1
|
Hsu T, Talley MJ, Yang P, Geiselhoeringer A, Yang C, Gorla A, Rahman MJ, Silva L, Chen D, Yang B. Identification of infectious viruses for risk-based virus testing of CHO unprocessed bulk using next-generation sequencing. Biotechnol Prog 2024; 40:e3485. [PMID: 39051853 DOI: 10.1002/btpr.3485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/24/2024] [Indexed: 07/27/2024]
Abstract
It is important to increase manufacturing speed to make medicines more widely available. One bottleneck for CHO-based drug substance release is the in vitro viral (IVV) cell-based assay on unprocessed bulk. To increase process speed, we evaluate the suitability of replacing the IVV cell-based assay with next-generation sequencing (NGS). First, we outline how NGS is currently used in the pharmaceutical industry, and how it may apply to CHO virus testing. Second, we examine CHO virus contamination history. Since prior virus contaminants can replicate in the production bioreactor, we perform a literature search and classify 159 viruses as high, medium, low, or unknown risk based on their ability to infect CHO cells. Overall, the risk of virus contamination during the CHO manufacturing process is low. Only six viruses were reported to have contaminated CHO bioprocesses over the past several decades, and were primarily caused by fetal bovine serum or cell culture components. These virus contamination events can be mitigated through limitation and control of raw materials, combined with virus testing and virus clearance technologies. The list of CHO infectious viruses provides a starting framework for virus safety risk assessment and NGS development. Furthermore, ICH Q5A (R2) includes NGS as a molecular method for adventitious agent testing, paving a path forward for modernizing CHO virus testing.
Collapse
Affiliation(s)
- Tiffany Hsu
- Purification, Microbiology, and Virology, Genentech, a Member of the Roche Group, South San Francisco, California, USA
| | - Mary Jo Talley
- Purification, Microbiology, and Virology, Genentech, a Member of the Roche Group, South San Francisco, California, USA
| | - Ping Yang
- Purification, Microbiology, and Virology, Genentech, a Member of the Roche Group, South San Francisco, California, USA
| | - Angela Geiselhoeringer
- Purification, Microbiology, and Virology, Genentech, a Member of the Roche Group, South San Francisco, California, USA
| | - Cindy Yang
- Purification, Microbiology, and Virology, Genentech, a Member of the Roche Group, South San Francisco, California, USA
| | - Aditya Gorla
- Purification, Microbiology, and Virology, Genentech, a Member of the Roche Group, South San Francisco, California, USA
| | - M Julhasur Rahman
- Purification, Microbiology, and Virology, Genentech, a Member of the Roche Group, South San Francisco, California, USA
| | - Lindsey Silva
- Purification, Microbiology, and Virology, Genentech, a Member of the Roche Group, South San Francisco, California, USA
| | - Dayue Chen
- Purification, Microbiology, and Virology, Genentech, a Member of the Roche Group, South San Francisco, California, USA
| | - Bin Yang
- Purification, Microbiology, and Virology, Genentech, a Member of the Roche Group, South San Francisco, California, USA
| |
Collapse
|
2
|
Bieri M, Hendrickx R, Bauer M, Yu B, Jetzer T, Dreier B, Mittl PRE, Sobek J, Plückthun A, Greber UF, Hemmi S. The RGD-binding integrins αvβ6 and αvβ8 are receptors for mouse adenovirus-1 and -3 infection. PLoS Pathog 2021; 17:e1010083. [PMID: 34910784 PMCID: PMC8673666 DOI: 10.1371/journal.ppat.1010083] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Mammalian adenoviruses (AdVs) comprise more than ~350 types including over 100 human (HAdVs) and just three mouse AdVs (MAdVs). While most HAdVs initiate infection by high affinity/avidity binding of their fiber knob (FK) protein to either coxsackievirus AdV receptor (CAR), CD46 or desmoglein (DSG)-2, MAdV-1 (M1) infection requires arginine-glycine-aspartate (RGD) binding integrins. To identify the receptors mediating MAdV infection we generated five novel reporter viruses for MAdV-1/-2/-3 (M1, M2, M3) transducing permissive murine (m) CMT-93 cells, but not B16 mouse melanoma cells expressing mCAR, human (h) CD46 or hDSG-2. Recombinant M1 or M3 FKs cross-blocked M1 and M3 but not M2 infections. Profiling of murine and human cells expressing RGD-binding integrins suggested that αvβ6 and αvβ8 heterodimers are associated with M1 and M3 infections. Ectopic expression of mβ6 in B16 cells strongly enhanced M1 and M3 binding, infection, and progeny production comparable with mαvβ6-positive CMT-93 cells, whereas mβ8 expressing cells were more permissive to M1 than M3. Anti-integrin antibodies potently blocked M1 and M3 binding and infection of CMT-93 cells and hαvβ8-positive M000216 cells. Soluble integrin αvβ6, and synthetic peptides containing the RGDLXXL sequence derived from FK-M1, FK-M3 and foot and mouth disease virus coat protein strongly interfered with M1/M3 infections, in agreement with high affinity interactions of FK-M1/FK-M3 with αvβ6/αvβ8, determined by surface plasmon resonance measurements. Molecular docking simulations of ternary complexes revealed a bent conformation of RGDLXXL-containing FK-M3 peptides on the subunit interface of αvβ6/β8, where the distal leucine residue dips into a hydrophobic pocket of β6/8, the arginine residue ionically engages αv aspartate215, and the aspartate residue coordinates a divalent cation in αvβ6/β8. Together, the RGDLXXL-bearing FKs are part of an essential mechanism for M1/M3 infection engaging murine and human αvβ6/8 integrins. These integrins are highly conserved in other mammals, and may favour cross-species virus transmission.
Collapse
Affiliation(s)
- Manuela Bieri
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Molecular Life Sciences Graduate School, ETH and University Of Zurich, Switzerland
| | - Rodinde Hendrickx
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Molecular Life Sciences Graduate School, ETH and University Of Zurich, Switzerland
| | - Michael Bauer
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Tania Jetzer
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Birgit Dreier
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Peer R. E. Mittl
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Jens Sobek
- Functional Genomics Center Zurich, Eidgenössische Technische Hochschule (ETH) Zurich and University of Zurich, Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Urs F. Greber
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Silvio Hemmi
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Cellular Virotherapy Increases Tumor-Infiltrating Lymphocytes (TIL) and Decreases their PD-1 + Subsets in Mouse Immunocompetent Models. Cancers (Basel) 2020; 12:cancers12071920. [PMID: 32708639 PMCID: PMC7409201 DOI: 10.3390/cancers12071920] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Oncolytic virotherapy uses viruses designed to selectively replicate in cancer cells. An alternative to intratumoral administration is to use mesenchymal stem cells (MSCs) to transport the oncolytic viruses to the tumor site. Following this strategy, our group has already applied this treatment to children and adults in a human clinical trial and a veterinary trial, with good clinical responses and excellent safety profiles. However, the development of immunocompetent cancer mouse models is still necessary for the study and improvement of oncolytic viroimmunotherapies. Here we have studied the antitumor efficacy, immune response, and mechanism of action of a complete murine version of our cellular virotherapy in mouse models of renal adenocarcinoma and melanoma. We used mouse MSCs infected with the mouse oncolytic adenovirus dlE102 (OAd-MSCs). In both models, treatment with OAd-MSCs significantly reduced tumor volumes by 50% and induced a pro-inflammatory tumor microenvironment. Furthermore, treated mice harboring renal adenocarcinoma and melanoma tumors presented increased infiltration of tumor-associated macrophages (TAMs), natural killer cells, and tumor-infiltrating lymphocytes (TILs). Treated mice also presented lower percentage of TILs expressing programmed cell death protein 1 (PD-1)-the major regulator of T cell exhaustion. In conclusion, treatment with OAd-MSCs significantly reduced tumor volume and induced changes in tumor-infiltrating populations of melanoma and renal cancer.
