1
|
Shimada K, Ohtani K, Gullapalli PK, Ishikawa K. Construction of hyperthermostable d-allulose 3-epimerase from Arthrobacter globiformis M30 using the sequence information from Arthrobacter psychrolactophilus. FEBS Open Bio 2025. [PMID: 40490963 DOI: 10.1002/2211-5463.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/18/2025] [Accepted: 05/15/2025] [Indexed: 06/11/2025] Open
Abstract
d-Allulose is one of the rare monosaccharides and is considered as a safe ingredient in foods. It can be enzymatically produced from d-fructose by the enzyme d-allulose 3-epimerase. More stable enzymes can operate effectively for longer durations, reducing the need for frequent replacements and thereby lowering costs. In addition, the preparation of the recombinant Arthrobacter globiformis M30 (AgDAE) enzyme requires heat treatment at 60-70 °C to remove host cell debris and potential microbial contaminants. Therefore, to address the need for more thermostable enzymes in d-allulose production, we aimed to create thermostable mutants of AgDAE using the protein engineering method. We cloned d-allulose identified from A. globiformis M30 and, using sequence homology, we constructed thermostable mutants by protein engineering. Each effect of the five mutations used was independent and additive. By integrating positive mutations, we succeeded in the construction of a chimeric enzyme exhibiting hyperthermostability without loss of enzymatic activity. The constructed chimera mutant was highly functional above 95 °C and remained stable under 80 °C. Our approach using structural information for the chimeric construction experiments also suggested that incorporating mutations from other homologous enzymes can impart advantages in enzymes in a simple and effective manner.
Collapse
Affiliation(s)
| | - Kouhei Ohtani
- Matsutani Chemical Industry Co., Ltd., Itami, Hyogo, Japan
| | | | | |
Collapse
|
2
|
Cui S, Dasgupta S, Yagi S, Kimura M, Furukawa R, Tagami S, Akanuma S. Insights into the low-temperature adaptation of an enzyme as studied through ancestral sequence reconstruction. Protein Sci 2025; 34:e70071. [PMID: 39968914 PMCID: PMC11836894 DOI: 10.1002/pro.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/17/2025] [Accepted: 02/04/2025] [Indexed: 02/20/2025]
Abstract
For billions of years, enzymes have evolved in response to the changing environments in which their host organisms lived. Various lines of evidence suggest the earliest primitive organisms inhabited high-temperature environments and possessed enzymes adapted to such conditions. Consequently, extant mesophilic and psychrophilic enzymes are believed to have adapted to lower temperatures during the evolutionary process. Herein, we analyzed this low-temperature adaptation using ancestral sequence reconstruction. Previously, we generated the phylogenetic tree of 3-isopropylmalate dehydrogenases (IPMDHs) and reconstructed the sequence of the last bacterial common ancestor. The corresponding ancestral enzyme displayed high thermostability and catalytic activity at elevated temperatures but moderate activity at low temperatures (Furukawa et al., Sci. Rep., 2020;10:15493). Here, to identify amino acid residues that are responsible for the low-temperature adaptation, we reconstructed and characterized all 11 evolutionary intermediates that sequentially connect the last bacterial common ancestor with extant mesophilic IPMDH from Escherichia coli. A remarkable change in catalytic properties, from those suited for high reaction temperatures to those adapted for low temperatures, occurred between two consecutive evolutionary intermediates. Using a combination of sequence comparisons between ancestral proteins and site-directed mutagenesis analyses, three key amino acid substitutions were identified that enhance low-temperature catalytic activity. Intriguingly, amino acid substitutions that had the most significant impact on activity at low temperatures displayed no discernable effect on thermostability. However, these substitutions markedly reduced the activation energy for catalysis, thereby improving low-temperature activity. The results were further investigated by molecular dynamics simulations of the predicted structures of the ancestral enzymes. Our findings exemplify how ancestral sequence reconstruction can identify residues crucial for adaptation to low temperatures.
Collapse
Affiliation(s)
- Shuang Cui
- Faculty of Human SciencesWaseda UniversityTokorozawaJapan
| | | | - Sota Yagi
- Faculty of Human SciencesWaseda UniversityTokorozawaJapan
- RIKEN Center for Biosystems Dynamics ResearchYokohamaJapan
| | - Madoka Kimura
- Faculty of Human SciencesWaseda UniversityTokorozawaJapan
| | | | | | | |
Collapse
|
3
|
Ohtani K, Shimada K, Gullapalli PK, Ishikawa K. Construction of the Thermostable D-Allulose 3-Epimerase from Arthrobacter globiformis M30 by Protein Engineering Method. J Appl Glycosci (1999) 2024; 71:95-102. [PMID: 39720777 PMCID: PMC11664115 DOI: 10.5458/jag.jag.jag-2024_0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/18/2024] [Indexed: 12/26/2024] Open
Abstract
D-Allulose 3-epimerase catalyzes C-3 epimerization between D-fructose and D-allulose was found in Arthrobacter globiformis strain M30. The enzyme gene was cloned, and its recombinant enzyme and the mutant variants were expressed in E. coli. Using the information of the sequence and model structure, we succeed in the improvement of melting temperature for the enzyme without significant loss of the enzyme activity by protein engineering method. The melting temperatures were increased by 2.7, 2.1, 3.7, 5.1, and 8.0 c[C for the mutants Glu75Pro, Arg137Lys, Ala200Lys, Ala270Lys, and Val237Ile, respectively. Each effect of the mutation was independent and additive. By integrating the above mutations, we constructed a thermostable mutant that exhibits a melting temperature 12 c[C higher than wild type, and remains stable at 65 c[C for 2 h. These highly stable properties suggest that the thermostable enzymes represent an ideal enzyme candidate for the industrial production of D-allulose.
