1
|
Michel O, Kaczorowska A, Matusewicz L, Piórkowska K, Golec M, Fus W, Kuliczkowski K, Sikorski AF, Czogalla A. Development of Stable, Maleimide-Functionalized Peptidoliposomes Against SARS-CoV-2. Int J Mol Sci 2025; 26:1629. [PMID: 40004092 PMCID: PMC11855074 DOI: 10.3390/ijms26041629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Throughout the last 5 years, extensive research has been carried out towards the development of effective treatments for coronavirus disease 2019 (COVID-19). Regardless of the worldwide efforts, only a few drugs have passed clinical trials, and there is still a need to develop therapies, especially for those who are particularly vulnerable to a severe disease course. Maleimide-functionalized liposomes are proposed to serve as a platform for the immobilization, stabilization, and delivery of a short peptide sequence with high affinity towards severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, extensive optimizations should be performed in order to achieve features required for a reliable drug candidate, such as homogeneity of physical parameters and their long-term stability. Here, we present a step-by-step development process for maleimide-functionalized liposomes, which-once decorated with the SARS-CoV-2-binding peptide-could inhibit the infection progress of COVID-19. The main emphasis is placed on defining optimal lipid composition and formation conditions of PEGylated liposomes. We propose that the developed nanocarrier technology can be used as a universal platform for the construction of multiple antiviral agents.
Collapse
Affiliation(s)
- Olga Michel
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, F. Joliot Curie 14a, 50-383 Wrocław, Poland
| | - Aleksandra Kaczorowska
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, F. Joliot Curie 14a, 50-383 Wrocław, Poland
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Lucyna Matusewicz
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, F. Joliot Curie 14a, 50-383 Wrocław, Poland
| | - Kliwia Piórkowska
- Silesian Park of Medical Technology Kardio-Med Silesia, M. Curie-Skłodowskiej 10C, 41-800 Zabrze, Poland
| | - Marlena Golec
- Silesian Park of Medical Technology Kardio-Med Silesia, M. Curie-Skłodowskiej 10C, 41-800 Zabrze, Poland
| | - Wiktoria Fus
- Silesian Park of Medical Technology Kardio-Med Silesia, M. Curie-Skłodowskiej 10C, 41-800 Zabrze, Poland
| | - Kazimierz Kuliczkowski
- Silesian Park of Medical Technology Kardio-Med Silesia, M. Curie-Skłodowskiej 10C, 41-800 Zabrze, Poland
| | - Aleksander F. Sikorski
- Acellmed Ltd., M. Curie-Skłodowskiej 10C, 41-800 Zabrze, Poland
- Research and Development Center, Regional Specialist Hospital, Kamienskiego 73a, 51-154 Wrocław, Poland
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, F. Joliot Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|
2
|
Pritam M, Dutta S, Medicherla KM, Kumar R, Singh SP. Computational analysis of spike protein of SARS-CoV-2 (Omicron variant) for development of peptide-based therapeutics and diagnostics. J Biomol Struct Dyn 2024; 42:7321-7339. [PMID: 37498146 DOI: 10.1080/07391102.2023.2239932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
In the last few years, the worldwide population has suffered from the SARS-CoV-2 pandemic. The WHO dashboard indicated that around 504,079,039 people were infected and 6,204,155 died from COVID-19 caused by different variants of SARS-CoV-2. Recently, a new variant of SARS-CoV-2 (B.1.1.529) was reported by South Africa known as Omicron. The high transmissibility rate and resistance towards available anti-SARS-CoV-2 drugs/vaccines/monoclonal antibodies, make Omicron a variant of concern. Because of various mutations in spike protein, available diagnostic and therapeutic treatments are not reliable. Therefore, the present study explored the development of some therapeutic peptides that can inhibit the SARS-CoV-2 virus interaction with host ACE2 receptors and can also be used for diagnostic purposes. The screened linear B cell epitopes derived from receptor-binding domain of spike protein of Omicron variant were evaluated as peptide inhibitor/vaccine candidates through different bioinformatics tools including molecular docking and simulation to analyze the interaction between Omicron peptide and human ACE2 receptor. Overall, in-silico studies revealed that Omicron peptides OP1-P12, OP14, OP20, OP23, OP24, OP25, OP26, OP27, OP28, OP29, and OP30 have the potential to inhibit Omicron interaction with ACE2 receptor. Moreover, Omicron peptides OP20, OP22, OP23, OP24, OP25, OP26, OP27, and OP30 have shown potential antigenic and immunogenic properties that can be used in design and development vaccines against Omicron. Although the in-silico validation was performed by comparative analysis with the control peptide inhibitor, further validation through wet lab experimentation is required before its use as therapeutic peptides.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manisha Pritam
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Somenath Dutta
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
- Department of Bioinformatics, Pondicherry Central University, Puducherry, India
| | - Krishna Mohan Medicherla
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | | |
Collapse
|
3
|
Monti A, Vitagliano L, Caporale A, Ruvo M, Doti N. Targeting Protein-Protein Interfaces with Peptides: The Contribution of Chemical Combinatorial Peptide Library Approaches. Int J Mol Sci 2023; 24:7842. [PMID: 37175549 PMCID: PMC10178479 DOI: 10.3390/ijms24097842] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Protein-protein interfaces play fundamental roles in the molecular mechanisms underlying pathophysiological pathways and are important targets for the design of compounds of therapeutic interest. However, the identification of binding sites on protein surfaces and the development of modulators of protein-protein interactions still represent a major challenge due to their highly dynamic and extensive interfacial areas. Over the years, multiple strategies including structural, computational, and combinatorial approaches have been developed to characterize PPI and to date, several successful examples of small molecules, antibodies, peptides, and aptamers able to modulate these interfaces have been determined. Notably, peptides are a particularly useful tool for inhibiting PPIs due to their exquisite potency, specificity, and selectivity. Here, after an overview of PPIs and of the commonly used approaches to identify and characterize them, we describe and evaluate the impact of chemical peptide libraries in medicinal chemistry with a special focus on the results achieved through recent applications of this methodology. Finally, we also discuss the role that this methodology can have in the framework of the opportunities, and challenges that the application of new predictive approaches based on artificial intelligence is generating in structural biology.