Collapse
|
4
|
Hemmi S, Spindler KR. Murine adenoviruses: tools for studying adenovirus pathogenesis in a natural host. FEBS Lett 2019; 593:3649-3659. [PMID: 31777948 DOI: 10.1002/1873-3468.13699] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/11/2019] [Accepted: 11/22/2019] [Indexed: 12/31/2022]
Abstract
Small laboratory animals are powerful models for investigating in vivo viral pathogenesis of a number of viruses. For adenoviruses (AdVs), however, species-specificity poses limitations to studying human adenoviruses (HAdVs) in mice and other small laboratory animals. Thus, this review covers work on naturally occurring mouse AdVs, primarily mouse adenovirus type 1 (MAdV-1), a member of the species Murine mastadenovirus A. Molecular genetics, virus life cycle, cell and tissue tropism, interactions with the host immune response, persistence, and host genetics of susceptibility are described. A brief discussion of MAdV-2 (member of species Murine mastadenovirus B) and MAdV-3 (member of species Murine mastadenovirus C) is included. We report the use of MAdVs in the development of vectors and vaccines.
Collapse
Affiliation(s)
- Silvio Hemmi
- Institute of Molecular Life Sciences, University of Zürich, Switzerland
| | - Katherine R Spindler
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Molloy CT, Adkins LJ, Griffin C, Singer K, Weinberg JB. Mouse adenovirus type 1 infection of adipose tissue. Virus Res 2017; 244:90-98. [PMID: 29141203 DOI: 10.1016/j.virusres.2017.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 01/13/2023]
Abstract
Human adenovirus (HAdV) type 36 seropositivity has been linked to obesity in humans. That link is supported by a small number of studies using HAdV-36 infection of animals that are not natural hosts for HAdVs. In this study, we infected mice with mouse adenovirus type 1 (MAV-1), a mouse pathogen, to determine whether MAV-1 infected adipose tissue and was associated with adipose tissue inflammation and obesity. We detected MAV-1 in adipose tissue during acute MAV-1 infection, but we did not detect virus-induced increases in adipose tissue cytokine expression or histological evidence of adipose tissue inflammation during acute infection. MAV-1 did not persist in adipose tissue at later times, and we did not detect long-term adipose inflammation, increased adipose tissue mass, or body weight in infected mice. Our data indicate that MAV-1 is not associated with obesity in infected mice.
Collapse
Affiliation(s)
- Caitlyn T Molloy
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States
| | - Laura J Adkins
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States
| | - Cameron Griffin
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States
| | - Kanakadurga Singer
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States
| | - Jason B Weinberg
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
6
|
Lopez-Gordo E, Podgorski II, Downes N, Alemany R. Circumventing antivector immunity: potential use of nonhuman adenoviral vectors. Hum Gene Ther 2014; 25:285-300. [PMID: 24499174 DOI: 10.1089/hum.2013.228] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Adenoviruses are efficient gene delivery vectors based on their ability to transduce a wide variety of cell types and drive high-level transient transgene expression. While there have been advances in modifying human adenoviral (HAdV) vectors to increase their safety profile, there are still pitfalls that need to be further addressed. Preexisting humoral and cellular immunity against common HAdV serotypes limits the efficacy of gene transfer and duration of transgene expression. As an alternative, nonhuman AdV (NHAdV) vectors can circumvent neutralizing antibodies against HAdVs in immunized mice and monkeys and in human sera, suggesting that NHAdV vectors could circumvent preexisting humoral immunity against HAdVs in a clinical setting. Consequently, there has been an increased interest in developing NHAdV vectors for gene delivery in humans. In this review, we outline the recent advances and limitations of HAdV vectors for gene therapy and describe examples of NHAdV vectors focusing on their immunogenicity, tropism, and potential as effective gene therapy vehicles.