Collapse
|
4
|
Fukui K, Kondo N, Murakawa T, Baba S, Kumasaka T, Yano T. dUTP pyrophosphatases from hyperthermophilic eubacterium and archaeon: Structural and functional examinations on the suitability for PCR application. Protein Sci 2024; 33:e5185. [PMID: 39440877 PMCID: PMC11497495 DOI: 10.1002/pro.5185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
Deoxyuridine triphosphate pyrophosphatase (DUT) suppresses incorporation of uracil into genomic DNA during replication. Thermostable DUTs from hyperthermophilic archaea such as Thermococcus pacificus enhance PCR amplification by preventing misincorporation of dUTP generated by spontaneous deamination of dCTP. However, it is necessary to elucidate whether DUTs do not cause dNTP imbalances during PCR by unwanted side activity. Moreover, it has been unknown what structural features define the thermostability of those DUTs. Here, DUT from a hyperthermophilic eubacterium, Aquifex aeolicus (Aa-DUT), was characterized together with those from T. pacificus (Tp-DUT). Aa-DUT was as thermostable as Tp-DUT up to at least 95°C. The crystal structures of the two thermostable enzymes were determined, which revealed that the structures of Aa-DUT and Tp-DUT resembled those of monofunctional and bifunctional DUTs, respectively. Generally, bifunctional DUTs harbor the dCTP deaminase activity in addition to the DUT activity. However, not only Aa-DUT but also Tp-DUT showed poor activity towards dCTP, indicating both enzymes are monofunctional. We further examined eight types of parameters related to thermostability of protein structure and found that the thermostability of Aa-DUT and Tp-DUT might be accomplished by increased numbers of ion pairs on the protein surface. Finally, we verified that Aa-DUT promoted PCR amplification with Pfu DNA polymerase to the same extent as Tp-DUT. Collectively, we conclude that both DUTs from hyperthermophiles maintain the enzymatic activity at high temperatures without consuming dCTP due to the lack of the deaminate activity.
Collapse
Affiliation(s)
- Kenji Fukui
- Department of Biochemistry, Faculty of MedicineOsaka Medical and Pharmaceutical UniversityTakatsukiOsakaJapan
| | - Naoyuki Kondo
- Department of Molecular GeneticsInstitute of Biomedical Science, Kansai Medical UniversityHirakataOsakaJapan
| | - Takeshi Murakawa
- Department of Biochemistry, Faculty of MedicineOsaka Medical and Pharmaceutical UniversityTakatsukiOsakaJapan
| | - Seiki Baba
- Structural Biology DivisionJapan Synchrotron Radiation Research Institute (JASRI)Sayo‐gunHyogoJapan
| | - Takashi Kumasaka
- Structural Biology DivisionJapan Synchrotron Radiation Research Institute (JASRI)Sayo‐gunHyogoJapan
| | - Takato Yano
- Department of Biochemistry, Faculty of MedicineOsaka Medical and Pharmaceutical UniversityTakatsukiOsakaJapan
| |
Collapse
|
5
|
Shibuya A, Yokote M, Suzuki A, Fukui K, Yano T. An extensive ion-pair/hydrogen-bond network contributes to the thermostability of the MutL ATPase domain from Aquifex aeolicus. FEMS Microbiol Lett 2024; 371:fnae020. [PMID: 38515312 DOI: 10.1093/femsle/fnae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 03/06/2024] [Accepted: 03/20/2024] [Indexed: 03/23/2024] Open
Abstract
Proteins from hyperthermophiles often contain a large number of ionic interactions. Close examination of the previously determined crystal structure of the ATPase domain of MutL from a hyperthermophile, Aquifex aeolicus, revealed that the domain contains a continuous ion-pair/hydrogen-bond network consisting of 11 charged amino acid residues on a β-sheet. Mutations were introduced to disrupt the network, showing that the more extensively the network was disrupted, the greater the thermostability of the protein was decreased. Based on urea denaturation analysis, a thermodynamic parameter, energy for the conformational stability, was evaluated, which indicated that amino acid residues in the network contributed additively to the protein stability. A continuous network rather than a cluster of isolated interactions would pay less entropic penalty upon fixing the side chains to make the same number of ion pairs/hydrogen bonds, which might contribute more favorably to the structural formation of thermostable proteins.