Collapse
Affiliation(s)
- Alessandra Monti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (L.V.); (M.R.)
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (L.V.); (M.R.)
| | - Andrea Caporale
- Institute of Crystallography (IC), National Research Council (CNR), Strada Statale 14 km 163.5, Basovizza, 34149 Triese, Italy;
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (L.V.); (M.R.)
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (L.V.); (M.R.)
| |
Collapse
|
4
|
Wang D, Chen Y, Xiang S, Hu H, Zhan Y, Yu Y, Zhang J, Wu P, Liu FY, Kai T, Ding P. Recent advances in immunoassay technologies for the detection of human coronavirus infections. Front Cell Infect Microbiol 2023; 12:1040248. [PMID: 36683684 PMCID: PMC9845787 DOI: 10.3389/fcimb.2022.1040248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/30/2022] [Indexed: 01/05/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the seventh coronavirus (CoV) that has spread in humans and has become a global pandemic since late 2019. Efficient and accurate laboratory diagnostic methods are one of the crucial means to control the development of the current pandemic and to prevent potential future outbreaks. Although real-time reverse transcription-polymerase chain reaction (rRT-PCR) is the preferred laboratory method recommended by the World Health Organization (WHO) for diagnosing and screening SARS-CoV-2 infection, the versatile immunoassays still play an important role for pandemic control. They can be used not only as supplemental tools to identify cases missed by rRT-PCR, but also for first-line screening tests in areas with limited medical resources. Moreover, they are also indispensable tools for retrospective epidemiological surveys and the evaluation of the effectiveness of vaccination. In this review, we summarize the mainstream immunoassay methods for human coronaviruses (HCoVs) and address their benefits, limitations, and applications. Then, technical strategies based on bioinformatics and advanced biosensors were proposed to improve the performance of these methods. Finally, future suggestions and possibilities that can lead to higher sensitivity and specificity are provided for further research.
Collapse
Affiliation(s)
- Danqi Wang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
| | - Yuejun Chen
- Breast Surgery Department I, Hunan Cancer Hospital, Changsha, Hunan, China
| | - Shan Xiang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
| | - Huiting Hu
- Breast Surgery Department I, Hunan Cancer Hospital, Changsha, Hunan, China
| | - Yujuan Zhan
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ying Yu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
| | - Jingwen Zhang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
| | - Pian Wu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
| | - Fei Yue Liu
- Department of Economics and Management, ChangSha University, Changsha, Hunan, China
| | - Tianhan Kai
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Freire MCLC, Noske GD, Bitencourt NV, Sanches PRS, Santos-Filho NA, Gawriljuk VO, de Souza EP, Nogueira VHR, de Godoy MO, Nakamura AM, Fernandes RS, Godoy AS, Juliano MA, Peres BM, Barbosa CG, Moraes CB, Freitas-Junior LHG, Cilli EM, Guido RVC, Oliva G. Non-Toxic Dimeric Peptides Derived from the Bothropstoxin-I Are Potent SARS-CoV-2 and Papain-like Protease Inhibitors. Molecules 2021; 26:4896. [PMID: 34443484 PMCID: PMC8401042 DOI: 10.3390/molecules26164896] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 12/24/2022] Open
Abstract
The COVID-19 outbreak has rapidly spread on a global scale, affecting the economy and public health systems throughout the world. In recent years, peptide-based therapeutics have been widely studied and developed to treat infectious diseases, including viral infections. Herein, the antiviral effects of the lysine linked dimer des-Cys11, Lys12,Lys13-(pBthTX-I)2K ((pBthTX-I)2K)) and derivatives against SARS-CoV-2 are reported. The lead peptide (pBthTX-I)2K and derivatives showed attractive inhibitory activities against SARS-CoV-2 (EC50 = 28-65 µM) and mostly low cytotoxic effect (CC50 > 100 µM). To shed light on the mechanism of action underlying the peptides' antiviral activity, the Main Protease (Mpro) and Papain-Like protease (PLpro) inhibitory activities of the peptides were assessed. The synthetic peptides showed PLpro inhibition potencies (IC50s = 1.0-3.5 µM) and binding affinities (Kd = 0.9-7 µM) at the low micromolar range but poor inhibitory activity against Mpro (IC50 > 10 µM). The modeled binding mode of a representative peptide of the series indicated that the compound blocked the entry of the PLpro substrate toward the protease catalytic cleft. Our findings indicated that non-toxic dimeric peptides derived from the Bothropstoxin-I have attractive cellular and enzymatic inhibitory activities, thereby suggesting that they are promising prototypes for the discovery and development of new drugs against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Marjorie C. L. C. Freire
- São Carlos Institute of Physics, University of Sao Paulo, Avenida João Dagnone, 1100, São Carlos 13563-120, SP, Brazil; (M.C.L.C.F.); (G.D.N.); (V.O.G.); (V.H.R.N.); (M.O.d.G.); (A.M.N.); (R.S.F.); (A.S.G.)
| | - Gabriela D. Noske
- São Carlos Institute of Physics, University of Sao Paulo, Avenida João Dagnone, 1100, São Carlos 13563-120, SP, Brazil; (M.C.L.C.F.); (G.D.N.); (V.O.G.); (V.H.R.N.); (M.O.d.G.); (A.M.N.); (R.S.F.); (A.S.G.)
| | - Natália V. Bitencourt
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil; (N.V.B.); (P.R.S.S.); (N.A.S.-F.); (E.M.C.)
| | - Paulo R. S. Sanches
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil; (N.V.B.); (P.R.S.S.); (N.A.S.-F.); (E.M.C.)
