1
|
Bhoobalan-Chitty Y, Xu S, Martinez-Alvarez L, Karamycheva S, Makarova KS, Koonin EV, Peng X. Regulatory sequence-based discovery of anti-defense genes in archaeal viruses. Nat Commun 2024; 15:3699. [PMID: 38698035 PMCID: PMC11065993 DOI: 10.1038/s41467-024-48074-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
In silico identification of viral anti-CRISPR proteins (Acrs) has relied largely on the guilt-by-association method using known Acrs or anti-CRISPR associated proteins (Acas) as the bait. However, the low number and limited spread of the characterized archaeal Acrs and Aca hinders our ability to identify Acrs using guilt-by-association. Here, based on the observation that the few characterized archaeal Acrs and Aca are transcribed immediately post viral infection, we hypothesize that these genes, and many other unidentified anti-defense genes (ADG), are under the control of conserved regulatory sequences including a strong promoter, which can be used to predict anti-defense genes in archaeal viruses. Using this consensus sequence based method, we identify 354 potential ADGs in 57 archaeal viruses and 6 metagenome-assembled genomes. Experimental validation identified a CRISPR subtype I-A inhibitor and the first virally encoded inhibitor of an archaeal toxin-antitoxin based immune system. We also identify regulatory proteins potentially akin to Acas that can facilitate further identification of ADGs combined with the guilt-by-association approach. These results demonstrate the potential of regulatory sequence analysis for extensive identification of ADGs in viruses of archaea and bacteria.
Collapse
Affiliation(s)
| | - Shuanshuan Xu
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | | | - Svetlana Karamycheva
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD, USA
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD, USA
| | - Xu Peng
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark.
| |
Collapse
|
2
|
Makarova KS, Zhang C, Wolf YI, Karamycheva S, Whitaker RJ, Koonin EV. Computational analysis of genes with lethal knockout phenotype and prediction of essential genes in archaea. mBio 2024; 15:e0309223. [PMID: 38189270 PMCID: PMC10865827 DOI: 10.1128/mbio.03092-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
The identification of microbial genes essential for survival as those with lethal knockout phenotype (LKP) is a common strategy for functional interrogation of genomes. However, interpretation of the LKP is complicated because a substantial fraction of the genes with this phenotype remains poorly functionally characterized. Furthermore, many genes can exhibit LKP not because their products perform essential cellular functions but because their knockout activates the toxicity of other genes (conditionally essential genes). We analyzed the sets of LKP genes for two archaea, Methanococcus maripaludis and Sulfolobus islandicus, using a variety of computational approaches aiming to differentiate between essential and conditionally essential genes and to predict at least a general function for as many of the proteins encoded by these genes as possible. This analysis allowed us to predict the functions of several LKP genes including previously uncharacterized subunit of the GINS protein complex with an essential function in genome replication and of the KEOPS complex that is responsible for an essential tRNA modification as well as GRP protease implicated in protein quality control. Additionally, several novel antitoxins (conditionally essential genes) were predicted, and this prediction was experimentally validated by showing that the deletion of these genes together with the adjacent genes apparently encoding the cognate toxins caused no growth defect. We applied principal component analysis based on sequence and comparative genomic features showing that this approach can separate essential genes from conditionally essential ones and used it to predict essential genes in other archaeal genomes.IMPORTANCEOnly a relatively small fraction of the genes in any bacterium or archaeon is essential for survival as demonstrated by the lethal effect of their disruption. The identification of essential genes and their functions is crucial for understanding fundamental cell biology. However, many of the genes with a lethal knockout phenotype remain poorly functionally characterized, and furthermore, many genes can exhibit this phenotype not because their products perform essential cellular functions but because their knockout activates the toxicity of other genes. We applied state-of-the-art computational methods to predict the functions of a number of uncharacterized genes with the lethal knockout phenotype in two archaeal species and developed a computational approach to predict genes involved in essential functions. These findings advance the current understanding of key functionalities of archaeal cells.
Collapse
Affiliation(s)
- Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Changyi Zhang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Svetlana Karamycheva
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Rachel J. Whitaker
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Cui Y, Zhao D, Liu K, Mei X, Sun S, Du B, Ding Y. Abh, AbrB3, and Spo0A play distinct regulatory roles during polymyxin synthesis in Paenibacillus polymyxa SC2. Microbiol Spectr 2024; 12:e0229323. [PMID: 38054717 PMCID: PMC10782996 DOI: 10.1128/spectrum.02293-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/24/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Polymyxins are considered the last line of defense against multidrug-resistant bacteria. The regulatory mechanism of polymyxin synthesis is poorly studied in Paenibacillus polymyxa. In this study, we found that Abh and AbrB3 negatively regulated, whereas Spo0A positively regulated polymyxin synthesis in P. polymyxa SC2. In addition, a regulatory relationship between Abh, AbrB3, and Spo0A was revealed, which regulate polymyxin synthesis via multiple regulatory mechanisms in P. polymyxa.
Collapse
Affiliation(s)
- Yanru Cui
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, State Key Laboratory of Crop Biology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, China
| | - Dongying Zhao
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, State Key Laboratory of Crop Biology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, China
| | - Kai Liu
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, State Key Laboratory of Crop Biology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, China
| | - Xiangui Mei
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Shanshan Sun
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, State Key Laboratory of Crop Biology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, China
| | - Binghai Du
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, State Key Laboratory of Crop Biology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, China
| | - Yanqin Ding
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, State Key Laboratory of Crop Biology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
4
|
Zorz J, Paquette AJ, Gillis T, Kouris A, Khot V, Demirkaya C, De La Hoz Siegler H, Strous M, Vadlamani A. Coordinated proteome change precedes cell lysis and death in a mat-forming cyanobacterium. THE ISME JOURNAL 2023; 17:2403-2414. [PMID: 37914776 PMCID: PMC10689466 DOI: 10.1038/s41396-023-01545-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
Cyanobacteria form dense multicellular communities that experience transient conditions in terms of access to light and oxygen. These systems are productive but also undergo substantial biomass turnover through cell death, supplementing heightened heterotrophic respiration. Here we use metagenomics and metaproteomics to survey the molecular response of a mat-forming cyanobacterium undergoing mass cell lysis after exposure to dark and anoxic conditions. A lack of evidence for viral, bacterial, or eukaryotic antagonism contradicts commonly held beliefs on the causative agent for cyanobacterial death during dense growth. Instead, proteogenomics data indicated that lysis likely resulted from a genetically programmed response triggered by a failure to maintain osmotic pressure in the wake of severe energy limitation. Cyanobacterial DNA was rapidly degraded, yet cyanobacterial proteins remained abundant. A subset of proteins, including enzymes involved in amino acid metabolism, peptidases, toxin-antitoxin systems, and a potentially self-targeting CRISPR-Cas system, were upregulated upon lysis, indicating possible involvement in the programmed cell death response. We propose this natural form of cell death could provide new pathways for controlling harmful algal blooms and for sustainable bioproduct production.
Collapse
Affiliation(s)
- Jackie Zorz
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB, Canada.
| | - Alexandre J Paquette
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB, Canada
| | - Timber Gillis
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB, Canada
| | - Angela Kouris
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB, Canada
- Synergia Biotech Inc., Calgary, AB, Canada
| | - Varada Khot
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB, Canada
| | - Cigdem Demirkaya
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada
| | | | - Marc Strous
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB, Canada
| | - Agasteswar Vadlamani
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB, Canada
- Synergia Biotech Inc., Calgary, AB, Canada
| |
Collapse
|
5
|
Milton ME, Cavanagh J. The Biofilm Regulatory Network from Bacillus subtilis: A Structure-Function Analysis. J Mol Biol 2023; 435:167923. [PMID: 36535428 DOI: 10.1016/j.jmb.2022.167923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/02/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Bacterial biofilms are notorious for their ability to protect bacteria from environmental challenges, most importantly the action of antibiotics. Bacillus subtilis is an extensively studied model organism used to understand the process of biofilm formation. A complex network of principal regulatory proteins including Spo0A, AbrB, AbbA, Abh, SinR, SinI, SlrR, and RemA, work in concert to transition B. subtilis from the free-swimming planktonic state to the biofilm state. In this review, we explore, connect, and summarize decades worth of structural and biochemical studies that have elucidated this protein signaling network. Since structure dictates function, unraveling aspects of protein molecular mechanisms will allow us to devise ways to exploit critical features of the biofilm regulatory pathway, such as possible therapeutic intervention. This review pools our current knowledge base of B. subtilis biofilm regulatory proteins and highlights potential therapeutic intervention points.