Collapse
Affiliation(s)
- Ayaka Shibuya
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Maki Yokote
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Atsushi Suzuki
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Kenji Fukui
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Takato Yano
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| |
Collapse
|
6
|
Mine S, Nakabayashi M, Ishikawa K. Crystal structure of thermostable acetaldehyde dehydrogenase from the hyperthermophilic archaeon Sulfolobus tokodaii. Acta Crystallogr F Struct Biol Commun 2023; 79:159-165. [PMID: 37227376 PMCID: PMC10231261 DOI: 10.1107/s2053230x23004430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023] Open
Abstract
Aldehyde dehydrogenase (ALDH) is widely distributed in nature and its characteristics have been examined. ALDH plays an important role in aldehyde detoxification. Sources of aldehydes include incomplete combustion and emissions from paints, linoleum and varnishes in the living environment. Acetaldehyde is also considered to be carcinogenic and toxic. Thermostable ALDH from the hyperthermophilic archaeon Sulfolobus tokodaii exhibits high activity towards acetaldehyde and has potential applications as a biosensor for acetaldehyde. Thermostable ALDH displays a unique and wide adaptability. Therefore, its crystal structure can provide new insights into the catalytic mechanism and potential applications of ALDHs. However, a crystal structure of a thermostable ALDH exhibiting high activity towards acetaldehyde has not been reported to date. In this study, crystals of recombinant thermostable ALDH from S. tokodaii were prepared and the crystal structure of its holo form was determined. A crystal of the enzyme was prepared and its structure in complex with NADP was determined at a resolution of 2.2 Å. This structural analysis may facilitate further studies on catalytic mechanisms and applications.
Collapse
Affiliation(s)
- Shohei Mine
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Makoto Nakabayashi
- Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka 584-8540, Japan
| | - Kazuhiko Ishikawa
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
- Rare Sugar and Enzyme Research, Dep. I, R&D, Matsutani Chemical Industry Co. Ltd, 5-3 Kitaitami, Itami City, Hyogo 664-8508, Japan
| |
Collapse
|
7
|
Structural Analysis and Construction of a Thermostable Antifungal Chitinase. Appl Environ Microbiol 2022; 88:e0065222. [PMID: 35652665 DOI: 10.1128/aem.00652-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chitin is a biopolymer of N-acetyl-d-glucosamine with β-1,4-bond and is the main component of arthropod exoskeletons and the cell walls of many fungi. Chitinase (EC 3.2.1.14) is an enzyme that hydrolyzes the β-1,4-bond in chitin and degrades chitin into oligomers. It has been found in a wide range of organisms. Chitinase from Gazyumaru (Ficus microcarpa) latex exhibits antifungal activity by degrading chitin in the cell wall of fungi and is expected to be used in medical and agricultural fields. However, the enzyme's thermostability is an important factor; chitinase is not thermostable enough to maintain its activity under the actual application conditions. In addition to the fact that thermostable chitinases exhibiting antifungal activity can be used under various conditions, they have some advantages for the production process and long-term preservation, which are highly demanded in industrial use. We solved the crystal structure of chitinase to explore the target sites to improve its thermostability. We rationally introduced proline residues, a disulfide bond, and salt bridges in the chitinase using protein-engineering methods based on the crystal structure and sequence alignment among other chitinases. As a result, we successfully constructed the thermostable mutant chitinases rationally with high antifungal and specific activities. The results provide a useful strategy to enhance the thermostability of this enzyme family. IMPORTANCE We solved the crystal structure of the chitinase from Gazyumaru (Ficus microcarpa) latex exhibiting antifungal activity. Furthermore, we demonstrated that the thermostable mutant enzyme with a melting temperature (Tm) 6.9°C higher than wild type (WT) and a half-life at 60°C that is 15 times longer than WT was constructed through 10 amino acid substitutions, including 5 proline residues substitutions, making disulfide bonding, and building a salt bridge network in the enzyme. These mutations do not affect its high antifungal activity and chitinase activity, and the principle for the construction of the thermostable chitinase was well explained by its crystal structure. Our results provide a useful strategy to enhance the thermostability of this enzyme family and to use the thermostable mutant as a seed for antifungal agents for practical use.