Collapse
Affiliation(s)
- Estrella Lopez-Gordo
- 1 Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow , Glasgow G12 8TA, United Kingdom
| | | | | | | |
Collapse
|
7
|
Interaction between mouse adenovirus type 1 and cell surface heparan sulfate proteoglycans. PLoS One 2012; 7:e31454. [PMID: 22347482 PMCID: PMC3274534 DOI: 10.1371/journal.pone.0031454] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 01/10/2012] [Indexed: 12/04/2022] Open
Abstract
Application of human adenovirus type 5 (Ad5) derived vectors for cancer gene therapy has been limited by the poor cell surface expression, on some tumor cell types, of the primary Ad5 receptor, the coxsackie-adenovirus-receptor (CAR), as well as the accumulation of Ad5 in the liver following interaction with blood coagulation factor X (FX) and subsequent tethering of the FX-Ad5 complex to heparan sulfate proteoglycan (HSPG) on liver cells. As an alternative vector, mouse adenovirus type 1 (MAV-1) is particularly attractive, since this non-human adenovirus displays pronounced endothelial cell tropism and does not use CAR as a cellular attachment receptor. We here demonstrate that MAV-1 uses cell surface heparan sulfate proteoglycans (HSPGs) as primary cellular attachment receptor. Direct binding of MAV-1 to heparan sulfate-coated plates proved to be markedly more efficient compared to that of Ad5. Experiments with modified heparins revealed that the interaction of MAV-1 to HSPGs depends on their N-sulfation and, to a lesser extent, 6-O-sulfation rate. Whereas the interaction between Ad5 and HSPGs was enhanced by FX, this was not the case for MAV-1. A slot blot assay demonstrated the ability of MAV-1 to directly interact with FX, although the amount of FX complexed to MAV-1 was much lower than observed for Ad5. Analysis of the binding of MAV-1 and Ad5 to the NCI-60 panel of different human tumor cell lines revealed the preference of MAV-1 for ovarian carcinoma cells. Together, the data presented here enlarge our insight into the HSPG receptor usage of MAV-1 and support the development of an MAV-1-derived gene vector for human cancer therapy.
Collapse
|
8
|
Anderson VE, Nguyen Y, Weinberg JB. Effects of allergic airway disease on mouse adenovirus type 1 respiratory infection. Virology 2009; 391:25-32. [PMID: 19564030 DOI: 10.1016/j.virol.2009.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 05/26/2009] [Accepted: 06/02/2009] [Indexed: 12/01/2022]
Abstract
Virus infection may contribute to asthma pathogenesis. In turn, a Th2-polarized pulmonary environment may increase host susceptibility to infection. We used a cockroach antigen (CRA) model of allergic airway disease to test the hypothesis that Th2 cytokine overproduction increases susceptibility to mouse adenovirus type 1 (MAV-1). CRA sensitization led to upregulated lung expression of IL-4 and IL-13, lung cellular inflammation, and exaggerated airway mucus production. Following intranasal MAV-1 infection, lung cellular inflammation was more pronounced in CRA-sensitized mice than in unsensitized mice at 7 days post-infection but not at a later time point. CRA sensitization did not significantly suppress lung IFN-gamma expression, and lung IFN-gamma expression was upregulated in both CRA-sensitized mice and unsensitized mice over the course of MAV-1 infection. Despite CRA-induced differences in pulmonary inflammation, MAV-1 viral loads in lung and spleen and MAV-1 gene expression in the lung did not differ between CRA-sensitized and unsensitized mice. Our data therefore suggest that MAV-1 pathogenesis is not affected directly or indirectly by the Th2 polarization associated with allergic airway disease.