Collapse
Affiliation(s)
- Morgan E Milton
- Department of Biochemistry and Molecular Biology, The Brody School of Medicine, East Carolina University, NC 27834, USA.
| | - John Cavanagh
- Department of Biochemistry and Molecular Biology, The Brody School of Medicine, East Carolina University, NC 27834, USA.
| |
Collapse
|
6
|
Wang C, Niu C, Hidayatullah KM, Xue L, Zhu Z, Niu L. Structural insights into the PrpTA toxin-antitoxin system in Pseudoalteromonas rubra. Front Microbiol 2022; 13:1053255. [PMID: 36504814 PMCID: PMC9731233 DOI: 10.3389/fmicb.2022.1053255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
Bacteria could survive stresses by a poorly understood mechanism that contributes to the emergence of bacterial persisters exhibiting multidrug tolerance (MDT). Recently, Pseudoalteromonas rubra prpAT module was found to encode a toxin PrpT and corresponding cognate antidote PrpA. In this study, we first reported multiple individual and complex structures of PrpA and PrpT, which uncovered the high-resolution three-dimensional structure of the PrpT:PrpA2:PrpT heterotetramer with the aid of size exclusion chromatography-multi-angle light scattering experiments (SEC-MALS). PrpT:PrpA2:PrpT is composed of a PrpA homodimer and two PrpT monomers which are relatively isolated from each other and from ParE family. The superposition of antitoxin monomer structures from these structures highlighted the flexible C-terminal domain (CTD). A striking conformational change in the CTDs of PrpA homodimer depolymerized from homotetramer was provoked upon PrpT binding, which accounts for the unique PrpT-PrpARHH mutual interactions and further neutralizes the toxin PrpT. PrpA2-54-form I and II crystal structures both contain a doughnut-shaped hexadecamer formed by eight homodimers organized in a cogwheel-like form via inter-dimer interface dominated by salt bridges and hydrogen bonds. Moreover, PrpA tends to exist in solution as a homodimer other than a homotetramer (SEC-MALS) in the absence of flexible CTD. Multiple multi-dimers, tetramer and hexamer included, of PrpA2-54 mediated by the symmetric homodimer interface and the complicated inter-dimer interface could be observed in the solution. SEC-MALS assays highlighted that phosphate buffer (PB) and the increase in the concentration appear to be favorable for the PrpA2-54 oligomerization in the solution. Taken together with previous research, a model of PrpA2-54 homotetramer in complex with prpAT promoter and the improved mechanism underlying how PrpTA controls the plasmid replication were proposed here.
Collapse
Affiliation(s)
- Chenchen Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chuanying Niu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Khan Muhammad Hidayatullah
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lu Xue
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhongliang Zhu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Liwen Niu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
7
|
Tolibia SEM, Pacheco AD, Balbuena SYG, Rocha J, López Y López VE. Engineering of global transcription factors in Bacillus, a genetic tool for increasing product yields: a bioprocess overview. World J Microbiol Biotechnol 2022; 39:12. [PMID: 36372802 DOI: 10.1007/s11274-022-03460-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/06/2022] [Indexed: 11/15/2022]
Abstract
Transcriptional factors are well studied in bacteria for their global interactions and the effects they produce at the phenotypic level. Particularly, Bacillus subtilis has been widely employed as a model Gram-positive microorganism used to characterize these network interactions. Bacillus species are currently used as efficient commercial microbial platforms to produce diverse metabolites such as extracellular enzymes, antibiotics, surfactants, industrial chemicals, heterologous proteins, among others. However, the pleiotropic effects caused by the genetic modification of specific genes that codify for global regulators (transcription factors) have not been implicated commonly from a bioprocess point of view. Recently, these strategies have attracted the attention in Bacillus species because they can have an application to increase production efficiency of certain commercial interest metabolites. In this review, we update the recent advances that involve this trend in the use of genetic engineering (mutations, deletion, or overexpression) performed to global regulators such as Spo0A, CcpA, CodY and AbrB, which can provide an advantage for the development or improvement of bioprocesses that involve Bacillus species as production platforms. Genetic networks, regulation pathways and their relationship to the development of growth stages are also discussed to correlate the interactions that occur between these regulators, which are important to consider for application in the improvement of commercial-interest metabolites. Reported yields from these products currently produced mostly under laboratory conditions and, in a lesser extent at bioreactor level, are also discussed to give valuable perspectives about their potential use and developmental level directed to process optimization at large-scale.
Collapse
Affiliation(s)
- Shirlley Elizabeth Martínez Tolibia
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, Km 1.5, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, Mexico
| | - Adrián Díaz Pacheco
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Tlaxcala del Instituto Politécnico Nacional, CP 90000, Guillermo Valle, Tlaxcala, Mexico
| | - Sulem Yali Granados Balbuena
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, Km 1.5, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, Mexico
| | - Jorge Rocha
- CONACyT - Unidad Regional Hidalgo, Centro de Investigación en Alimentación y Desarrollo, A.C. Blvd. Santa Catarina, SN, C.P. 42163, San Agustín Tlaxiaca, Hidalgo, Mexico
| | - Víctor Eric López Y López
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, Km 1.5, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, Mexico.
| |
Collapse
|
8
|
MraZ Transcriptionally Controls the Critical Level of FtsL Required for Focusing Z-Rings and Kickstarting Septation in Bacillus subtilis. J Bacteriol 2022; 204:e0024322. [PMID: 35943250 PMCID: PMC9487581 DOI: 10.1128/jb.00243-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial division and cell wall (dcw) cluster is a highly conserved region of the genome which encodes several essential cell division factors, including the central divisome protein FtsZ. Understanding the regulation of this region is key to our overall understanding of the division process. mraZ is found at the 5' end of the dcw cluster, and previous studies have described MraZ as a sequence-specific DNA binding protein. In this article, we investigate MraZ to elucidate its role in Bacillus subtilis. Through our investigation, we demonstrate that increased levels of MraZ result in lethal filamentation due to repression of its own operon (mraZ-mraW-ftsL-pbpB). We observed rescue of filamentation upon decoupling ftsL expression, but not other genes in the operon, from MraZ control. Our data suggest that regulation of the mra operon may be an alternative way for cells to quickly arrest cytokinesis, potentially during entry into the stationary phase and in the event of DNA replication arrest. Furthermore, through time-lapse microscopy, we were able to identify that overexpression of mraZ or depletion of FtsL results in decondensation of the FtsZ ring (Z-ring). Using fluorescent d-amino acid labeling, we also observed that coordinated peptidoglycan insertion at the division site is dysregulated in the absence of FtsL. Thus, we reveal that the precise role of FtsL is in Z-ring maturation and focusing septal peptidoglycan synthesis. IMPORTANCE MraZ is a highly conserved protein found in a diverse range of bacteria, including genome-reduced Mycoplasma. We investigated the role of MraZ in Bacillus subtilis and found that overproduction of MraZ is toxic due to cell division inhibition. Upon further analysis, we observed that MraZ is a repressor of its own operon, which includes genes that encode the essential cell division factors FtsL and PBP2B. We noted that decoupling of ftsL alone was sufficient to abolish MraZ-mediated cell division inhibition. Using time-lapse microscopy, we showed that under conditions where the FtsL level is depleted, the cell division machinery is unable to initiate cytokinesis. Thus, our results pinpoint that the precise role of FtsL is in concentrating septal cell wall synthesis to facilitate cell division.
Collapse
|
9
|
Thompson MK, Nocedal I, Culviner PH, Zhang T, Gozzi KR, Laub MT. Escherichia coli SymE is a DNA-binding protein that can condense the nucleoid. Mol Microbiol 2021; 117:851-870. [PMID: 34964191 DOI: 10.1111/mmi.14877] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 11/28/2022]
Abstract
Type I toxin-antitoxin (TA) systems typically consist of a protein toxin that imbeds in the inner membrane where it can oligomerize and form pores that change membrane permeability, and an RNA antitoxin that interacts directly with toxin mRNA to inhibit its translation. In Escherichia coli, symE/symR is annotated as a type I TA system with a non-canonical toxin. SymE was initially suggested to be an endoribonuclease, but has predicted structural similarity to DNA binding proteins. To better understand SymE function, we used RNA-seq to examine cells ectopically producing it. Although SymE drives major changes in gene expression, we do not find strong evidence of endoribonucleolytic activity. Instead, our biochemical and cell biological studies indicate that SymE binds DNA. We demonstrate that the toxicity of symE overexpression likely stems from its ability to drive severe nucleoid condensation, which disrupts DNA and RNA synthesis and leads to DNA damage, similar to the effects of overproducing the nucleoid-associated protein H-NS. Collectively, our results suggest that SymE represents a new class of nucleoid-associated proteins that is widely distributed in bacteria.
Collapse
Affiliation(s)
- Mary K Thompson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Isabel Nocedal
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Peter H Culviner
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Tong Zhang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kevin R Gozzi
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
10
|
Molecular Characterization of the Burkholderia cenocepacia dcw Operon and FtsZ Interactors as New Targets for Novel Antimicrobial Design. Antibiotics (Basel) 2020; 9:antibiotics9120841. [PMID: 33255486 PMCID: PMC7761207 DOI: 10.3390/antibiotics9120841] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022] Open
Abstract
The worldwide spread of antimicrobial resistance highlights the need of new druggable cellular targets. The increasing knowledge of bacterial cell division suggested the potentiality of this pathway as a pool of alternative drug targets, mainly based on the essentiality of these proteins, as well as on the divergence from their eukaryotic counterparts. People suffering from cystic fibrosis are particularly challenged by the lack of antibiotic alternatives. Among the opportunistic pathogens that colonize the lungs of these patients, Burkholderia cenocepacia is a well-known multi-drug resistant bacterium, particularly difficult to treat. Here we describe the organization of its division cell wall (dcw) cluster: we found that 15 genes of the dcw operon can be transcribed as a polycistronic mRNA from mraZ to ftsZ and that its transcription is under the control of a strong promoter regulated by MraZ. B. cenocepacia J2315 FtsZ was also shown to interact with the other components of the divisome machinery, with a few differences respect to other bacteria, such as the direct interaction with FtsQ. Using an in vitro sedimentation assay, we validated the role of SulA as FtsZ inhibitor, and the roles of FtsA and ZipA as tethers of FtsZ polymers. Together our results pave the way for future antimicrobial design based on the divisome as pool of antibiotic cellular targets.