Collapse
|
8
|
Akanuma S, Yamaguchi M, Yamagishi A. Comprehensive mutagenesis to identify amino acid residues contributing to the difference in thermostability between two originally thermostable ancestral proteins. PLoS One 2021; 16:e0258821. [PMID: 34673819 PMCID: PMC8530338 DOI: 10.1371/journal.pone.0258821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/05/2021] [Indexed: 11/19/2022] Open
Abstract
Further improvement of the thermostability of inherently thermostable proteins is an attractive challenge because more thermostable proteins are industrially more useful and serve as better scaffolds for protein engineering. To establish guidelines that can be applied for the rational design of hyperthermostable proteins, we compared the amino acid sequences of two ancestral nucleoside diphosphate kinases, Arc1 and Bac1, reconstructed in our previous study. Although Bac1 is a thermostable protein whose unfolding temperature is around 100°C, Arc1 is much more thermostable with an unfolding temperature of 114°C. However, only 12 out of 139 amino acids are different between the two sequences. In this study, one or a combination of amino acid(s) in Bac1 was/were substituted by a residue(s) found in Arc1 at the same position(s). The best mutant, which contained three amino acid substitutions (S108D, G116A and L120P substitutions), showed an unfolding temperature more than 10°C higher than that of Bac1. Furthermore, a combination of the other nine amino acid substitutions also led to improved thermostability of Bac1, although the effects of individual substitutions were small. Therefore, not only the sum of the contributions of individual amino acids, but also the synergistic effects of multiple amino acids are deeply involved in the stability of a hyperthermostable protein. Such insights will be helpful for future rational design of hyperthermostable proteins.
Collapse
Affiliation(s)
- Satoshi Akanuma
- Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama, Japan
- * E-mail:
| | - Minako Yamaguchi
- Department of Applied Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Akihiko Yamagishi
- Department of Applied Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| |
Collapse
|
9
|
Zhan YY, Hiraoka S. Molecular “Hozo”: Thermally Stable Yet Conformationally Flexible Self-Assemblies Driven by Tight Molecular Meshing. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yi-Yang Zhan
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shuichi Hiraoka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
10
|
Akiyama T, Kunishima N, Nemoto S, Kazama K, Hirose M, Sudo Y, Matsuura Y, Naitow H, Murata T. Further thermo-stabilization of thermophilic rhodopsin from Thermus thermophilus JL-18 through engineering in extramembrane regions. Proteins 2020; 89:301-310. [PMID: 33064333 PMCID: PMC7894484 DOI: 10.1002/prot.26015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/26/2020] [Accepted: 10/12/2020] [Indexed: 11/11/2022]
Abstract
It is known that a hyperthermostable protein tolerable at temperatures over 100°C can be designed from a soluble globular protein by introducing mutations. To expand the applicability of this technology to membrane proteins, here we report a further thermo-stabilization of the thermophilic rhodopsin from Thermus thermophilus JL-18 as a model membrane protein. Ten single mutations in the extramembrane regions were designed based on a computational prediction of folding free-energy differences upon mutation. Experimental characterizations using the UV-visible spectroscopy and the differential scanning calorimetry revealed that four of ten mutations were thermo-stabilizing: V79K, T114D, A115P, and A116E. The mutation-structure relationship of the TR constructs was analyzed using molecular dynamics simulations at 300 K and at 1800 K that aimed simulating structures in the native and in the random-coil states, respectively. The native-state simulation exhibited an ion-pair formation of the stabilizing V79K mutant as it was designed, and suggested a mutation-induced structural change of the most stabilizing T114D mutant. On the other hand, the random-coil-state simulation revealed a higher structural fluctuation of the destabilizing mutant S8D when compared to the wild type, suggesting that the higher entropy in the random-coil state deteriorated the thermal stability. The present thermo-stabilization design in the extramembrane regions based on the free-energy calculation and the subsequent evaluation by the molecular dynamics may be useful to improve the production of membrane proteins for structural studies.
Collapse
Affiliation(s)
- Tomoki Akiyama
- Department of Chemistry, Graduate School of Science, and Molecular Chirality Research, Chiba University, Chiba, Japan
| | - Naoki Kunishima
- RIKEN RSC-Rigaku Collaboration Center, RIKEN SPring-8 Center, Sayo-gun, Hyogo, Japan.,RIKEN SPring-8 Center, Sayo-gun, Hyogo, Japan
| | - Sayaka Nemoto
- Department of Chemistry, Graduate School of Science, and Molecular Chirality Research, Chiba University, Chiba, Japan
| | - Kazuki Kazama
- Department of Chemistry, Graduate School of Science, and Molecular Chirality Research, Chiba University, Chiba, Japan
| | - Masako Hirose
- Malvern Panalytical division of Spectris Co., Ltd, Tokyo, Japan
| | - Yuki Sudo
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | | | | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, and Molecular Chirality Research, Chiba University, Chiba, Japan
| |
Collapse
|
11
|
Saotome T, Mezaki T, Brindha S, Unzai S, Martinez JC, Kidokoro SI, Kuroda Y. Thermodynamic Analysis of Point Mutations Inhibiting High-Temperature Reversible Oligomerization of PDZ3. Biophys J 2020; 119:1391-1401. [PMID: 32961107 DOI: 10.1016/j.bpj.2020.08.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/12/2020] [Accepted: 08/20/2020] [Indexed: 12/27/2022] Open
Abstract
Differential scanning calorimetry (DSC) indicated that PDZ3 undergoes a peculiar thermal denaturation, exhibiting two endothermic peaks because of the formation of reversible oligomers at high temperature (N↔I6↔D). This contrasts sharply with the standard two-state denaturation model observed for small, globular proteins. We performed an alanine scanning analysis by individually mutating three hydrophobic residues at the crystallographic oligomeric interface (Phe340, Leu342, and Ile389) and one away from the interface (Leu349, as a control). DSC analysis indicated that PDZ3-F340A and PDZ3-L342A exhibited a single endothermic peak. Furthermore, PDZ3-L342A underwent a perfect two-state denaturation, as evidenced by the single endothermic peak and confirmed by detailed DSC analysis, including global fitting of data measured at different protein concentrations. Reversible oligomerization (RO) at high temperatures by small globular proteins is a rare event. Furthermore, our present study showing that a point mutation, L342A, designed based on the crystal structure inhibited RO is surprising because RO occurs at a high-temperature. Future studies will determine how and why mutations designed using crystal structures determined at ambient temperatures influence the formation of RO at high temperatures, and whether high-temperature ROs are related to the propensity of proteins to aggregate or precipitate at lower temperatures, which would provide a novel and unique way of controlling protein solubility and aggregation.