| | - Norival A. Santos-Filho
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil; (N.V.B.); (P.R.S.S.); (N.A.S.-F.); (E.M.C.)
| | - Victor O. Gawriljuk
- São Carlos Institute of Physics, University of Sao Paulo, Avenida João Dagnone, 1100, São Carlos 13563-120, SP, Brazil; (M.C.L.C.F.); (G.D.N.); (V.O.G.); (V.H.R.N.); (M.O.d.G.); (A.M.N.); (R.S.F.); (A.S.G.)
| | - Eduardo P. de Souza
- Department of Genetics and Evolution, Federal University of São Carlos, Rodovia Washington Luís km 235, São Carlos 13565-905, SP, Brazil;
| | - Victor H. R. Nogueira
- São Carlos Institute of Physics, University of Sao Paulo, Avenida João Dagnone, 1100, São Carlos 13563-120, SP, Brazil; (M.C.L.C.F.); (G.D.N.); (V.O.G.); (V.H.R.N.); (M.O.d.G.); (A.M.N.); (R.S.F.); (A.S.G.)
| | - Mariana O. de Godoy
- São Carlos Institute of Physics, University of Sao Paulo, Avenida João Dagnone, 1100, São Carlos 13563-120, SP, Brazil; (M.C.L.C.F.); (G.D.N.); (V.O.G.); (V.H.R.N.); (M.O.d.G.); (A.M.N.); (R.S.F.); (A.S.G.)
| | - Aline M. Nakamura
- São Carlos Institute of Physics, University of Sao Paulo, Avenida João Dagnone, 1100, São Carlos 13563-120, SP, Brazil; (M.C.L.C.F.); (G.D.N.); (V.O.G.); (V.H.R.N.); (M.O.d.G.); (A.M.N.); (R.S.F.); (A.S.G.)
| | - Rafaela S. Fernandes
- São Carlos Institute of Physics, University of Sao Paulo, Avenida João Dagnone, 1100, São Carlos 13563-120, SP, Brazil; (M.C.L.C.F.); (G.D.N.); (V.O.G.); (V.H.R.N.); (M.O.d.G.); (A.M.N.); (R.S.F.); (A.S.G.)
| | - Andre S. Godoy
- São Carlos Institute of Physics, University of Sao Paulo, Avenida João Dagnone, 1100, São Carlos 13563-120, SP, Brazil; (M.C.L.C.F.); (G.D.N.); (V.O.G.); (V.H.R.N.); (M.O.d.G.); (A.M.N.); (R.S.F.); (A.S.G.)
| | - Maria A. Juliano
- The Sao Paulo School of Medicine, Federal University of São Paulo, Rua Três de Maio, 100, São Paulo 04044-020, SP, Brazil;
| | - Bianca M. Peres
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo 05508-900, SP, Brazil; (B.M.P.); (C.G.B.); (L.H.G.F.-J.)
| | - Cecília G. Barbosa
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo 05508-900, SP, Brazil; (B.M.P.); (C.G.B.); (L.H.G.F.-J.)
| | - Carolina B. Moraes
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Rua São Nicolau, 210, Diadema 09913-030, SP, Brazil;
| | - Lucio H. G. Freitas-Junior
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo 05508-900, SP, Brazil; (B.M.P.); (C.G.B.); (L.H.G.F.-J.)
| | - Eduardo M. Cilli
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil; (N.V.B.); (P.R.S.S.); (N.A.S.-F.); (E.M.C.)
| | - Rafael V. C. Guido
- São Carlos Institute of Physics, University of Sao Paulo, Avenida João Dagnone, 1100, São Carlos 13563-120, SP, Brazil; (M.C.L.C.F.); (G.D.N.); (V.O.G.); (V.H.R.N.); (M.O.d.G.); (A.M.N.); (R.S.F.); (A.S.G.)
| | - Glaucius Oliva
- São Carlos Institute of Physics, University of Sao Paulo, Avenida João Dagnone, 1100, São Carlos 13563-120, SP, Brazil; (M.C.L.C.F.); (G.D.N.); (V.O.G.); (V.H.R.N.); (M.O.d.G.); (A.M.N.); (R.S.F.); (A.S.G.)
| |
Collapse
|
6
|
Madhavan M, AlOmair LA, Ks D, Mustafa S. Exploring peptide studies related to SARS-CoV to accelerate the development of novel therapeutic and prophylactic solutions against COVID-19. J Infect Public Health 2021; 14:1106-1119. [PMID: 34280732 PMCID: PMC8253661 DOI: 10.1016/j.jiph.2021.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/18/2021] [Accepted: 06/27/2021] [Indexed: 01/18/2023] Open
Abstract
Recent advances in peptide research revolutionized therapeutic discoveries for various infectious diseases. In view of the ongoing threat of the COVID-19 pandemic, there is an urgent need to develop potential therapeutic options. Intense and accomplishing research is being carried out to develop broad-spectrum vaccines and treatment options for corona viruses, due to the risk of recurrent infection by the existing strains or pandemic outbreaks by new mutant strains. Developing a novel medicine is costly and time consuming, which increases the value of repurposing existing therapies. Since, SARS-CoV-2 shares significant genomic homology with SARS-CoV, we have summarized various peptides identified against SARS-CoV using in silico and molecular studies and also the peptides effective against SARS-CoV-2. Dissecting the molecular mechanisms underlying viral infection could yield fundamental insights in the discovery of new antiviral agents, targeting viral proteins or host factors. We postulate that these peptides can serve as effective components for therapeutic options against SARS-CoV-2, supporting clinical scientists globally in selectively identifying and testing the therapeutic and prophylactic agents for COVID-19 treatment. In addition, we also summarized the latest updates on peptide therapeutics against SARS-CoV-2.