Collapse
|
11
|
Zhou C, Zhang H, Fang H, Sun Y, Zhou H, Yang G, Lu F. Transcriptome based functional identification and application of regulator AbrB on alkaline protease synthesis in Bacillus licheniformis 2709. Int J Biol Macromol 2020; 166:1491-1498. [PMID: 33166558 DOI: 10.1016/j.ijbiomac.2020.11.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 11/30/2022]
Abstract
Bacillus licheniformis 2709 is the major alkaline protease producer, which has great potential value of industrial application, but how the high-producer can be regulated rationally is still not completely understood. It's meaningful to understand the metabolic processes during alkaline protease production in industrial fermentation medium. Here, we collected the transcription database at various enzyme-producing stages (preliminary stage, stable phase and decline phase) to specifically research the synthesized and regulatory mechanism of alkaline protease in B. licheniformis. The RNA-sequencing analysis showed differential expression of numerous genes related to several processes, among which genes correlated with regulators were concerned, especially the major differential gene abrB on enzyme (AprE) synthesis was investigated. It was further verified that AbrB is a repressor of AprE by plasmid-mediated over-expression due to the severely descending enzyme activity (11,300 U/mL to 2695 U/mL), but interestingly it is indispensable for alkaline protease production because the enzyme activity of the null abrB mutant was just about 2279 U/mL. Thus, we investigated the aprE transcription by eliminating the theoretical binding site (TGGAA) of AbrB protein predicated by computational strategy, which significantly improved the enzyme activity by 1.21-fold and gene transcription level by 1.77-fold in the mid-log phase at a cultivation time of 18 h. Taken together, it is of great significance to improve the production strategy, control the metabolic process and oriented engineering by rational molecular modification of regulatory network based on the high throughput sequencing and computational prediction.
Collapse
Affiliation(s)
- Cuixia Zhou
- School of Biology and Brewing Engineering, Taishan University, Taian 271018, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Huitu Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Honglei Fang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Yanqing Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Huiying Zhou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China
| | - Guangcheng Yang
- School of Biology and Brewing Engineering, Taishan University, Taian 271018, PR China.
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science &Technology, Tianjin 300450, PR China.
| |
Collapse
|
12
|
Zhang SP, Wang Q, Quan SW, Yu XQ, Wang Y, Guo DD, Peng L, Feng HY, He YX. Type II toxin–antitoxin system in bacteria: activation, function, and mode of action. BIOPHYSICS REPORTS 2020. [DOI: 10.1007/s41048-020-00109-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
13
|
Ueno K, Sakai Y, Shono C, Sakamoto I, Tsukakoshi K, Hihara Y, Sode K, Ikebukuro K. Applying a riboregulator as a new chromosomal gene regulation tool for higher glycogen production in Synechocystis sp. PCC 6803. Appl Microbiol Biotechnol 2017; 101:8465-8474. [PMID: 29038975 DOI: 10.1007/s00253-017-8570-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 09/18/2017] [Accepted: 09/26/2017] [Indexed: 11/29/2022]
Abstract
Cyanobacteria are one of the most attractive hosts for biofuel production; however, genetic approaches to regulate specific chromosomal genes in cyanobacteria remain limited. With the aim of developing a novel method to regulate chromosomal gene expression in cyanobacteria, we focused on riboregulatory technology. Riboregulators are composed of two RNA fragments whose interaction leads to target gene regulation with high specificity. In this study, we inserted a riboregulator sequence upstream of the chromosomal gene encoding AbrB-like transcriptional regulator, cyAbrB2, to investigate the utility of this tool. The inserted riboregulator was able to regulate cyabrB2 gene expression, with a high ON-OFF ratio up to approximately 50-fold. The transcription levels of several genes for which cyAbrB2 acts as a transcriptional upregulator were also decreased. Further, the cyAbrB2 expression-repressed mutant showed high glycogen accumulation, equivalent to that in the cyabrB2 deletion mutant (ΔcyabrB2). Phenotypic similarities between the cyabrB2 expression-repressed mutant and the ΔcyabrB2 mutant suggest that the riboregulator can potentially be used as a new chromosomal gene regulation tool in cyanobacteria.
Collapse
Affiliation(s)
- Kinuko Ueno
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Yuta Sakai
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Chika Shono
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Ippei Sakamoto
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kaori Tsukakoshi
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Yukako Hihara
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Koji Sode
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
14
|
Rivera-Gómez N, Martínez-Núñez MA, Pastor N, Rodriguez-Vazquez K, Perez-Rueda E. Dissecting the protein architecture of DNA-binding transcription factors in bacteria and archaea. MICROBIOLOGY-SGM 2017; 163:1167-1178. [PMID: 28777072 DOI: 10.1099/mic.0.000504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Gene regulation at the transcriptional level is a central process in all organisms where DNA-binding transcription factors play a fundamental role. This class of proteins binds specifically at DNA sequences, activating or repressing gene expression as a function of the cell's metabolic status, operator context and ligand-binding status, among other factors, through the DNA-binding domain (DBD). In addition, TFs may contain partner domains (PaDos), which are involved in ligand binding and protein-protein interactions. In this work, we systematically evaluated the distribution, abundance and domain organization of DNA-binding TFs in 799 non-redundant bacterial and archaeal genomes. We found that the distributions of the DBDs and their corresponding PaDos correlated with the size of the genome. We also identified specific combinations between the DBDs and their corresponding PaDos. Within each class of DBDs there are differences in the actual angle formed at the dimerization interface, responding to the presence/absence of ligands and/or crystallization conditions, setting the orientation of the resulting helices and wings facing the DNA. Our results highlight the importance of PaDos as central elements that enhance the diversity of regulatory functions in all bacterial and archaeal organisms, and our results also demonstrate the role of PaDos in sensing diverse signal compounds. The highly specific interactions between DBDs and PaDos observed in this work, together with our structural analysis highlighting the difficulty in predicting both inter-domain geometry and quaternary structure, suggest that these systems appeared once and evolved with diverse duplication events in all the analysed organisms.
Collapse
Affiliation(s)
- Nancy Rivera-Gómez
- Centro de Investigaciones en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | - Mario Alberto Martínez-Núñez
- Laboratorio de Estudios Ecogenómicos, Facultad de Ciencias, Unidad Académica de Ciencias y Tecnología de Yucatán, Universidad Nacional Autónoma de México, Mérida, Yucatán, México
| | - Nina Pastor
- Centro de Investigación en Dinámica Celular, IICBA. Universidad Autónoma del Estado de Morelos Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos 62209, México
| | - Katya Rodriguez-Vazquez
- Departamento de Ingeniería de Sistemas Computacionales y Automatización. Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas. Ciudad Universitaria, Universidad Nacional Autónoma de México, México, D.F, México
| | - Ernesto Perez-Rueda
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.,Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Mérida, Yucatán, México
| |
Collapse
|
15
|
Lessons from making the Structural Classification of Proteins (SCOP) and their implications for protein structure modelling. Biochem Soc Trans 2017; 44:937-43. [PMID: 27284063 PMCID: PMC5011417 DOI: 10.1042/bst20160053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Indexed: 12/04/2022]
Abstract
The Structural Classification of Proteins (SCOP) database has facilitated the development of many tools and algorithms and it has been successfully used in protein structure prediction and large-scale genome annotations. During the development of SCOP, numerous exceptions were found to topological rules, along with complex evolutionary scenarios and peculiarities in proteins including the ability to fold into alternative structures. This article reviews cases of structural variations observed for individual proteins and among groups of homologues, knowledge of which is essential for protein structure modelling.