Collapse
Affiliation(s)
- Tomonori Saotome
- Department of Biotechnology and Life Science; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Taichi Mezaki
- Department of Bioengineering, Nagaoka University of Technology, Niigata, Japan
| | | | - Satoru Unzai
- Department of Frontier Bioscience, Faculty of Bioscience and Applied Chemistry, Hosei University, Tokyo, Japan
| | - Jose C Martinez
- Department of Physical Chemistry and Institute of Biotechnology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Shun-Ichi Kidokoro
- Department of Bioengineering, Nagaoka University of Technology, Niigata, Japan
| | | |
Collapse
|
12
|
Efficient Optimization of Gluconobacter oxydans Based on Protein Scaffold-Trimeric CutA to Enhance the Chemical Structure Stability of Enzymes for the Direct Production of 2-Keto-L-gulonic Acid. J CHEM-NY 2020. [DOI: 10.1155/2020/5429409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
2-Keto-L-gulonic acid (2-KLG), the direct precursor of vitamin C, is produced by a two-step fermentation route from D-sorbitol in industry. However, this route is a complicated mix-culture system which involves three bacteria. Thus, replacement of the conventional two-step fermentation process with a one-step process could be revolutionary in vitamin C industry. The one-step fermentation of 2-keto-L-gulonic acid (2-KLG) has been achieved in our previous study; 32.4 g/L of 2-KLG production was obtained by the one-step strain G. oxydans/pGUC-tufB-sdh-GGGGS-sndh after 168 h. In this study, L-sorbose dehydrogenase (SDH) and L-sorbosone dehydrogenase (SNDH) were expressed in G. oxydans after the codon optimization. Furthermore, the trimeric protein CutA was used to improve the chemical structure stability of SDH and SNDH. The recombinant strain G. oxydans/pGUC-tufB-SH3-sdh-GGGGS-sndh-tufB-SH3lig-(GGGGS)2-cutA produced 40.3 g/L of 2-KLG after 168 h. In addition, the expression levels of the cofactor PQQ were enhanced to further improve 2-KLG production. With the stepwise metabolic engineering of G. oxydans, the final 2-KLG production was improved to 42.6 g/L. The efficient one-step production of 2-KLG was achieved, and the final one-step industrial-scale production of 2-KLG is drawing near.
Collapse
|
13
|
Yutani K, Matsuura Y, Joti Y. Confirmation of the formation of salt bridges in the denatured state of CutA1 protein using molecular dynamics simulations. Biophys Physicobiol 2019; 16:176-184. [PMID: 31984170 PMCID: PMC6976010 DOI: 10.2142/biophysico.16.0_176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/25/2019] [Indexed: 12/01/2022] Open
Abstract
It remains unclear how the abundant charged residues in proteins from hyperthermophiles contribute to the stabilization of proteins. Previously, based on molecular dynamics (MD) simulations, we proposed that these charged residues decrease the entropic effect by forming salt bridges in the denatured state under physiological conditions (Yutani et al., Sci. Rep. 8, 7613 (2018)). Because the quality of MD results is strongly dependent on the force fields used, in this study we performed the MD simulations using a different force field (AMBER99SB) along with the one we used before (Gromos43a1), at the same temperatures examined previously as well as at higher temperatures. In these experiments, we used the same ionic mutant (Ec0VV6) of CutA1 from Escherichia coli as in the previous study. In MD simulations at 300 K, Lys87 and Arg88 in the loop region of Ec0VV6 formed salt bridges with different favorable pairs in different force fields. Furthermore, the helical content and radius of gyration differed slightly between two force fields. However, at a higher temperature (600 K), the average numbers of salt bridges for the six substituted residues of Ec0VV6 were 0.87 per residue for Gromos43a1 and 0.88 for AMBER99SB in 400-ns MD simulation, indicating that the values were similar despite the use of different force fields. These observations suggest that the charged residues in Ec0VV6 can form a considerable number of salt bridges, even in the denatured state with drastic fluctuation at 600 K. These results corroborate our previous proposal.