Collapse
Affiliation(s)
- Maya Madhavan
- Department of Biochemistry, Government College for Women, Thiruvananthapuram, Kerala, India.
| | - Lamya A AlOmair
- Department of Biostatistics and Bioinformatics, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| | - Deepthi Ks
- Department of Microbiology, Government College for Women, Thiruvananthapuram, Kerala, India.
| | - Sabeena Mustafa
- Department of Biostatistics and Bioinformatics, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| |
Collapse
|
7
|
Han J, Sun J, Zhang G, Chen H. DCs-based therapies: potential strategies in severe SARS-CoV-2 infection. Int J Med Sci 2021; 18:406-418. [PMID: 33390810 PMCID: PMC7757148 DOI: 10.7150/ijms.47706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 11/09/2020] [Indexed: 01/08/2023] Open
Abstract
Pneumonia caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is spreading globally. There have been strenuous efforts to reveal the mechanisms that the host defends itself against invasion by this virus. The immune system could play a crucial role in virus infection. Dendritic cell as sentinel of the immune system plays an irreplaceable role. Dendritic cells-based therapeutic approach may be a potential strategy for SARS-CoV-2 infection. In this review, the characteristics of coronavirus are described briefly. We focus on the essential functions of dendritic cell in severe SARS-CoV-2 infection. Basis of treatment based dendritic cells to combat coronavirus infections is summarized. Finally, we propose that the combination of DCs based vaccine and other therapy is worth further study.
Collapse
Affiliation(s)
- Jian Han
- General Surgery Department, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute of Integrative Medicine of Dalian Medical University, Dalian 116044, China
- Department of Pharmaceutical Sciences USF Health, Taneja College of Pharmacy University of South Florida, Tampa, FL, USA
| | - Jiazhi Sun
- Department of Pharmaceutical Sciences USF Health, Taneja College of Pharmacy University of South Florida, Tampa, FL, USA
| | - Guixin Zhang
- General Surgery Department, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute of Integrative Medicine of Dalian Medical University, Dalian 116044, China
| | - Hailong Chen
- General Surgery Department, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute of Integrative Medicine of Dalian Medical University, Dalian 116044, China
| |
Collapse
|
8
|
Al-Azzam S, Ding Y, Liu J, Pandya P, Ting JP, Afshar S. Peptides to combat viral infectious diseases. Peptides 2020; 134:170402. [PMID: 32889022 PMCID: PMC7462603 DOI: 10.1016/j.peptides.2020.170402] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
Viral infectious diseases have resulted in millions of deaths throughout history and have created a significant public healthcare burden. Tremendous efforts have been placed by the scientific communities, health officials and government organizations to detect, treat, and prevent viral infection. However, the complicated life cycle and rapid genetic mutations of viruses demand continuous development of novel medicines with high efficacy and safety profiles. Peptides provide a promising outlook as a tool to combat the spread and re-emergence of viral infection. This article provides an overview of five viral infectious diseases with high global prevalence: influenza, chronic hepatitis B, acquired immunodeficiency syndrome, severe acute respiratory syndrome, and coronavirus disease 2019. The current and potential peptide-based therapies, vaccines, and diagnostics for each disease are discussed.
Collapse
Affiliation(s)
- Shams Al-Azzam
- Professional Scientific Services, Eurofins Lancaster Laboratories, Lancaster, PA, 17605, USA
| | - Yun Ding
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Jinsha Liu
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Priyanka Pandya
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Joey Paolo Ting
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Sepideh Afshar
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA.
| |
Collapse
|
9
|
Corral-Lugo A, López-Siles M, López D, McConnell MJ, Martin-Galiano AJ. Identification and Analysis of Unstructured, Linear B-Cell Epitopes in SARS-CoV-2 Virion Proteins for Vaccine Development. Vaccines (Basel) 2020; 8:397. [PMID: 32698423 PMCID: PMC7564417 DOI: 10.3390/vaccines8030397] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022] Open
Abstract
The efficacy of SARS-CoV-2 nucleic acid-based vaccines may be limited by proteolysis of the translated product due to anomalous protein folding. This may be the case for vaccines employing linear SARS-CoV-2 B-cell epitopes identified in previous studies since most of them participate in secondary structure formation. In contrast, we have employed a consensus of predictors for epitopic zones plus a structural filter for identifying 20 unstructured B-cell epitope-containing loops (uBCELs) in S, M, and N proteins. Phylogenetic comparison suggests epitope switching with respect to SARS-CoV in some of the identified uBCELs. Such events may be associated with the reported lack of serum cross-protection between the 2003 and 2019 pandemic strains. Incipient variability within a sample of 1639 SARS-CoV-2 isolates was also detected for 10 uBCELs which could cause vaccine failure. Intermediate stages of the putative epitope switch events were observed in bat coronaviruses in which additive mutational processes possibly facilitating evasion of the bat immune system appear to have taken place prior to transfer to humans. While there was some overlap between uBCELs and previously validated SARS-CoV B-cell epitopes, multiple uBCELs had not been identified in prior studies. Overall, these uBCELs may facilitate the development of biomedical products for SARS-CoV-2.
Collapse
Affiliation(s)
- Andrés Corral-Lugo
- Intrahospital Infections Unit, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (A.C.-L.); (M.L.-S.)
| | - Mireia López-Siles
- Intrahospital Infections Unit, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (A.C.-L.); (M.L.-S.)
| | - Daniel López
- Immune Presentation and Regulation Unit, Instituto de Salud Carlos III, 28220 Madrid, Spain;
| | - Michael J. McConnell
- Intrahospital Infections Unit, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (A.C.-L.); (M.L.-S.)
| | - Antonio J. Martin-Galiano
- Intrahospital Infections Unit, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (A.C.-L.); (M.L.-S.)