Collapse
|
16
|
Rodriguez Ayala F, Bauman C, Bartolini M, Saball E, Salvarrey M, Leñini C, Cogliati S, Strauch M, Grau R. Transcriptional regulation of adhesive properties ofBacillus subtilisto extracellular matrix proteins through the fibronectin-binding protein YloA. Mol Microbiol 2017; 104:804-821. [DOI: 10.1111/mmi.13666] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Facundo Rodriguez Ayala
- Departamento de Microbiología, Área Microbiología Básica, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario, CONICET - Rosario; Rosario, Argentina
| | - Carlos Bauman
- Departamento de Microbiología, Área Microbiología Básica, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario, CONICET - Rosario; Rosario, Argentina
| | - Marco Bartolini
- Departamento de Microbiología, Área Microbiología Básica, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario, CONICET - Rosario; Rosario, Argentina
| | - Ester Saball
- Departamento de Bioquímica Clínica, Área Inmunología, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario; Rosario, Argentina
| | - Marcela Salvarrey
- Departamento de Bioquímica Clínica, Área Inmunología, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario; Rosario, Argentina
| | - Cecilia Leñini
- Departamento de Microbiología, Área Microbiología Básica, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario, CONICET - Rosario; Rosario, Argentina
| | - Sebastián Cogliati
- Departamento de Microbiología, Área Microbiología Básica, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario, CONICET - Rosario; Rosario, Argentina
| | - Mark Strauch
- Biomedical Sciences Department, Dental School; University of Maryland; Baltimore MD USA
| | - Roberto Grau
- Departamento de Microbiología, Área Microbiología Básica, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario, CONICET - Rosario; Rosario, Argentina
| |
Collapse
|
17
|
Chan WT, Espinosa M, Yeo CC. Keeping the Wolves at Bay: Antitoxins of Prokaryotic Type II Toxin-Antitoxin Systems. Front Mol Biosci 2016; 3:9. [PMID: 27047942 PMCID: PMC4803016 DOI: 10.3389/fmolb.2016.00009] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/04/2016] [Indexed: 12/21/2022] Open
Abstract
In their initial stages of discovery, prokaryotic toxin-antitoxin (TA) systems were confined to bacterial plasmids where they function to mediate the maintenance and stability of usually low- to medium-copy number plasmids through the post-segregational killing of any plasmid-free daughter cells that developed. Their eventual discovery as nearly ubiquitous and repetitive elements in bacterial chromosomes led to a wealth of knowledge and scientific debate as to their diversity and functionality in the prokaryotic lifestyle. Currently categorized into six different types designated types I–VI, type II TA systems are the best characterized. These generally comprised of two genes encoding a proteic toxin and its corresponding proteic antitoxin, respectively. Under normal growth conditions, the stable toxin is prevented from exerting its lethal effect through tight binding with the less stable antitoxin partner, forming a non-lethal TA protein complex. Besides binding with its cognate toxin, the antitoxin also plays a role in regulating the expression of the type II TA operon by binding to the operator site, thereby repressing transcription from the TA promoter. In most cases, full repression is observed in the presence of the TA complex as binding of the toxin enhances the DNA binding capability of the antitoxin. TA systems have been implicated in a gamut of prokaryotic cellular functions such as being mediators of programmed cell death as well as persistence or dormancy, biofilm formation, as defensive weapons against bacteriophage infections and as virulence factors in pathogenic bacteria. It is thus apparent that these antitoxins, as DNA-binding proteins, play an essential role in modulating the prokaryotic lifestyle whilst at the same time preventing the lethal action of the toxins under normal growth conditions, i.e., keeping the proverbial wolves at bay. In this review, we will cover the diversity and characteristics of various type II TA antitoxins. We shall also look into some interesting deviations from the canonical type II TA systems such as tripartite TA systems where the regulatory role is played by a third party protein and not the antitoxin, and a unique TA system encoding a single protein with both toxin as well as antitoxin domains.
Collapse
Affiliation(s)
- Wai Ting Chan
- Molecular Microbiology and Infection Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Manuel Espinosa
- Molecular Microbiology and Infection Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Chew Chieng Yeo
- Faculty of Medicine, Biomedical Research Centre, Universiti Sultan Zainal Abidin Kuala Terengganu, Malaysia
| |
Collapse
|
18
|
Structure and DNA-binding traits of the transition state regulator AbrB. Structure 2014; 22:1650-6. [PMID: 25308864 DOI: 10.1016/j.str.2014.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 11/20/2022]
Abstract
The AbrB protein from Bacillus subtilis is a DNA-binding global regulator controlling the onset of a vast array of protective functions under stressful conditions. Such functions include biofilm formation, antibiotic production, competence development, extracellular enzyme production, motility, and sporulation. AbrB orthologs are known in a variety of prokaryotic organisms, most notably in all infectious strains of Clostridia, Listeria, and Bacilli. Despite its central role in bacterial response and defense, its structure has been elusive because of its highly dynamic character. Orienting its N- and C-terminal domains with respect to one another has been especially problematic. Here, we have generated a structure of full-length, tetrameric AbrB using nuclear magnetic resonance, chemical crosslinking, and mass spectrometry. We note that AbrB possesses a strip of positive electrostatic potential encompassing its DNA-binding region and that its C-terminal domain aids in DNA binding.
Collapse
|
19
|
Neubauer S, Dolgova O, Präg G, Borriss R, Makarewicz O. Substitutional analysis of the C-terminal domain of AbrB revealed its essential role in DNA-binding activity. PLoS One 2014; 9:e97254. [PMID: 24832089 PMCID: PMC4022651 DOI: 10.1371/journal.pone.0097254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/16/2014] [Indexed: 11/28/2022] Open
Abstract
The global transition state regulator AbrB controls more than 100 genes of the Bacillus relatives and is known to interact with varying DNA-sequences. The DNA-binding domain of the AbrB-like proteins was proposed to be located exclusively within the amino-terminal ends. However, the recognition of DNA, and specificity of the binding mechanism, remains elusive still in view of highly differing recognition sites. Here we present a substitutional analysis to examine the role of the carboxy-terminal domain of AbrB from Bacillus subtilis and Bacillus amyloliquefaciens. Our results demonstrate that the carboxy-terminal domains of AbrB affect the DNA-binding properties of the tetrameric AbrB. Most likely, the C-termini are responsible for the cooperative character observed for AbrB interaction with some DNA targets like tycA and phyC.
Collapse
Affiliation(s)
- Svetlana Neubauer
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany
| | - Olga Dolgova
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany
| | - Gregory Präg
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany
| | - Rainer Borriss
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany
| | - Oliwia Makarewicz
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany
- Center for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
- * E-mail:
| |
Collapse
|
20
|
Tucker AT, Bobay BG, Banse AV, Olson AL, Soderblom EJ, Moseley MA, Thompson RJ, Varney KM, Losick R, Cavanagh J. A DNA mimic: the structure and mechanism of action for the anti-repressor protein AbbA. J Mol Biol 2014; 426:1911-24. [PMID: 24534728 PMCID: PMC4017629 DOI: 10.1016/j.jmb.2014.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/07/2014] [Accepted: 02/07/2014] [Indexed: 12/25/2022]
Abstract
Bacteria respond to adverse environmental conditions by switching on the expression of large numbers of genes that enable them to adapt to unfavorable circumstances. In Bacillus subtilis, many adaptive genes are under the negative control of the global transition state regulator, the repressor protein AbrB. Stressful conditions lead to the de-repression of genes under AbrB control. Contributing to this de-repression is AbbA, an anti-repressor that binds to and blocks AbrB from binding to DNA. Here, we have determined the NMR structure of the functional AbbA dimer, confirmed that it binds to the N-terminal DNA-binding domain of AbrB, and have provided an initial description for the interaction using computational docking procedures. Interestingly, we show that AbbA has structural and surface characteristics that closely mimic the DNA phosphate backbone, enabling it to readily carry out its physiological function.
Collapse
Affiliation(s)
- Ashley T Tucker
- Department of Molecular and Structural Biochemistry, North Carolina State University, Campus Box 7622, 128 Polk Hall, Raleigh, NC 27695, USA
| | - Benjamin G Bobay
- Department of Molecular and Structural Biochemistry, North Carolina State University, Campus Box 7622, 128 Polk Hall, Raleigh, NC 27695, USA
| | - Allison V Banse
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Andrew L Olson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Campus Box 7622, 128 Polk Hall, Raleigh, NC 27695, USA
| | - Erik J Soderblom
- Duke Proteomics Core Facility, Institute for Genome Sciences and Policy, Duke University School of Medicine, Duke University, B02 Levine Sciences Research Center, 450 Research Drive, Durham, NC 27708, USA
| | - M Arthur Moseley
- Duke Proteomics Core Facility, Institute for Genome Sciences and Policy, Duke University School of Medicine, Duke University, B02 Levine Sciences Research Center, 450 Research Drive, Durham, NC 27708, USA
| | - Richele J Thompson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Campus Box 7622, 128 Polk Hall, Raleigh, NC 27695, USA
| | - Kristen M Varney
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD 21201, USA
| | - Richard Losick
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - John Cavanagh
- Department of Molecular and Structural Biochemistry, North Carolina State University, Campus Box 7622, 128 Polk Hall, Raleigh, NC 27695, USA.
| |
Collapse
|
21
|
The highly conserved MraZ protein is a transcriptional regulator in Escherichia coli. J Bacteriol 2014; 196:2053-66. [PMID: 24659771 DOI: 10.1128/jb.01370-13] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mraZ and mraW genes are highly conserved in bacteria, both in sequence and in their position at the head of the division and cell wall (dcw) gene cluster. Located directly upstream of the mraZ gene, the Pmra promoter drives the transcription of mraZ and mraW, as well as many essential cell division and cell wall genes, but no regulator of Pmra has been found to date. Although MraZ has structural similarity to the AbrB transition state regulator and the MazE antitoxin and MraW is known to methylate the 16S rRNA, mraZ and mraW null mutants have no detectable phenotypes. Here we show that overproduction of Escherichia coli MraZ inhibited cell division and was lethal in rich medium at high induction levels and in minimal medium at low induction levels. Co-overproduction of MraW suppressed MraZ toxicity, and loss of MraW enhanced MraZ toxicity, suggesting that MraZ and MraW have antagonistic functions. MraZ-green fluorescent protein localized to the nucleoid, suggesting that it binds DNA. Consistent with this idea, purified MraZ directly bound a region of DNA containing three direct repeats between Pmra and the mraZ gene. Excess MraZ reduced the expression of an mraZ-lacZ reporter, suggesting that MraZ acts as a repressor of Pmra, whereas a DNA-binding mutant form of MraZ failed to repress expression. Transcriptome sequencing (RNA-seq) analysis suggested that MraZ also regulates the expression of genes outside the dcw cluster. In support of this, purified MraZ could directly bind to a putative operator site upstream of mioC, one of the repressed genes identified by RNA-seq.