Collapse
|
9
|
Lenaerts L, McVey JH, Baker AH, Denby L, Nicklin S, Verbeken E, Naesens L. Mouse adenovirus type 1 and human adenovirus type 5 differ in endothelial cell tropism and liver targeting. J Gene Med 2009; 11:119-27. [PMID: 19065608 DOI: 10.1002/jgm.1283] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND For adenovirus vectors derived from human serotype 5 (Ad5), the efficiency and safety after intravascular delivery is hindered by their sequestration in nontarget tissues, predominantly the liver. The latter is largely dictated by adenovirus binding to blood coagulation zymogens. In addition, several target cells, such as endothelial and smooth muscle cells, are difficult to transduce by Ad5 due to the low expression of the primary coxsackie-adenovirus receptor (CAR). Therefore, alternative adenovirus serotypes are being explored. METHODS In the present study, we assessed the tropism of mouse adenovirus type 1 (MAV-1), a nonhuman adenovirus for which cellular attachment is CAR-independent. RESULTS The typical replication of MAV-1 in endothelial cells as observed in vivo was not reflected in elevated attachment to primary and continuous endothelial cells in cell culture. Remarkably, MAV-1 displayed a higher affinity for primary human smooth muscle cells than recombinant Ad5 (rAd5). Attachment of MAV-1 to human and mouse cells of hepatocyte origin was not altered by physiological concentrations of human coagulation factor XI (FXI) or the vitamin K-dependent FIX, FX and FVII. By contrast, attachment of Ad5-derived vectors was enhanced at least eight-fold by FX. Using surface plasmon resonance, MAV-1 was shown to directly associate with human FX and murine FX and FIX but, opposite to rAd5, this interaction did not lead to enhanced cellular attachment. In intravenously injected severe combined immunodeficiency mice, distribution of MAV-1 to the liver was markedly lower than that observed with rAd5. CONCLUSIONS Our data on the tropism of MAV-1 suggest that this virus may find utility in the field of gene therapy.
Collapse
Affiliation(s)
- Liesbeth Lenaerts
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
10
|
Novel immunocompetent murine tumor model for evaluation of conditionally replication-competent (oncolytic) murine adenoviral vectors. J Virol 2009; 83:3450-62. [PMID: 19193803 DOI: 10.1128/jvi.02561-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oncolytic adenoviral vectors that express immunostimulatory transgenes are currently being evaluated in clinic. Preclinical testing of these vectors has thus far been limited to immunodeficient xenograft tumor models since human adenoviruses do not replicate effectively in murine tumor cells. The effect of the immunostimulatory transgene on overall virus potency can therefore not be readily assessed in these models. Here, a model is described that allows the effective testing of mouse armed oncolytic adenovirus (MAV) vectors in immunocompetent syngeneic tumor models. These studies demonstrate that the MAV vectors have a high level of cytotoxicity in a wide range of murine tumor cells. The murine oncolytic viruses were successfully armed with murine granulocyte-macrophage colony-stimulating factor (mGM-CSF) by a novel method which resulted in vectors with a high level of tumor-specific transgene expression. The mGM-CSF-armed MAV vectors showed an improved level of antitumor potency and induced a systemic antitumor immune response that was greater than that induced by unarmed parental vectors in immunocompetent syngeneic tumor models. Thus, the oncolytic MAV-1 system described here provides a murine homolog model for the testing of murine armed oncolytic adenovirus vectors in immunocompetent animals. The model allows evaluation of the impact of virus replication and the host immune response on overall virus potency and enables the generation of translational data that will be important for guiding the clinical development of these viruses.
Collapse
|
11
|
Abstract
Adenovirus fiber knobs are the capsid components that interact with binding receptors on cells, while an Arg-Gly-Asp (RGD) sequence usually found in the penton base protein is important for the interaction of most adenoviruses with integrin entry receptors. Mouse adenovirus type 1 (MAV-1) lacks an RGD sequence in the virion penton base protein. We tested whether an RGD sequence found in the MAV-1 fiber knob plays a role in infection. Treatment of cells with a competitor RGD peptide or a purified recombinant RGD-containing fiber knob prior to infection resulted in reduced virus yields compared to those of controls, indicating the importance of the RGD sequence for infection. An investigation of the role of integrins as possible receptors showed that MAV-1 yields were reduced in the presence of EDTA, an inhibitor of integrin binding, and in the presence of anti-alpha(v) integrin antibody. Moreover, mouse embryo fibroblasts that were genetically deficient in alpha(v) integrin yielded less virus, supporting the hypothesis that alpha(v) integrin is a likely receptor for MAV-1. We also investigated whether glycosaminoglycans play a role in MAV-1 infection. Preincubation of MAV-1 with heparin, a heparan sulfate glycosaminoglycan analog, resulted in a decrease in MAV-1 virus yields. Reduced MAV-1 infectivity was also found with cells that genetically lack heparan sulfate or cells that were treated with heparinase I. Cumulatively, our data demonstrate that the RGD sequence in the MAV-1 fiber knob plays a role in infection by MAV-1, alpha(v) integrin acts as a receptor for the virus, and cell surface heparin sulfate glycosaminoglycans are important in MAV-1 infection.