| |
Collapse
|
10
|
Key residues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutralizing antibodies. Cell Mol Immunol 2020; 17:621-630. [PMID: 32415260 PMCID: PMC7227451 DOI: 10.1038/s41423-020-0458-z] [Citation(s) in RCA: 336] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/29/2020] [Indexed: 11/08/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the novel human coronavirus SARS-CoV-2, is currently a major threat to public health worldwide. The viral spike protein binds the host receptor angiotensin-converting enzyme 2 (ACE2) via the receptor-binding domain (RBD), and thus is believed to be a major target to block viral entry. Both SARS-CoV-2 and SARS-CoV share this mechanism. Here we functionally analyzed the key amino acid residues located within receptor binding motif of RBD that may interact with human ACE2 and available neutralizing antibodies. The in vivo experiments showed that immunization with either the SARS-CoV RBD or SARS-CoV-2 RBD was able to induce strong clade-specific neutralizing antibodies in mice; however, the cross-neutralizing activity was much weaker, indicating that there are distinct antigenic features in the RBDs of the two viruses. This finding was confirmed with the available neutralizing monoclonal antibodies against SARS-CoV or SARS-CoV-2. It is worth noting that a newly developed SARS-CoV-2 human antibody, HA001, was able to neutralize SARS-CoV-2, but failed to recognize SARS-CoV. Moreover, the potential epitope residues of HA001 were identified as A475 and F486 in the SARS-CoV-2 RBD, representing new binding sites for neutralizing antibodies. Overall, our study has revealed the presence of different key epitopes between SARS-CoV and SARS-CoV-2, which indicates the necessity to develop new prophylactic vaccine and antibody drugs for specific control of the COVID-19 pandemic although the available agents obtained from the SARS-CoV study are unneglectable.
Collapse
|
11
|
Hao X, Xu B, Chen H, Wang X, Zhang J, Guo R, Shi X, Cao X. Stem cell-mediated delivery of nanogels loaded with ultrasmall iron oxide nanoparticles for enhanced tumor MR imaging. NANOSCALE 2019; 11:4904-4910. [PMID: 30830126 DOI: 10.1039/c8nr10490e] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The development of new nanoplatforms with enhanced tumor accumulation for accurate diagnosis still remains a great challenge in current precision nanomedicine. Herein, we report the design of stem cell-mediated delivery of nanogels (NGs) loaded with ultrasmall iron oxide (Fe3O4) nanoparticles (NPs) for enhanced magnetic resonance (MR) imaging of tumors. In this study, sodium citrate-stabilized ultrasmall Fe3O4 NPs with a size of 3.16 ± 1.30 nm were first synthesized using a solvothermal route, coated with polyethyleneimine (PEI), and used as crosslinkers to crosslink alginate (AG) NGs formed via a double emulsion approach, where the AG carboxyl groups were pre-activated with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride. The thus prepared Fe3O4 NP-loaded NGs (AG/PEI-Fe3O4 NGs) with a size of 47.68 ± 3.41 nm are water-dispersible, colloidally stable, cytocompatible in a given concentration range, display a relatively high r1 relaxivity (r1 = 1.5 mM-1 s-1), and are able to be taken up by bone mesenchymal stem cells without compromising cell viability and stem cell characteristics. Due to the tumor-chemotaxis or tumor tropism, the BMSCs are able to mediate the enhanced delivery of AG/PEI-Fe3O4 NGs to the tumor site after intravenous injection, thus enabling significantly strengthened MR imaging of tumors when compared to free NGs. These findings suggest that the developed AG/PEI-Fe3O4NGs, once mediated by stem cells may serve as a novel, safe, effective and targeted platform for enhanced MR imaging of tumors.
Collapse
Affiliation(s)
- Xinxin Hao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Mustafa S, Balkhy H, Gabere MN. Current treatment options and the role of peptides as potential therapeutic components for Middle East Respiratory Syndrome (MERS): A review. J Infect Public Health 2017; 11:9-17. [PMID: 28864360 PMCID: PMC7102797 DOI: 10.1016/j.jiph.2017.08.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/07/2017] [Accepted: 08/11/2017] [Indexed: 02/07/2023] Open
Abstract
Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a highly pathogenic respiratory virus with mechanisms that may be driven by innate immune responses. Despite the effort of scientific studies related to this virus, Middle East Respiratory Syndrome (MERS) is still a public health concern. MERS-CoV infection has a high mortality rate, and to date, no therapeutic or vaccine has been discovered, that is effective in treating or preventing the disease. In this review, we summarize our understanding of the molecular and biological events of compounds acting as MERS-CoV inhibitors, the outcomes of existing therapeutic options and the various drugs undergoing clinical trials. Currently, several therapeutic options have been employed, such as convalescent plasma (CP), intravenous immunoglobulin (IVIG), monoclonal antibodies and repurposing of existing clinically approved drugs. However, these therapeutic options have drawbacks, thus the need for an alternative approach. The requirement for effective therapeutic treatment has brought the necessity for additional MERS treatments. We suggest that antimicrobial peptides (AMPs) may be used as alternative therapeutic agents against MERS-CoV infection. In addition, we propose the feasibility of developing effective agents by repurposing the existing and clinically approved anti-coronavirus and anti-viral peptide drugs.
Collapse
Affiliation(s)
- Sabeena Mustafa
- Department of Biostatistics and Bioinformatics, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, P.O. Box 22490, Mail Code 1515, Riyadh 11426, Saudi Arabia
| | - Hanan Balkhy
- Infection Prevention and Control Department at the Ministry of National Guard, Department of Infectious Diseases, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, P.O. Box 22490, Mail Code 1515, Riyadh 11426, Saudi Arabia
| | - Musa N Gabere
- Department of Biostatistics and Bioinformatics, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, P.O. Box 22490, Mail Code 1515, Riyadh 11426, Saudi Arabia.