Collapse
Affiliation(s)
| | | | - Yasumasa Joti
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan.,Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198 Japan
| |
Collapse
|
14
|
Matsuura Y, Joti Y, Bagautdinov B, Yutani K. Evaluating the strengths of salt bridges in the CutA1 protein using molecular dynamic simulations: a comparison of different force fields. FEBS Open Bio 2019; 9:1939-1956. [PMID: 31509647 PMCID: PMC6823277 DOI: 10.1002/2211-5463.12731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/01/2019] [Accepted: 09/06/2019] [Indexed: 11/15/2022] Open
Abstract
Ion–ion interactions (salt bridges) between favorable pairs of charged residues are important for the conformational stability of proteins. Molecular dynamic (MD) simulations are useful for elucidating the interactions among charged residues fluctuating in solution. However, the quality of MD results depends strongly on the force fields used. In this study, we compared the strengths of salt bridges among force fields by performing MD simulations using the CutA1 protein (trimer) from the hyperthermophile Pyrococcus horikoshii (PhCutA1), which has an unusually large proportion of charged residues. The force fields Chemistry at HARvard Macromolecular Mechanics (Charmm)27, Assisted Model Building and Energy Refinement (Amber)99sb, Amber14sb, GROningen Molecular Simulation (Gromos)43a1, and Gromos53a6 were used in combination with two different water models, tip3p (for Charmm27, Amber99sb, and Amber14sb) and simple point charge/extended (for Amber99sb, Gromos43a1, and Gromos53a6), yielding a total of six combinations. The RMSDs of all Cα atoms of PhCutA1 were similar among force fields, except for Charmm27, during 400‐ns MD simulations at 300 K; however, the radius of gyration (Rg) was greater for Amber99sb and shorter for Gromos43a1. The average strengths of salt bridges for each positively charged residue did not differ greatly among force fields, but the strengths at specific sites within the structure depended sensitively on the force field used. In the case of the Gromos group, positively charged residues could engage in favorable interactions with many more charged residues than in the other force fields, especially in loop regions; consequently, the apparent strength at each site was lower.
Collapse
Affiliation(s)
| | - Yasumasa Joti
- RIKEN SPring-8 Center, Sayo, Hyogo, Japan.,Japan Synchrotron Radiation Research Institute, Sayo, Hyogo, Japan
| | | | | |
Collapse
|
15
|
Watari H, Nakajima H, Atsuumi W, Nakamura T, Nanya T, Ise Y, Sakai R. A novel sponge-derived protein thrombocorticin is a new agonist for thrombopoietin receptor. Comp Biochem Physiol C Toxicol Pharmacol 2019; 221:82-88. [PMID: 30978513 DOI: 10.1016/j.cbpc.2019.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 12/18/2022]
Abstract
We screened 868 marine extracts in search of hematopoietic molecules resulted in findings of several extracts that proliferated Ba/F3-HuMpl cells but not the cells expressed with other hematopoietic cytokine receptors, EPO and G-CSF. Separation of the most potent extract of a Micronesian sponge Corticium sp., guided by the cell proliferation assay using Ba/F3-HuMpl cells resulted in an isolation of thrombocorticin (ThC), a novel 14 kDa protein as an active principal. ThC displayed concentration-dependent proliferation of Ba/F3-HuMpl cells, and had a stronger activity than that of eltrombopag, a small molecule drug used to treat thrombocytopenia. ThC induced phosphorylation of STAT5, suggesting that it activates Jak/STAT pathway as in the case of TPO. These results together indicated that ThC is a specific agonist for c-Mpl, although the size and shape differs largely from TPO. Here we present isolation, characterization and biological activity of ThC.
Collapse
Affiliation(s)
- Hiromi Watari
- Hokkaido University, Graduate School and Faculty of Fisheries Sciences, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Hiroya Nakajima
- Hokkaido University, Graduate School and Faculty of Fisheries Sciences, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Wataru Atsuumi
- Hokkaido University, Graduate School and Faculty of Fisheries Sciences, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Takanori Nakamura
- Biological Research Laboratories, Nissan Chemical Corporation, Shiraoka-shi, Saitama 349-0294, Japan
| | - Takeshi Nanya
- Biological Research Laboratories, Nissan Chemical Corporation, Shiraoka-shi, Saitama 349-0294, Japan
| | - Yuji Ise
- Centre for Marine & Coastal Studies, Universiti Sains Malaysia, USM, 11800 Penang, Malaysia
| | - Ryuichi Sakai
- Hokkaido University, Graduate School and Faculty of Fisheries Sciences, 3-1-1 Minato-cho, Hakodate 041-8611, Japan.