Collapse
|
22
|
|
23
|
Olson AL, Liu F, Tucker AT, Goshe MB, Cavanagh J. Chemical crosslinking and LC/MS analysis to determine protein domain orientation: application to AbrB. Biochem Biophys Res Commun 2013; 431:253-7. [PMID: 23313475 DOI: 10.1016/j.bbrc.2012.12.124] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 12/28/2012] [Indexed: 11/18/2022]
Abstract
To fully understand the modes of action of multi-protein complexes, it is essential to determine their overall global architecture and the specific relationships between domains and subunits. The transcription factor AbrB is a functional homotetramer consisting of two domains per monomer. Obtaining the high-resolution structure of tetrameric AbrB has been extremely challenging due to the independent character of these domains. To facilitate the structure determination process, we solved the NMR structures of both domains independently and utilized gas-phase cleavable chemical crosslinking and LC/MS(n) analysis to correctly position the domains within the full tetrameric AbrB protein structure.
Collapse
Affiliation(s)
- Andrew L Olson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | | | | | |
Collapse
|
24
|
Olson AL, Bobay BG, Melander C, Cavanagh J. ¹H, ¹³C, and ¹⁵N resonance assignments and secondary structure prediction of the full-length transition state regulator AbrB from Bacillus anthracis. BIOMOLECULAR NMR ASSIGNMENTS 2012; 6:95-98. [PMID: 21845362 PMCID: PMC3428226 DOI: 10.1007/s12104-011-9333-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 07/26/2011] [Indexed: 05/31/2023]
Abstract
The AbrB protein is a transcription factor that regulates the expression of numerous essential genes during the cells transition phase state. AbrB from Bacillus anthracis is, nototriously, the principal protein responsible for anthrax toxin gene expression and is highly homologous to the much-studied AbrB protein from Bacillus subtilis having 85% sequence identity and the ability to regulate the same target promoters. Here we report backbone and sidechain resonance assignments and secondary structure prediction for the full-length AbrB protein from B. anthracis.
Collapse
Affiliation(s)
- Andrew L Olson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | |
Collapse
|
25
|
Thermodynamic and molecular analysis of the AbrB-binding sites within the phyC-region of Bacillus amyloliquefaciens FZB45. Mol Genet Genomics 2011; 287:111-22. [PMID: 22183144 DOI: 10.1007/s00438-011-0666-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 12/05/2011] [Indexed: 12/16/2022]
Abstract
AbrB is a global regulator of transition state that is known to repress more than 100 genes in Bacillus species. Although AbrB is involved in the regulation of most cellular processes, a conserved binding motif seems to be elusive. Thus, the mechanism of AbrB-mediated transcriptional control is still unclear. In our previous work we identified two separate AbrB-binding sites within phytase gene region (phyC) of Bacillus amyloliquefaciens FZB45, whose integrity is essential for repression. Comparable architecture of AbrB-binding sites is also described for tycA that encodes an antibiotic synthesis enzyme. Considering the size of the AbrB tetramer (56 kDa) and other AbrB binding motifs (~20 to 98 bp) we hypothesized preferred binding positions within both AbrB sites of phyC that exhibit higher affinities to AbrB. Thus, we used surface plasmon resonance (SPR) to study the binding kinetics between AbrB and 40-bp ds-oligonucleotides that were derived from both binding sites. Surface plasmon resonance sensorgrams revealed strong binding kinetics that showed nearly no dissociation and positive cooperativity of the AbrB-DNA interaction to the whole AbrB-binding site 2 and to a small part of AbrB-binding site 1. Using chemically modified DNA we found bases contacting AbrB mainly at one face of the DNA-helix within a core region separated by one helical turn each. High content of modified guanines presented in the control reaction of the KMnO(4) interference assay indicated distortion of the DNA-structure of phyC. In vitro transcription assays and base substitutions within the core region support this idea and the cooperativity of AbrB binding.
Collapse
|
26
|
Maté MJ, Vincentelli R, Foos N, Raoult D, Cambillau C, Ortiz-Lombardía M. Crystal structure of the DNA-bound VapBC2 antitoxin/toxin pair from Rickettsia felis. Nucleic Acids Res 2011; 40:3245-58. [PMID: 22140099 PMCID: PMC3326315 DOI: 10.1093/nar/gkr1167] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Besides their commonly attributed role in the maintenance of low-copy number plasmids, toxin/antitoxin (TA) loci, also called ‘addiction modules’, have been found in chromosomes and associated to a number of biological functions such as: reduction of protein synthesis, gene regulation and retardation of cell growth under nutritional stress. The recent discovery of TA loci in obligatory intracellular species of the Rickettsia genus has prompted new research to establish whether they work as stress response elements or as addiction systems that might be toxic for the host cell. VapBC2 is a TA locus from R. felis, a pathogen responsible for flea-borne spotted fever in humans. The VapC2 toxin is a PIN-domain protein, whereas the antitoxin, VapB2, belongs to the family of swapped-hairpin β-barrel DNA-binding proteins. We have used a combination of biophysical and structural methods to characterize this new toxin/antitoxin pair. Our results show how VapB2 can block the VapC2 toxin. They provide a first structural description of the interaction between a swapped-hairpin β-barrel protein and DNA. Finally, these results suggest how the VapC2/VapB2 molar ratio can control the self-regulation of the TA locus transcription.
Collapse
Affiliation(s)
- María J Maté
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France
| | | | | | | | | | | |
Collapse
|
27
|
Hayes F, Van Melderen L. Toxins-antitoxins: diversity, evolution and function. Crit Rev Biochem Mol Biol 2011; 46:386-408. [PMID: 21819231 DOI: 10.3109/10409238.2011.600437] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Genes for toxin-antitoxin (TA) complexes are widespread in prokaryote genomes, and species frequently possess tens of plasmid and chromosomal TA loci. The complexes are categorized into three types based on genetic organization and mode of action. The toxins universally are proteins directed against specific intracellular targets, whereas the antitoxins are either proteins or small RNAs that neutralize the toxin or inhibit toxin synthesis. Within the three types of complex, there has been extensive evolutionary shuffling of toxin and antitoxin genes leading to considerable diversity in TA combinations. The intracellular targets of the protein toxins similarly are varied. Numerous toxins, many of which are sequence-specific endoribonucleases, dampen protein synthesis levels in response to a range of stress and nutritional stimuli. Key resources are conserved as a result ensuring the survival of individual cells and therefore the bacterial population. The toxin effects generally are transient and reversible permitting a set of dynamic, tunable responses that reflect environmental conditions. Moreover, by harboring multiple toxins that intercede in protein synthesis in response to different physiological cues, bacteria potentially sense an assortment of metabolic perturbations that are channeled through different TA complexes. Other toxins interfere with the action of topoisomersases, cell wall assembly, or cytoskeletal structures. TAs also play important roles in bacterial persistence, biofilm formation and multidrug tolerance, and have considerable potential both as new components of the genetic toolbox and as targets for novel antibacterial drugs.
Collapse
Affiliation(s)
- Finbarr Hayes
- Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester, UK.
| | | |
Collapse
|
28
|
C68 from the Sulfolobus islandicus plasmid-virus pSSVx is a novel member of the AbrB-like transcription factor family. Biochem J 2011; 435:157-66. [PMID: 21208189 DOI: 10.1042/bj20101334] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The genetic element pSSVx from Sulfolobus islandicus, strain REY15/4, is a hybrid between a plasmid and a fusellovirus. This plasmid-virus hybrid infects several species of the hyperthermophilic acidophilic crenarchaeon Sulfolobus. The open reading frame orfc68 of pSSVx encodes a 7.7 kDa protein that does not show significant sequence homology with any protein with known three-dimensional structure. EMSA (electrophoretic mobility-shift assay) experiments, DNA footprinting and CD analyses indicate that recombinant C68, purified from Escherichia coli, binds to two different operator sites that are located upstream of its own promoter. The three-dimensional structure, solved by a single-wavelength anomalous diffraction experiment on a selenomethionine derivative, shows that the protein assumes a swapped-hairpin fold, which is a distinctive fold associated with a family of prokaryotic transcription factors, such as AbrB from Bacillus subtilis. Nevertheless, C68 constitutes a novel representative of this family because it shows several peculiar structural and functional features.