| |
Collapse
|
13
|
Bian C, Zhang X, Cai X, Zhang L, Chen Z, Zha Y, Xu Y, Xu K, Lu W, Yan L, Yuan J, Feng J, Hao P, Wang Q, Zhao G, Liu G, Zhu X, Shen H, Zheng B, Shen B, Sun B. Conserved amino acids W423 and N424 in receptor-binding domain of SARS-CoV are potential targets for therapeutic monoclonal antibody. Virology 2008; 383:39-46. [PMID: 18986662 PMCID: PMC7103409 DOI: 10.1016/j.virol.2008.09.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 08/04/2008] [Accepted: 09/29/2008] [Indexed: 12/30/2022]
Abstract
The receptor-binding domain (RBD) on spike protein of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is the main region interacting with the viral receptor-ACE2 and is a useful target for induction of neutralizing antibodies against SARS-CoV infection. Here we generated two monoclonal antibodies (mAbs), targeting RBD, with marked virus neutralizing activity. The mAbs recognize a new conformational epitope which consists of several discontinuous peptides (aa. 343–367, 373–390 and 411–428) and is spatially located neighboring the receptor-binding motif (RPM) region of the RBD. Importantly, W423 and N424 residues are essential for mAb recognition and are highly conserved among 107 different strains of SARS, indicating that the residues are the most critical in the epitope which is a novel potential target for therapeutic mAbs. A human–mouse chimeric antibody, based upon the original murine mAb, was also constructed and shown to possess good neutralizing activity and high affinity.
Collapse
Affiliation(s)
- Chao Bian
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Yu M, Stevens V, Berry JD, Crameri G, McEachern J, Tu C, Shi Z, Liang G, Weingartl H, Cardosa J, Eaton BT, Wang LF. Determination and application of immunodominant regions of SARS coronavirus spike and nucleocapsid proteins recognized by sera from different animal species. J Immunol Methods 2007; 331:1-12. [PMID: 18191140 PMCID: PMC7094251 DOI: 10.1016/j.jim.2007.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 11/03/2007] [Accepted: 11/14/2007] [Indexed: 02/08/2023]
Abstract
Knowledge of immunodominant regions in major viral antigens is important for rational design of effective vaccines and diagnostic tests. Although there have been many reports of such work done for SARS–CoV, these were mainly focused on the immune responses of humans and mice. In this study, we aim to search for and compare immunodominant regions of the spike (S) and nucleocapsid (N) proteins which are recognized by sera from different animal species, including mouse, rat, rabbit, civet, pig and horse. Twelve overlapping recombinant protein fragments were produced in Escherichia coli, six each for the S and N proteins, which covered the entire coding region of the two proteins. Using a membrane-strip based Western blot approach, the reactivity of each antigen fragment against a panel of animal sera was determined. Immunodominant regions containing linear epitopes, which reacted with sera from all the species tested, were identified for both proteins. The S3 fragment (aa 402–622) and the N4 fragment (aa 220–336) were the most immunodominant among the six S and N fragments, respectively. Antibodies raised against the S3 fragment were able to block the binding of a panel of S-specific monoclonal antibodies (mAb) to SARS–CoV in ELISA, further demonstrating the immunodominance of this region. Based on these findings, one-step competition ELISAs were established which were able to detect SARS–CoV antibodies from human and at least seven different animal species. Considering that a large number of animal species are known to be susceptible to SARS–CoV, these assays will be a useful tool to trace the origin and transmission of SARS–CoV and to minimise the risk of animal-to-human transmission.
Collapse
Affiliation(s)
- Meng Yu
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Vlasova AN, Zhang X, Hasoksuz M, Nagesha HS, Haynes LM, Fang Y, Lu S, Saif LJ. Two-way antigenic cross-reactivity between severe acute respiratory syndrome coronavirus (SARS-CoV) and group 1 animal CoVs is mediated through an antigenic site in the N-terminal region of the SARS-CoV nucleoprotein. J Virol 2007; 81:13365-77. [PMID: 17913799 PMCID: PMC2168854 DOI: 10.1128/jvi.01169-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In 2002, severe acute respiratory syndrome-associated coronavirus (SARS-CoV) emerged in humans, causing a global epidemic. By phylogenetic analysis, SARS-CoV is distinct from known CoVs and most closely related to group 2 CoVs. However, no antigenic cross-reactivity between SARS-CoV and known CoVs was conclusively and consistently demonstrated except for group 1 animal CoVs. We analyzed this cross-reactivity by an enzyme-linked immunosorbent assay (ELISA) and Western blot analysis using specific antisera to animal CoVs and SARS-CoV and SARS patient convalescent-phase or negative sera. Moderate two-way cross-reactivity between SARS-CoV and porcine CoVs (transmissible gastroenteritis CoV [TGEV] and porcine respiratory CoV [PRCV]) was mediated through the N but not the spike protein, whereas weaker cross-reactivity occurred with feline (feline infectious peritonitis virus) and canine CoVs. Using Escherichia coli-expressed recombinant SARS-CoV N protein and fragments, the cross-reactive region was localized between amino acids (aa) 120 to 208. The N-protein fragments comprising aa 360 to 412 and aa 1 to 213 reacted specifically with SARS convalescent-phase sera but not with negative human sera in ELISA; the fragment comprising aa 1 to 213 cross-reacted with antisera to animal CoVs, whereas the fragment comprising aa 360 to 412 did not cross-react and could be a potential candidate for SARS diagnosis. Particularly noteworthy, a single substitution at aa 120 of PRCV N protein diminished the cross-reactivity. We also demonstrated that the cross-reactivity is not universal for all group 1 CoVs, because HCoV-NL63 did not cross-react with SARS-CoV. One-way cross-reactivity of HCoV-NL63 with group 1 CoVs was localized to aa 1 to 39 and at least one other antigenic site in the N-protein C terminus, differing from the cross-reactive region identified in SARS-CoV N protein. The observed cross-reactivity is not a consequence of a higher level of amino acid identity between SARS-CoV and porcine CoV nucleoproteins, because sequence comparisons indicated that SARS-CoV N protein has amino acid identity similar to that of infectious bronchitis virus N protein and shares a higher level of identity with bovine CoV N protein within the cross-reactive region. The TGEV and SARS-CoV N proteins are RNA chaperons with long disordered regions. We speculate that during natural infection, antibodies target similar short antigenic sites within the N proteins of SARS-CoV and porcine group 1 CoVs that are exposed to an immune response. Identification of the cross-reactive and non-cross-reactive N-protein regions allows development of SARS-CoV-specific antibody assays for screening animal and human sera.
