regulate the efficiency, the location and/or the duration of signal transmission. Here, through the angle of studies conducted in Drosophila and C. elegans, we present two such proteins, the kinase suppressor of RAS (KSR) and connector enhancer of KSR (CNK) scaffolds, and highlight their implication in a novel mechanism regulating RAS-mediated RAF activation. Based on recent findings, we discuss the possibility that KSR, a RAF-like protein, does not solely act as a scaffold, but directly induces RAF catalytic function by a kinase-independent mechanism apparently shared by RAF-like proteins.
Collapse
Affiliation(s)
- A Clapéron
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal CP, Montréal, Québec, Canada
| | | |
Collapse
|
5
|
Giallourakis C, Cao Z, Green T, Wachtel H, Xie X, Lopez-Illasaca M, Daly M, Rioux J, Xavier R. A molecular-properties-based approach to understanding PDZ domain proteins and PDZ ligands. Genes Dev 2006; 16:1056-72. [PMID: 16825666 PMCID: PMC1524865 DOI: 10.1101/gr.5285206] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 05/08/2006] [Indexed: 11/24/2022]
Abstract
PDZ domain-containing proteins and their interaction partners are mutated in numerous human diseases and function in complexes regulating epithelial polarity, ion channels, cochlear hair cell development, vesicular sorting, and neuronal synaptic communication. Among several properties of a collection of documented PDZ domain-ligand interactions, we discovered embedded in a large-scale expression data set the existence of a significant level of co-regulation between PDZ domain-encoding genes and these ligands. From this observation, we show how integration of expression data, a comparative genomics catalog of 899 mammalian genes with conserved PDZ-binding motifs, phylogenetic analysis, and literature mining can be utilized to infer PDZ complexes. Using molecular studies we map novel interaction partners for the PDZ proteins DLG1 and CARD11. These results provide insight into the diverse roles of PDZ-ligand complexes in cellular signaling and provide a computational framework for the genome-wide evaluation of PDZ complexes.
Collapse
Affiliation(s)
- Cosmas Giallourakis
- Massachusetts General Hospital, Gastrointestinal Unit, Harvard University Medical School, Boston, Massachusetts 02114, USA
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts 02139, USA
| | - Zhifang Cao
- Massachusetts General Hospital, Center for Computational and Integrative Biology, Harvard University Medical School, Boston, Massachusetts 02114, USA
- Massachusetts General Hospital, Gastrointestinal Unit, Harvard University Medical School, Boston, Massachusetts 02114, USA
| | - Todd Green
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts 02139, USA
| | - Heather Wachtel
- Massachusetts General Hospital, Center for Computational and Integrative Biology, Harvard University Medical School, Boston, Massachusetts 02114, USA
- Massachusetts General Hospital, Gastrointestinal Unit, Harvard University Medical School, Boston, Massachusetts 02114, USA
| | - Xiaohui Xie
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts 02139, USA
| | - Marco Lopez-Illasaca
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard University Medical School, Boston, Massachusetts 02115, USA
| | - Mark Daly
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts 02139, USA
| | - John Rioux
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts 02139, USA
| | - Ramnik Xavier
- Massachusetts General Hospital, Center for Computational and Integrative Biology, Harvard University Medical School, Boston, Massachusetts 02114, USA
- Massachusetts General Hospital, Gastrointestinal Unit, Harvard University Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
6
|
Niu G, Huang L, Wang Q, Jiang L, Huang M, Shen P, Fei J. A novel strategy to identify the regulatory DNA-organized cooperations among transcription factors. FEBS Lett 2005; 580:415-24. [PMID: 16376876 DOI: 10.1016/j.febslet.2005.12.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 12/07/2005] [Accepted: 12/09/2005] [Indexed: 11/24/2022]
Abstract
To identify the functional contributions of cooperations among transcription factors on regulatory DNA is critical for understanding transcription activation. But so far there is a great lack of effective identifying methods. Here we describe a novel strategy, based on comprehensively perturbed experiments and a computational model, to identify the cooperations among NF-kappaB (p65), CREB, and AP-1 in transcription activation of human cytomegalovirus major IE1 promoter/enhancer (MIEP). In this strategy, functional profiles of protein-MIEP association and RNA synthesis are achieved through comprehensively perturbing the association of p65, CREB or AP-1 with MIEP and then subjected to the computational model. Consequently, the 'real' cooperations contributing to MIEP activation are found to comprise five but not seven types of potential cooperations. Thus, our research provides a facile systematic approach to identifying the DNA-organized cooperations among transcription factors and understanding transcription activation.
Collapse
Affiliation(s)
- Gang Niu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Kolch W. Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol 2005; 6:827-37. [PMID: 16227978 DOI: 10.1038/nrm1743] [Citation(s) in RCA: 815] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The pathway from Ras through Raf and MEK (MAPK and ERK kinase) to ERK/MAPK (extracellular signal-regulated kinase/mitogen-activated protein kinase) regulates many fundamental cellular processes. Recently, a number of scaffolding proteins and endogenous inhibitors have been identified, and their important roles in regulating signalling through this pathway are now emerging. Some scaffolds augment the signal flux, but also mediate crosstalk with other pathways; certain adaptors target MEK-ERK/MAPK complexes to subcellular localizations; others provide regulated inhibition. Computational modelling indicates that, together, these modulators can determine the dynamic biological behaviour of the pathway.
Collapse
Affiliation(s)
- Walter Kolch
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
| |
Collapse
|
8
|
Rocheleau CE, Rönnlund A, Tuck S, Sundaram MV. Caenorhabditis elegans CNK-1 promotes Raf activation but is not essential for Ras/Raf signaling. Proc Natl Acad Sci U S A 2005; 102:11757-62. [PMID: 16085714 PMCID: PMC1187957 DOI: 10.1073/pnas.0500937102] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Connector enhancer of Ksr (CNK) is a conserved multidomain protein essential for Ras signaling in Drosophila melanogaster and thought to be involved in Raf kinase activation. However, the precise role of CNK in Ras signaling is not known, and mammalian CNKs are proposed to have distinct functions. Caenorhabditis elegans has a single CNK homologue, cnk-1. Here, we describe the role of cnk-1 in C. elegans Ras signaling and its requirements for LIN-45 Raf activation. We find that cnk-1 positively regulates multiple Ras signaling events during development, but, unlike Drosophila CNK, cnk-1 does not appear to be essential for signaling. cnk-1 mutants appear to be normal but show cell-type-specific genetic interactions with mutations in two other Ras pathway scaffolds/adaptors ksr-1 and sur-8. Genetic epistasis using various activated LIN-45 Raf transgenes shows that CNK-1 promotes LIN-45 Raf activation at a step between the dephosphorylation of inhibitory sites in the regulatory domain and activating phosphorylation in the kinase domain. Our data are consistent with a model in which CNK promotes Raf phosphorylation/activation through membrane localization, oligomerization, or association with an activating kinase.
Collapse
Affiliation(s)
- Christian E Rocheleau
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104-6145, USA
| | | | | | | |
Collapse
|