Collapse
|
29
|
Hsu CH, Wang AHJ. The DNA-recognition fold of Sso7c4 suggests a new member of SpoVT-AbrB superfamily from archaea. Nucleic Acids Res 2011; 39:6764-74. [PMID: 21546550 PMCID: PMC3159460 DOI: 10.1093/nar/gkr283] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Organisms growing at elevated temperatures face the challenge of maintaining the integrity of their genetic materials. Archaea possess unique chromatin proteins for gene organization and information processing. We present the solution structure of Sso7c4 from Sulfolobus solfataricus, which has a homodimeric DNA-binding fold forming a swapped β-loop-β ‘Tai-Chi’ topology. The fold is reminiscent of the N-terminal DNA-binding domain of AbrB and MazE. In addition, several amide resonances in the heteronuclear single quantum coherence spectra of Sso7c4 are shifted and broadened with the addition of small amounts of duplex DNA oligomers. The locations of the corresponding amides in the Sso7c4 structure define its DNA-interacting surface. NMR spectra of DNA titrated with the protein further indicated that Sso7c4 interacts with DNA in the major groove. Taken together, a plausible model for the Sso7c4–DNA complex is presented, in which the DNA double helix is curved around the protein dimer.
Collapse
Affiliation(s)
- Chun-Hua Hsu
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | | |
Collapse
|
30
|
Chumsakul O, Takahashi H, Oshima T, Hishimoto T, Kanaya S, Ogasawara N, Ishikawa S. Genome-wide binding profiles of the Bacillus subtilis transition state regulator AbrB and its homolog Abh reveals their interactive role in transcriptional regulation. Nucleic Acids Res 2010; 39:414-28. [PMID: 20817675 PMCID: PMC3025583 DOI: 10.1093/nar/gkq780] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AbrB is a global transcriptional regulator of Bacillus subtilis that represses the expression of many genes during exponential growth. Here, we demonstrate that AbrB and its homolog Abh bind to hundreds of sites throughout the entire B. subtilis genome during exponential growth. Comparison of regional binding of AbrB and Abh in wild-type, ΔabrB and Δabh backgrounds revealed that they bind as homomer and/or heteromer forms with different specificities and affinities. We found four AbrB and Abh binding patterns were major. Three of these contain pairs of TGGNA motifs connected by A/T-rich sequences, differing in arrangement and spacing. We also assessed the direct involvement of these complexes in the control of gene expression. Our data indicate that AbrB usually acts as a repressor, and that the ability of Abh to act as a transcriptional regulator was limited. We found that changes to AbrB/Abh levels affect their binding at several promoters and consequently transcriptional regulation. Surprisingly, most AbrB/Abh binding events had no impact on transcription, suggesting an interesting possibility that AbrB/Abh binding is analogous to nucleoid-associated protein binding in Escherichia coli.
Collapse
Affiliation(s)
- Onuma Chumsakul
- Graduate School of Information Science, Nara Institute of Science and Technology, Takayama, Ikoma, Nara, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Agervald Å, Zhang X, Stensjö K, Devine E, Lindblad P. CalA, a cyanobacterial AbrB protein, interacts with the upstream region of hypC and acts as a repressor of its transcription in the cyanobacterium Nostoc sp. strain PCC 7120. Appl Environ Microbiol 2010; 76:880-90. [PMID: 20023111 PMCID: PMC2813017 DOI: 10.1128/aem.02521-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Accepted: 12/04/2009] [Indexed: 12/31/2022] Open
Abstract
The filamentous, heterocystous, nitrogen-fixing cyanobacterium Nostoc sp. strain PCC 7120 may contain, depending on growth conditions, up to two hydrogenases directly involved in hydrogen metabolism. HypC is one out of at least seven auxiliary gene products required for synthesis of a functional hydrogenase, specifically involved in the maturation of the large subunit. In this study we present a protein, CalA (Alr0946 in the genome), belonging to the transcription regulator family AbrB, which in protein-DNA assays was found to interact with the upstream region of hypC. Transcriptional investigations showed that calA is cotranscribed with the downstream gene alr0947, which encodes a putative protease from the abortive infection superfamily, Abi. CalA was shown to interact specifically not only with the upstream region of hypC but also with its own upstream region, acting as a repressor on hypC. The bidirectional hydrogenase activity was significantly downregulated when CalA was overexpressed, demonstrating a correlation with the transcription factor, either direct or indirect. In silico studies showed that homologues to both CalA and Alr0947 are highly conserved proteins within cyanobacteria with very similar physical organizations of the corresponding structural genes. Possible functions of the cotranscribed downstream protein Alr0947 are presented. In addition, we present a three-dimensional (3D) model of the DNA binding domain of CalA and putative DNA binding mechanisms are discussed.
Collapse
Affiliation(s)
- Åsa Agervald
- Department of Photochemistry and Molecular Science, Ångström Laboratories, Uppsala University, P.O. Box 523, SE-751 20 Uppsala, Sweden, Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, Indiana 47907
| | - Xiaohui Zhang
- Department of Photochemistry and Molecular Science, Ångström Laboratories, Uppsala University, P.O. Box 523, SE-751 20 Uppsala, Sweden, Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, Indiana 47907
| | - Karin Stensjö
- Department of Photochemistry and Molecular Science, Ångström Laboratories, Uppsala University, P.O. Box 523, SE-751 20 Uppsala, Sweden, Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, Indiana 47907
| | - Ellenor Devine
- Department of Photochemistry and Molecular Science, Ångström Laboratories, Uppsala University, P.O. Box 523, SE-751 20 Uppsala, Sweden, Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, Indiana 47907
| | - Peter Lindblad
- Department of Photochemistry and Molecular Science, Ångström Laboratories, Uppsala University, P.O. Box 523, SE-751 20 Uppsala, Sweden, Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, Indiana 47907
| |
Collapse
|
32
|
Schwarz C, Poss Z, Hoffmann D, Appel J. Hydrogenases and Hydrogen Metabolism in Photosynthetic Prokaryotes. RECENT ADVANCES IN PHOTOTROPHIC PROKARYOTES 2010; 675:305-48. [DOI: 10.1007/978-1-4419-1528-3_18] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
33
|
SigmaX is involved in controlling Bacillus subtilis biofilm architecture through the AbrB homologue Abh. J Bacteriol 2009; 191:6822-32. [PMID: 19767430 DOI: 10.1128/jb.00618-09] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A characteristic feature of biofilm formation is the production of a protective extracellular polymeric matrix. In the gram-positive bacterium Bacillus subtilis, the biofilm matrix is synthesized by the products of the epsABCDEFGHIJKLMNO operon (hereafter called the eps operon) and yqxM-sipW-tasA loci. Transcription from these operons is repressed by two key regulators, AbrB and SinR. Relief of inhibition is necessary to allow biofilm formation to proceed. Here we present data indicating that Abh, a sequence and structural homologue of AbrB, regulates biofilm architecture by B. subtilis when colony morphology and pellicle formation are assessed. Data indicating that abh expression is dependent on the environmental signals that stimulate the activity of the extracytoplasmic function sigma-factor sigma(X) are shown. We demonstrate that expression of slrR, the proposed activator of yqxM transcription, is positively controlled by Abh. Furthermore, Abh is shown to activate transcription from the promoter of the eps operon through its control of SlrR. These findings add to the increasingly complex transcriptional network that controls biofilm formation by B. subtilis.