Collapse
Affiliation(s)
- Anastasia N Vlasova
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691-4096, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Zhao J, Wang W, Yuan Z, Jia R, Zhao Z, Xu X, Lv P, Zhang Y, Jiang C, Gao XM. A study on antigenicity and receptor-binding ability of fragment 450-650 of the spike protein of SARS coronavirus. Virology 2006; 359:362-70. [PMID: 17055551 PMCID: PMC7103343 DOI: 10.1016/j.virol.2006.09.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 07/11/2006] [Accepted: 09/18/2006] [Indexed: 11/01/2022]
Abstract
The spike (S) protein of SARS coronavirus (SARS-CoV) is responsible for viral binding with ACE2 molecules. Its receptor-binding motif (S-RBM) is located between residues 424 and 494, which folds into 2 anti-parallel beta-sheets, beta5 and beta6. We have previously demonstrated that fragment 450-650 of the S protein (S450-650) is predominantly recognized by convalescent sera of SARS patients. The N-terminal 60 residues (450-510) of the S450-650 fragment covers the entire beta6 strand of S-RBM. In the present study, we demonstrate that patient sera predominantly recognized 2 linear epitopes outside the beta6 fragment, while the mouse antisera, induced by immunization of BALB/c mice with recombinant S450-650, mainly recognized the beta6 strand-containing region. Unlike patient sera, however, the mouse antisera were unable to inhibit the infectivity of S protein-expressing (SARS-CoV-S) pseudovirus. Fusion protein between green fluorescence protein (GFP) and S450-650 (S450-650-GFP) was able to stain Vero E6 cells and deletion of the beta6 fragment rendered the fusion product (S511-650-GFP) unable to do so. Similarly, recombinant S450-650, but not S511-650, was able to block the infection of Vero E6 cells by the SARS-CoV-S pseudovirus. Co-precipitation experiments confirmed that S450-650 was able to specifically bind with ACE2 molecules in lysate of Vero E6 cells. However, the ability of S450-510, either alone or in fusion with GFP, to bind with ACE2 was significantly poorer compared with S450-650. Our data suggest a possibility that, although the beta6 strand alone is able to bind with ACE2 with relatively high affinity, residues outside the S-RBM could also assist the receptor binding of SARS-CoV-S protein.
Collapse
Affiliation(s)
- Jincun Zhao
- Department of Immunology, Peking University Health Science Center, Peking University, 38 Xueyuan Road, Beijing 100083, China
| | - Wei Wang
- Department of Immunology, Peking University Health Science Center, Peking University, 38 Xueyuan Road, Beijing 100083, China
| | - Zhihong Yuan
- Department of Immunology, Peking University Health Science Center, Peking University, 38 Xueyuan Road, Beijing 100083, China
| | - Rujing Jia
- Department of Immunology, Peking University Health Science Center, Peking University, 38 Xueyuan Road, Beijing 100083, China
| | - Zhendong Zhao
- Department of Immunology, Peking University Health Science Center, Peking University, 38 Xueyuan Road, Beijing 100083, China
| | - Xiaojun Xu
- Department of Immunology, Peking University Health Science Center, Peking University, 38 Xueyuan Road, Beijing 100083, China
| | - Ping Lv
- Department of Immunology, Peking University Health Science Center, Peking University, 38 Xueyuan Road, Beijing 100083, China
| | - Yan Zhang
- Department of Immunology, Peking University Health Science Center, Peking University, 38 Xueyuan Road, Beijing 100083, China
| | - Chengyu Jiang
- Institute of Basic Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiao-Ming Gao
- Department of Immunology, Peking University Health Science Center, Peking University, 38 Xueyuan Road, Beijing 100083, China
- Corresponding author. Fax: +86 10 82801156.
| |
Collapse
|
17
|
Shin GC, Chung YS, Kim IS, Cho HW, Kang C. Preparation and characterization of a novel monoclonal antibody specific to severe acute respiratory syndrome-coronavirus nucleocapsid protein. Virus Res 2006; 122:109-18. [PMID: 16942813 PMCID: PMC7114302 DOI: 10.1016/j.virusres.2006.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 07/03/2006] [Accepted: 07/10/2006] [Indexed: 11/24/2022]
Abstract
Severe acute respiratory syndrome-coronavirus nucleocapsid (SARS-CoV N) protein has been found to be important to the processes related to viral pathogenesis, such as virus replication, interference of the cell process and modulation of host immune response; detection of the antigen has been used for the early diagnosis of infection. We have used recombinant N protein expressed in insect cells to generate 17 mAbs directed against this protein. We selected five mAbs that could be used in various diagnostic assays, and all of these mAbs recognized linear epitopes. Three IgG2b mAbs were recognized within the N-terminus of N protein, whereas the epitope of two IgG1 mAbs localized within the C-terminus. These mAbs were found to have significant reactivity with both non-phosphorylated and phosphorylated N proteins, which resulted in high reactivity with native N protein in virus-infected cells; however, they did not show cross-reactivity with human coronavirus. Therefore, these results suggested that these mAbs would be useful in the development of various diagnostic kits and in future studies of SARS-CoV pathology.