| |
Collapse
|
16
|
Ion-ion interactions in the denatured state contribute to the stabilization of CutA1 proteins. Sci Rep 2018; 8:7613. [PMID: 29769700 PMCID: PMC5955972 DOI: 10.1038/s41598-018-25825-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/30/2018] [Indexed: 12/11/2022] Open
Abstract
In order to elucidate features of the denatured state ensembles that exist in equilibrium with the native state under physiological conditions, we performed 1.4-μs molecular dynamics (MD) simulations at 400 K and 450 K using the monomer subunits of three CutA1 mutants from Escherichia coli: an SH-free mutant (Ec0SH) with denaturation temperature (Td) = 85.6 °C, a hydrophobic mutant (Ec0VV) with Td = 113.3 °C, and an ionic mutant (Ec0VV_6) with Td = 136.8 °C. The occupancy of salt bridges by the six substituted charged residues in Ec0VV_6 was 140.1% at 300 K and 89.5% at 450 K, indicating that even in the denatured state, salt bridge occupancy was high, approximately 60% of that at 300 K. From these results, we can infer that proteins from hyperthermophiles with a high ratio of charged residues are stabilized by a decrease in conformational entropy due to ion–ion interactions in the denatured state. The mechanism must be comparable to the stabilization conferred by disulfide bonds within a protein. This suggests that introduction of charged residues, to promote formation of salt bridges in the denatured state, would be a simple way to rationally design stability-enhanced mutants.
Collapse
|
17
|
Matsuura Y, Takehira M, Makhatadze GI, Joti Y, Naitow H, Kunishima N, Yutani K. Strategy for Stabilization of CutA1 Proteins Due to Ion-Ion Interactions at Temperatures of over 100 °C. Biochemistry 2018; 57:2649-2656. [PMID: 29648806 DOI: 10.1021/acs.biochem.8b00103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In order to elucidate the contribution of charged residues to protein stabilization at temperatures of over 100 °C, we constructed many mutants of the CutA1 protein ( EcCutA1) from Escherichia coli. The goal was to see if one can achieve the same stability as for a CutA1 from hyperthermophile Pyrococcus horikoshii that has the denaturation temperature near 150 °C. The hydrophobic mutant of EcCutA1 ( Ec0VV) with denaturation temperature ( Td) of 113.2 °C was used as a template for mutations. The highest Td of Ec0VV mutants substituted by a single charged residue was 118.4 °C. Multiple ion mutants were also constructed by combination of single mutants and found to have an increased thermostability. The highest stability of multiple mutants was a mutant substituted by nine charged residues that had a Td of 142.2 °C. To evaluate the energy of ion-ion interactions of mutant proteins, we used the structural ensemble obtained by a molecular dynamics simulation at 300 K. The Td of ionic mutants linearly increases with the increments of the computed energy of ion-ion interactions for ionic mutant proteins even up to the temperatures near 140 °C, suggesting that ion-ion interactions cumulatively contribute to the stabilization of a protein at high temperatures.
Collapse
Affiliation(s)
| | - Michiyo Takehira
- RIKEN SPring-8 Center , 1-1-1 Kouto , Sayo, Hyogo 679-5148 , Japan
| | - George I Makhatadze
- Department of Biology , Rensselaer Polytechnic Institute , 110 Eighth Street , Troy , New York 12180-3590 , United States
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute , 1-1-1, Kouto , Sayo, Hyogo 679-5198 Japan
| | - Hisashi Naitow
- RIKEN SPring-8 Center , 1-1-1 Kouto , Sayo, Hyogo 679-5148 , Japan
| | - Naoki Kunishima
- RIKEN SPring-8 Center , 1-1-1 Kouto , Sayo, Hyogo 679-5148 , Japan
| | - Katsuhide Yutani
- RIKEN SPring-8 Center , 1-1-1 Kouto , Sayo, Hyogo 679-5148 , Japan
| |
Collapse
|
18
|
|
19
|
Engineering ancestral protein hyperstability. Biochem J 2016; 473:3611-3620. [PMID: 27528732 DOI: 10.1042/bcj20160532] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/15/2016] [Indexed: 01/23/2023]
Abstract
Many experimental analyses and proposed scenarios support that ancient life was thermophilic. In congruence with this hypothesis, proteins encoded by reconstructed sequences corresponding to ancient phylogenetic nodes often display very high stability. Here, we show that such 'reconstructed ancestral hyperstability' can be further engineered on the basis of a straightforward approach that uses exclusively information afforded by the ancestral reconstruction process itself. Since evolution does not imply continuous progression, screening of the mutations between two evolutionarily related resurrected ancestral proteins may identify mutations that further stabilize the most stable one. To explore this approach, we have used a resurrected thioredoxin corresponding to the last common ancestor of the cyanobacterial, Deinococcus and Thermus groups (LPBCA thioredoxin), which has a denaturation temperature of ∼123°C. This high value is within the top 0.1% of the denaturation temperatures in the ProTherm database and, therefore, achieving further stabilization appears a priori as a challenging task. Nevertheless, experimental comparison with a resurrected thioredoxin corresponding to the last common ancestor of bacteria (denaturation temperature of ∼115°C) immediately identifies three mutations that increase the denaturation temperature of LPBCA thioredoxin to ∼128°C. Comparison between evolutionarily related resurrected ancestral proteins thus emerges as a simple approach to expand the capability of ancestral reconstruction to search sequence space for extreme protein properties of biotechnological interest. The fact that ancestral sequences for many phylogenetic nodes can be derived from a single alignment of modern sequences should contribute to the general applicability of this approach.