Collapse
|
34
|
Makarova KS, Wolf YI, Koonin EV. Comprehensive comparative-genomic analysis of type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes. Biol Direct 2009; 4:19. [PMID: 19493340 PMCID: PMC2701414 DOI: 10.1186/1745-6150-4-19] [Citation(s) in RCA: 326] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 06/03/2009] [Indexed: 11/13/2022] Open
Abstract
Background The prokaryotic toxin-antitoxin systems (TAS, also referred to as TA loci) are widespread, mobile two-gene modules that can be viewed as selfish genetic elements because they evolved mechanisms to become addictive for replicons and cells in which they reside, but also possess "normal" cellular functions in various forms of stress response and management of prokaryotic population. Several distinct TAS of type 1, where the toxin is a protein and the antitoxin is an antisense RNA, and numerous, unrelated TAS of type 2, in which both the toxin and the antitoxin are proteins, have been experimentally characterized, and it is suspected that many more remain to be identified. Results We report a comprehensive comparative-genomic analysis of Type 2 toxin-antitoxin systems in prokaryotes. Using sensitive methods for distant sequence similarity search, genome context analysis and a new approach for the identification of mobile two-component systems, we identified numerous, previously unnoticed protein families that are homologous to toxins and antitoxins of known type 2 TAS. In addition, we predict 12 new families of toxins and 13 families of antitoxins, and also, predict a TAS or TAS-like activity for several gene modules that were not previously suspected to function in that capacity. In particular, we present indications that the two-gene module that encodes a minimal nucleotidyl transferase and the accompanying HEPN protein, and is extremely abundant in many archaea and bacteria, especially, thermophiles might comprise a novel TAS. We present a survey of previously known and newly predicted TAS in 750 complete genomes of archaea and bacteria, quantitatively demonstrate the exceptional mobility of the TAS, and explore the network of toxin-antitoxin pairings that combines plasticity with selectivity. Conclusion The defining properties of the TAS, namely, the typically small size of the toxin and antitoxin genes, fast evolution, and extensive horizontal mobility, make the task of comprehensive identification of these systems particularly challenging. However, these same properties can be exploited to develop context-based computational approaches which, combined with exhaustive analysis of subtle sequence similarities were employed in this work to substantially expand the current collection of TAS by predicting both previously unnoticed, derived versions of known toxins and antitoxins, and putative novel TAS-like systems. In a broader context, the TAS belong to the resistome domain of the prokaryotic mobilome which includes partially selfish, addictive gene cassettes involved in various aspects of stress response and organized under the same general principles as the TAS. The "selfish altruism", or "responsible selfishness", of TAS-like systems appears to be a defining feature of the resistome and an important characteristic of the entire prokaryotic pan-genome given that in the prokaryotic world the mobilome and the "stable" chromosomes form a dynamic continuum. Reviewers This paper was reviewed by Kenn Gerdes (nominated by Arcady Mushegian), Daniel Haft, Arcady Mushegian, and Andrei Osterman. For full reviews, go to the Reviewers' Reports section.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda, Maryland 20894, USA.
| | | | | |
Collapse
|
35
|
Influence of operator site geometry on transcriptional control by the YefM-YoeB toxin-antitoxin complex. J Bacteriol 2008; 191:762-72. [PMID: 19028895 DOI: 10.1128/jb.01331-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
YefM-YoeB is among the most prevalent and well-characterized toxin-antitoxin complexes. YoeB toxin is an endoribonuclease whose activity is inhibited by YefM antitoxin. The regions 5' of yefM-yoeB in diverse bacteria possess conserved sequence motifs that mediate transcriptional autorepression. The yefM-yoeB operator site arrangement is exemplified in Escherichia coli: a pair of palindromes with core hexamer motifs and a center-to-center distance of 12 bp overlap the yefM-yoeB promoter. YefM is an autorepressor that initially recognizes a long palindrome containing the core hexamer, followed by binding to a short repeat. YoeB corepressor greatly enhances the YefM-operator interaction. Scanning mutagenesis demonstrated that the short repeat is crucial for correct interaction of YefM-YoeB with the operator site in vivo and in vitro. Moreover, altering the relative positions of the two palindromes on the DNA helix abrogated YefM-YoeB cooperative interactions with the repeats: complex binding to the long repeat was maintained but was perturbed to the short repeat. Although YefM lacks a canonical DNA binding motif, dual conserved arginine residues embedded in a basic patch of the protein are crucial for operator recognition. Deciphering the molecular basis of toxin-antitoxin transcriptional control will provide key insights into toxin-antitoxin activation and function.
Collapse
|
36
|
Sullivan DM, Bobay BG, Kojetin DJ, Thompson RJ, Rance M, Strauch MA, Cavanagh J. Insights into the nature of DNA binding of AbrB-like transcription factors. Structure 2008; 16:1702-13. [PMID: 19000822 PMCID: PMC2606041 DOI: 10.1016/j.str.2008.08.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 08/18/2008] [Accepted: 08/19/2008] [Indexed: 11/30/2022]
Abstract
Understanding the DNA recognition and binding by the AbrB-like family of transcriptional regulators is of significant interest since these proteins enable bacteria to elicit the appropriate response to diverse environmental stimuli. Although these "transition-state regulator" proteins have been well characterized at the genetic level, the general and specific mechanisms of DNA binding remain elusive. We present RDC-refined NMR solution structures and dynamic properties of the DNA-binding domains of three Bacillus subtilis transition-state regulators: AbrB, Abh, and SpoVT. We combined previously investigated DNase I footprinting, DNA methylation, gel-shift assays, and mutagenic and NMR studies to generate a structural model of the complex between AbrBN(55) and its cognate promoter, abrB8. These investigations have enabled us to generate a model for the specific nature of the transition-state regulator-DNA interaction, a structure that has remained elusive thus far.
Collapse
Affiliation(s)
- Daniel M. Sullivan
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Benjamin G. Bobay
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
- North Carolina Research Campus, Kannapolis, Kannapolis, North Carolina 28081, USA
| | - Douglas J. Kojetin
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | - Richele J. Thompson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Mark Rance
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | - Mark A. Strauch
- Department of Biomedical Sciences, Dental School, University of Maryland at Baltimore, 650 W. Baltimore Street, Baltimore, Maryland 21201, USA
| | - John Cavanagh
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
37
|
Asen I, Djuranovic S, Lupas AN, Zeth K. Crystal structure of SpoVT, the final modulator of gene expression during spore development in Bacillus subtilis. J Mol Biol 2008; 386:962-75. [PMID: 18996130 DOI: 10.1016/j.jmb.2008.10.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 10/21/2008] [Accepted: 10/22/2008] [Indexed: 10/21/2022]
Abstract
Endospore formation in Bacillus subtilis is orchestrated by five developmental sigma factors and further modulated by several auxiliary transcription factors. One of these, SpoVT, regulates forespore-specific sigma(G)-dependent genes and plays a key role in the final stages of spore formation. We have determined the crystal structure of the isolated C-terminal domain of SpoVT at 1.5 A by experimental phasing techniques and used this model to solve the structure of the full-length SpoVT at 2.6 A by molecular replacement. SpoVT is a tetramer that shows an overall significant distortion mediated by electrostatic interactions. Two monomers dimerize via the highly charged N-terminal domains to form swapped-hairpin beta-barrels. These asymmetric dimers further tetramerize through the formation of mixed helix bundles between their C-terminal domains, which themselves fold as GAF (cGMP-specific and cGMP-stimulated phosphodiesterases, Anabaena adenylate cyclases, and Escherichia coli FhlA) domains. The combination of a swapped-hairpin beta-barrel with a GAF domain represents a novel domain architecture in transcription factors. The occurrence of SpoVT homologs throughout Bacilli and Clostridia demonstrates the ancestral origin of this factor in sporulation.
Collapse
Affiliation(s)
- Iris Asen
- Department of Membrane Biochemistry, Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | |
Collapse
|
38
|
Ishii A, Hihara Y. An AbrB-like transcriptional regulator, Sll0822, is essential for the activation of nitrogen-regulated genes in Synechocystis sp. PCC 6803. PLANT PHYSIOLOGY 2008; 148:660-70. [PMID: 18667724 PMCID: PMC2528100 DOI: 10.1104/pp.108.123505] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2008] [Accepted: 07/23/2008] [Indexed: 05/21/2023]
Abstract
Every cyanobacterial species possesses multiple genes encoding AbrB-like transcriptional regulators (cyAbrBs) distinct from those conserved among other bacterial species. In this study, two genes encoding cyAbrBs in Synechocystis sp. PCC 6803, sll0359 and sll0822, were insertionally disrupted in order to examine their physiological roles. A fully segregated disrupted mutant of sll0822 (Deltasll0822 mutant) but not of sll0359 was obtained, although both mutants exhibited similar phenotypes (i.e. decreases in growth rate and pigment content). The growth rate of the Deltasll0822 mutant was low under any condition, but the low pigment content could be partially recovered by nitrate supplementation of the medium. DNA microarray and RNA-blot analyses revealed that the level of expression of a part of the NtcA regulon, such as urtA, amt1, glnB, sigE, and the nrt operon, was significantly decreased in the Deltasll0822 mutant, although the induction of these genes upon nitrogen depletion was still observed to some extent. Sll0822 seems to work in parallel with NtcA to achieve flexible regulation of the nitrogen uptake system. The Sll0822 protein exists mainly in a dimeric form in vivo, and the amount of the protein was not affected by nitrogen availability. This observation, together with the low binding specificity of the purified histidine-tagged Sll0822 protein, implies that the activity of Sll0822 may be posttranslationally modulated in Synechocystis cells.