Collapse
Affiliation(s)
| | | | | | | | - Chun Kang
- Corresponding author. Tel.: +82 2 380 1501; fax: +82 2 389 2014.
| |
Collapse
|
18
|
Maache M, Komurian-Pradel F, Rajoharison A, Perret M, Berland JL, Pouzol S, Bagnaud A, Duverger B, Xu J, Osuna A, Paranhos-Baccalà G. False-positive results in a recombinant severe acute respiratory syndrome-associated coronavirus (SARS-CoV) nucleocapsid-based western blot assay were rectified by the use of two subunits (S1 and S2) of spike for detection of antibody to SARS-CoV. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 13:409-14. [PMID: 16522785 PMCID: PMC1391961 DOI: 10.1128/cvi.13.3.409-414.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To evaluate the reactivity of the recombinant proteins expressed in Escherichia coli strain BL21(DE3), a Western blot assay was performed by using a panel of 78 serum samples obtained, respectively, from convalescent-phase patients infected with severe acute respiratory syndrome-associated coronavirus (SARS-CoV) (30 samples) and from healthy donors (48 samples). As antigen for detection of SARS-CoV, the nucleocapsid protein (N) showed high sensitivity and strong reactivity with all samples from SARS-CoV patients and cross-reacted with all serum samples from healthy subjects, with either those obtained from China (10 samples) or those obtained from France (38 serum samples), giving then a significant rate of false positives. Specifically, our data indicated that the two subunits, S1 (residues 14 to 760) and S2 (residues 761 to 1190), resulted from the divided spike reacted with all samples from SARS-CoV patients and without any cross-reactivity with any of the healthy serum samples. Consequently, these data revealed the nonspecific nature of N protein in serodiagnosis of SARS-CoV compared with the S1 and S2, where the specificity is of 100%. Moreover, the reported results indicated that the use of one single protein as a detection antigen of SARS-CoV infection may lead to false-positive diagnosis. These may be rectified by using more than one protein for the serodiagnosis of SARS-CoV.
Collapse
Affiliation(s)
- Mimoun Maache
- Emerging Pathogens Department of bioMérieux, CERVI, 21 Avenue Tony Garnier, 69365 cedex 07, Lyon, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Shang B, Wang XY, Yuan JW, Vabret A, Wu XD, Yang RF, Tian L, Ji YY, Deubel V, Sun B. Characterization and application of monoclonal antibodies against N protein of SARS-coronavirus. Biochem Biophys Res Commun 2005; 336:110-7. [PMID: 16112641 PMCID: PMC7092910 DOI: 10.1016/j.bbrc.2005.08.032] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 08/09/2005] [Indexed: 11/30/2022]
Abstract
Severe acute respiratory syndrome-coronavirus (SARS-CoV) causes an infectious disease through respiratory route. Diagnosing the disease effectively and accurately at early stage is essential for preventing the disease transmission and performing antiviral treatment. In this study, we raised monoclonal antibodies (mAbs) against the nucleocapsid (N) protein of SARS-CoV and mapped epitopes by using different truncated N protein fragments. The mapping of those epitopes was valuable for constructing pair-Abs used in serological diagnosis. The results showed that all of the six raised mAbs were divided into two groups recognizing the region of amino acids 249–317 (A group) or 317–395 (B group). This region spanning amino acids 249–395 contains predominant B cell epitopes located at the C-terminus of N protein. One pair-Abs, consisting of N protein-specific rabbit polyclonal antibody and SARS-CoV N protein-specific mAb, was selected to construct a sandwich ELISA-kit. The kit was able to specifically detect SARS-CoV N proteins in serum samples.
Collapse
Affiliation(s)
- Bo Shang
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lu W, Wu XD, Shi MD, Yang RF, He YY, Bian C, Shi TL, Yang S, Zhu XL, Jiang WH, Li YX, Yan LC, Ji YY, Lin Y, Lin GM, Tian L, Wang J, Wang HX, Xie YH, Pei G, Wu JR, Sun B. Synthetic peptides derived from SARS coronavirus S protein with diagnostic and therapeutic potential. FEBS Lett 2005; 579:2130-6. [PMID: 15811330 PMCID: PMC7094314 DOI: 10.1016/j.febslet.2005.02.070] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 02/12/2005] [Accepted: 02/25/2005] [Indexed: 01/10/2023]
Abstract
The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) is an important viral structural protein. Based on bioinformatics analysis, 10 antigenic peptides derived from the S protein sequence were selected and synthesized. The antigenicity and immunoreactivity of all the peptides were tested in vivo and in vitro. Four peptides (P6, P8, P9 and P10) which contain B cell epitopes of the S protein were identified, and P8 peptide was confirmed in vivo to have a potential in serological diagnosis. By using a syncytia formation model, we tested the neutralization ability of all 10 peptides and their corresponding antibodies. It is interesting to find that P8 and P9 peptides inhibited syncytia formation, suggesting that the P8 and P9 spanning regions may provide a good target for anti-SARS-CoV drug design. Our data suggest that we have identified peptides derived from the S protein of SARS-CoV, which are useful for SARS treatment and diagnosis.
Collapse
Affiliation(s)
- Wei Lu
- Laboratory of Molecular Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiao-Dong Wu
- Laboratory of Molecular Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Mu De Shi
- Laboratory of Molecular Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Rui Fu Yang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - You Yu He
- Institute of Microbiology and Epidemiology, Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100071, China
| | - Chao Bian
- Laboratory of Molecular Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Tie Liu Shi
- Institute of Microbiology and Epidemiology, Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100071, China
| | - Sheng Yang
- Bioinformation Center, Shanghai 200031, China
| | - Xue-Liang Zhu
- Laboratory of Molecular Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Yi Xue Li
- Institute of Microbiology and Epidemiology, Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100071, China
| | - Lin-Chen Yan
- Laboratory of Molecular Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Yong Yong Ji
- Laboratory of Molecular Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Ying Lin
- Laboratory of Molecular Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Guo-Mei Lin
- Laboratory of Molecular Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Lin Tian
- Laboratory of Molecular Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Jin Wang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Hong Xia Wang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - You Hua Xie
- Laboratory of Molecular Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Gang Pei
- Laboratory of Molecular Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Jia Rui Wu
- Laboratory of Molecular Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Bing Sun
- Laboratory of Molecular Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
- E-institutes of Shanghai Universities Immunology Division, China
| |
Collapse
|