Collapse
|
12
|
Nguyen Y, McGuffie BA, Anderson VE, Weinberg JB. Gammaherpesvirus modulation of mouse adenovirus type 1 pathogenesis. Virology 2008; 380:182-90. [PMID: 18768196 DOI: 10.1016/j.virol.2008.07.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/06/2008] [Accepted: 07/28/2008] [Indexed: 11/28/2022]
Abstract
Immune function is likely to be shaped by multiple infections over time. Infection with one pathogen can confer cross-protection against heterologous pathogens. We tested the hypothesis that latent murine gammaherpesvirus 68 (gammaHV68) infection modulates host inflammatory responses and susceptibility to mouse adenovirus type 1 (MAV-1). Mice were infected intranasally (i.n.) with gammaHV68. 21 days later, they were infected i.n. with MAV-1. We assessed cytokine and chemokine expression by quantitative reverse transcriptase real-time PCR, cellular inflammation by histology, and viral loads by quantitative real-time PCR. Previous gammaHV68 infection led to persistently upregulated IFN-gamma in lungs and spleen and persistently upregulated CCL2 and CCL5 in the lungs. Previous gammaHV68 infection amplified MAV-1-induced CCL5 upregulation and cellular inflammation in the lungs. Previous gammaHV68 infection was associated with lower MAV-1 viral loads in the spleen but not the lung. There was no significant effect of previous gammaHV68 on IFN-gamma expression or MAV-1 viral loads when the interval between infections was increased to 44 days. In summary, previous gammaHV68 infection modulated lung inflammatory responses and decreased susceptibility to a heterologous virus in an organ- and time-dependent manner.
Collapse
Affiliation(s)
- Yn Nguyen
- Department of Pediatrics and Communicable Diseases, University of Michigan, 7500 Medical Sciences Research Building I, 1150 West Medical Center Drive, Ann Arbor, MI 48109-0684, USA.
| | | | | | | |
Collapse
|
13
|
Recovery of humoral immunity is critical for successful antiviral therapy in disseminated mouse adenovirus type 1 infection. Antimicrob Agents Chemother 2008; 52:1462-71. [PMID: 18268085 DOI: 10.1128/aac.01311-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Severe adenovirus infections in transplant recipients undergoing immunosuppressive therapy are of increasing concern. Controversy exists on the contribution of antiviral therapy and the host immune response to recovery from these infections. Here, we established a systemic mouse adenovirus type 1 (MAV-1) infection in cyclophosphamide (CyP)-treated BALB/c mice. CyP was administered at 100 mg per kg of body weight every other day for 2, 3, or 4 weeks, thereby inducing general but reversible leukopenia, with a major suppression of the B-cell numbers and functionality that was more pronounced than that seen with T cells. The outcome of MAV-1 infection was dependent on the duration of CyP therapy, as the mice with the most severe immunosuppression were the most vulnerable to MAV-1-induced hemorrhagic enteritis and mortality. The protective effect of concomitant antiviral therapy with cidofovir depended on the level of immunosuppression. The combination of cidofovir treatment with the withdrawal of immunosuppression was the most successful regimen for increasing survival rates. Survival was clearly correlated with the clearance of virus and increased titers of MAV-1-specific antibodies in sera. In addition, the passive transfer of MAV-1-specific immunoglobulin G into MAV-1-infected SCID BALB/c mice caused a marked delay in mortality, the extent of the delay being dependent on the titer of MAV-1-specific antibodies. Based on the critical role of the humoral immune response in the early defense against disseminated adenovirus infection, the concomitant use of adenovirus-specific immunoglobulins and antiviral therapy should be considered for transplant patients at risk for severe adenovirus infections.
Collapse
|