Collapse
Affiliation(s)
- Ai Ishii
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama 338-8570, Japan
| | | |
Collapse
|
39
|
Shalev-Malul G, Lieman-Hurwitz J, Viner-Mozzini Y, Sukenik A, Gaathon A, Lebendiker M, Kaplan A. An AbrB-like protein might be involved in the regulation of cylindrospermopsin production by Aphanizomenon ovalisporum. Environ Microbiol 2007; 10:988-99. [PMID: 18093160 DOI: 10.1111/j.1462-2920.2007.01519.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Certain filamentous cyanobacteria, including Aphanizomenon ovalisporum, are potentially toxic owing to the formation of the hepatotoxin cylindrospermopsin. We previously identified a gene cluster in A. ovalisporum likely to be involved in cylindrospermopsin biosynthesis, including amidinotransferase (aoaA) and polyketide-synthase (aoaC), transcribed on the reverse strands. Analysis of the genomic region between aoaA and aoaC identified two transcription start points for each of these genes, differentially expressed under nitrogen and light stress conditions. The transcript abundances of these genes and the cylindrospermopsin level were both affected by nitrogen availability and light intensity. Gel shift assays and DNA affinity columns isolated a protein that specifically binds to a 150 bp DNA fragment from the region between aoaA and aoaC, and MS/MS analyses identified similarity to AbrB in other cyanobacteria and in Bacillus sp. Comparison of the native AbrB isolated from A. ovalisporum with that obtained after cloning and overexpression of abrB in Escherichia coli identified specific post-translational modifications in the native cyanobacterial protein. These modifications, which are missing in the protein expressed in E. coli, include N-acetylation and methylation of specific residues. We discuss the possible role of these modifications in the regulation of cylindrospermopsin production in Aphanizomenon.
Collapse
Affiliation(s)
- Gali Shalev-Malul
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | |
Collapse
|
40
|
Strauch MA, Bobay BG, Cavanagh J, Yao F, Wilson A, Le Breton Y. Abh and AbrB control of Bacillus subtilis antimicrobial gene expression. J Bacteriol 2007; 189:7720-32. [PMID: 17720793 PMCID: PMC2168746 DOI: 10.1128/jb.01081-07] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 08/10/2007] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis abh gene encodes a protein whose N-terminal domain has 74% identity to the DNA-binding domain of the global regulatory protein AbrB. Strains with a mutation in abh showed alterations in the production of antimicrobial compounds directed against some other Bacillus species and gram-positive microbes. Relative to its wild-type parental strain, the abh mutant was found deficient, enhanced, or unaffected for the production of antimicrobial activity. Using lacZ fusions, we examined the effects of abh upon the expression of 10 promoters known to be regulated by AbrB, including five that transcribe well-characterized antimicrobial functions (SdpC, SkfA, TasA, sublancin, and subtilosin). For an otherwise wild-type background, the results show that Abh plays a negative regulatory role in the expression of four of the promoters, a positive role for the expression of three, and no apparent regulatory role in the expression of the other three promoters. Binding of AbrB and Abh to the promoter regions was examined using DNase I footprinting, and the results revealed significant differences. The transcription of abh is not autoregulated, but it is subject to a degree of AbrB-afforded negative regulation. The results indicate that Abh is part of the complex interconnected regulatory system that controls gene expression during the transition from active growth to stationary phase.
Collapse
Affiliation(s)
- Mark A Strauch
- Department of Biomedical Sciences, Dental School, University of Maryland, Baltimore, 650 W. Baltimore Street, Baltimore, MD 21201, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Balaji S, Aravind L. The RAGNYA fold: a novel fold with multiple topological variants found in functionally diverse nucleic acid, nucleotide and peptide-binding proteins. Nucleic Acids Res 2007; 35:5658-71. [PMID: 17715145 PMCID: PMC2034487 DOI: 10.1093/nar/gkm558] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Using sensitive structure similarity searches, we identify a shared α+β fold, RAGNYA, principally involved in nucleic acid, nucleotide or peptide interactions in a diverse group of proteins. These include the Ribosomal proteins L3 and L1, ATP-grasp modules, the GYF domain, DNA-recombination proteins of the NinB family from caudate bacteriophages, the C-terminal DNA-interacting domain of the Y-family DNA polymerases, the uncharacterized enzyme AMMECR1, the siRNA silencing repressor of tombusviruses, tRNA Wybutosine biosynthesis enzyme Tyw3p, DNA/RNA ligases and related nucleotidyltransferases and the Enhancer of rudimentary proteins. This fold exhibits three distinct circularly permuted versions and is composed of an internal repeat of a unit with two-strands and a helix. We show that despite considerable structural diversity in the fold, its representatives show a common mode of nucleic acid or nucleotide interaction via the exposed face of the sheet. Using this information and sensitive profile-based sequence searches: (1) we predict the active site, and mode of substrate interaction of the Wybutosine biosynthesis enzyme, Tyw3p, and a potential catalytic role for AMMECR1. (2) We provide insights regarding the mode of nucleic acid interaction of the NinB proteins, and the evolution of the active site of classical ATP-grasp enzymes and DNA/RNA ligases. (3) We also present evidence for a bacterial origin of the GYF domain and propose how this version of the fold might have been utilized in peptide interactions in the context of nucleoprotein complexes.
Collapse
Affiliation(s)
| | - L. Aravind
- *To whom correspondence should be addressed.
| |
Collapse
|
42
|
Soderblom EJ, Bobay BG, Cavanagh J, Goshe MB. Tandem mass spectrometry acquisition approaches to enhance identification of protein-protein interactions using low-energy collision-induced dissociative chemical crosslinking reagents. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2007; 21:3395-408. [PMID: 17902198 DOI: 10.1002/rcm.3213] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Chemical crosslinking combined with mass spectrometry is a useful tool for studying the topological organization of multiprotein interactions, but it is technically challenging to identify peptides involved in a crosslink using tandem mass spectrometry (MS/MS) due to the presence of product ions originating from both peptides within the same crosslink. We have previously developed a novel set of collision-induced dissociative chemical crosslinking reagents (CID-CXL reagents) that incorporate a labile bond within the linker which readily dissociates at a single site under low-energy collision-induced dissociation (CID) to enable independent isolation and sequencing of the crosslinked peptides by traditional MS/MS and database searching. Alternative low-energy CID events were developed within the in-source region by increasing the multipole DC offset voltage (ISCID) or within the ion trap by increasing the collisional excitation (ITCID). Both dissociation events, each having their unique advantages, occur without significant backbone fragmentation to the peptides, thus permitting subsequent CID to be applied to these distinct peptide ions for generation of suitable product ion spectra for database searching. Each approach was developed and applied to a chemical crosslinking study involving the N-terminal DNA-binding domain of AbrB (AbrBN), a transition-state regulator in Bacillus subtilis. A total of thirteen unique crosslinks were identified using the ITCID approach which represented a significant improvement over the eight unique crosslinks identified using the ISCID approach. The ability to segregate intrapeptide and interpeptide crosslinks using ITCID represents the first step towards high-throughput analysis of protein-protein crosslinks using our CID-CXL reagents.
Collapse
Affiliation(s)
- Erik J Soderblom
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, USA
| | | | | | | |
Collapse
|
43
|
Bobay BG, Mueller GA, Thompson RJ, Murzin AG, Venters RA, Strauch MA, Cavanagh J. NMR structure of AbhN and comparison with AbrBN: FIRST insights into the DNA binding promiscuity and specificity of AbrB-like transition state regulator proteins. J Biol Chem 2006; 281:21399-21409. [PMID: 16702211 PMCID: PMC1761137 DOI: 10.1074/jbc.m601963200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Understanding the molecular mechanisms of transition state regulator proteins is critical, since they play a pivotal role in the ability of bacteria to cope with changing environments. Although much effort has focused on their genetic characterization, little is known about their structural and functional conservation. Here we present the high resolution NMR solution structure of the N-terminal domain of the Bacillus subtilis transition state regulator Abh (AbhN), only the second such structure to date. We then compare AbhN to the N-terminal DNA-binding domain of B. subtilis AbrB (AbrBN). This is the first such comparison between two AbrB-like transition state regulators. AbhN and AbrBN are very similar, suggesting a common structural basis for their DNA binding. However, we also note subtle variances between the AbhN and AbrBN structures, which may play important roles in DNA target specificity. The results of accompanying in vitro DNA-binding studies serve to highlight binding differences between the two proteins.
Collapse
Affiliation(s)
- Benjamin G Bobay
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - Geoffrey A Mueller
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Richele J Thompson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - Alexey G Murzin
- Medical Research Council Centre for Protein Engineering, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | | - Mark A Strauch
- Biomedical Sciences Department, Dental School, University of Maryland, Baltimore, Maryland 21201
| | - John Cavanagh
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695.
| |
Collapse
|
44
|
Andreeva A, Murzin AG. Evolution of protein fold in the presence of functional constraints. Curr Opin Struct Biol 2006; 16:399-408. [PMID: 16650981 DOI: 10.1016/j.sbi.2006.04.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 03/28/2006] [Accepted: 04/21/2006] [Indexed: 11/24/2022]
Abstract
The functional requirement to form and maintain the active site structure probably exerts a strong selective pressure on a protein to adopt just one stable and evolutionarily conserved fold. Nonetheless, new evidence suggests the likelihood of protein fold being neither physically nor biologically invariant. Alternative folds discovered in several proteins are composed of constant and variable parts. The latter display context-dependent conformations and a tendency to form new oligomeric interfaces. In turn, oligomerisation mediates fold evolution without loss of protein function. Gene duplication breaks down homo-oligomeric symmetry and relieves the pressure to maintain the local architecture of redundant active sites; this can lead to further structural changes.
Collapse
Affiliation(s)
- Antonina Andreeva
- MRC Centre for Protein Engineering, Hills Road, Cambridge CB2 2QH, UK
| | | |
Collapse
|