Collapse
|
20
|
Thermodynamics of protein denaturation at temperatures over 100 °C: CutA1 mutant proteins substituted with hydrophobic and charged residues. Sci Rep 2015; 5:15545. [PMID: 26497062 PMCID: PMC4620440 DOI: 10.1038/srep15545] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/28/2015] [Indexed: 11/08/2022] Open
Abstract
Although the thermodynamics of protein denaturation at temperatures over 100 °C is essential for the rational design of highly stable proteins, it is not understood well because of the associated technical difficulties. We designed certain hydrophobic mutant proteins of CutA1 from Escherichia coli, which have denaturation temperatures (Td) ranging from 101 to 113 °C and show a reversible heat denaturation. Using a hydrophobic mutant as a template, we successfully designed a hyperthermostable mutant protein (Td = 137 °C) by substituting six residues with charged ones. Thermodynamic analyses of these mutant proteins indicated that the hydrophobic mutants were stabilized by the accumulation of denaturation enthalpy (ΔH) with no entropic gain from hydrophobic solvation around 100 °C, and that the stabilization due to salt bridges resulted from both the increase in ΔH from ion-ion interactions and the entropic effect of the electrostatic solvation over 113 °C. This is the first experimental evidence that has successfully overcome the typical technical difficulties.
Collapse
|
21
|
Lomonosova AV, Ovchinnikova EV, Kazakov AS, Denesyuk AI, Sofin AD, Mikhailov RV, Ulitin AB, Mirzabekov TA, Permyakov EA, Permyakov SE. Extremophilic 50S Ribosomal RNA-Binding Protein L35Ae as a Basis for Engineering of an Alternative Protein Scaffold. PLoS One 2015; 10:e0134906. [PMID: 26247602 PMCID: PMC4527664 DOI: 10.1371/journal.pone.0134906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/15/2015] [Indexed: 01/05/2023] Open
Abstract
Due to their remarkably high structural stability, proteins from extremophiles are particularly useful in numerous biological applications. Their utility as alternative protein scaffolds could be especially valuable in small antibody mimetic engineering. These artificial binding proteins occupy a specific niche between antibodies and low molecular weight substances, paving the way for development of innovative approaches in therapeutics, diagnostics, and reagent use. Here, the 50S ribosomal RNA-binding protein L35Ae from the extremophilic archaea Pyrococcus horikoshii has been probed for its potential to serve as a backbone in alternative scaffold engineering. The recombinant wild type L35Ae has a native-like secondary structure, extreme thermal stability (mid-transition temperature of 90°C) and a moderate resistance to the denaturation by guanidine hydrochloride (half-transition at 2.6 M). Chemical crosslinking and dynamic light scattering data revealed that the wild type L35Ae protein has a propensity for multimerization and aggregation correlating with its non-specific binding to a model cell surface of HEK293 cells, as evidenced by flow cytometry. To suppress these negative features, a 10-amino acid mutant (called L35Ae 10X) was designed, which lacks the interaction with HEK293 cells, is less susceptible to aggregation, and maintains native-like secondary structure and thermal stability. However, L35Ae 10X also shows lowered resistance to guanidine hydrochloride (half-transition at 2.0M) and is more prone to oligomerization. This investigation of an extremophile protein’s scaffolding potential demonstrates that lowered resistance to charged chemical denaturants and increased propensity to multimerization may limit the utility of extremophile proteins as alternative scaffolds.
Collapse
Affiliation(s)
- Anna V. Lomonosova
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
| | - Elena V. Ovchinnikova
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
| | - Alexei S. Kazakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
| | - Alexander I. Denesyuk
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
- Department of Biosciences, Åbo Akademi University, Turku, 20520, Finland
| | - Alexander D. Sofin
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
| | - Roman V. Mikhailov
- Antherix, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
| | - Andrei B. Ulitin
- Antherix, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
| | - Tajib A. Mirzabekov
- Antherix, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
- Biomirex Inc., 304 Pleasant Street, Watertown, Massachusetts, 02472, United States of America
| | - Eugene A. Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
| | - Sergei E. Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
- * E-mail:
| |
Collapse
|
22
|
Karshikoff A, Nilsson L, Ladenstein R. Rigidity versus flexibility: the dilemma of understanding protein thermal stability. FEBS J 2015; 282:3899-917. [PMID: 26074325 DOI: 10.1111/febs.13343] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/17/2015] [Accepted: 06/09/2015] [Indexed: 01/19/2023]
Abstract
The role of fluctuations in protein thermostability has recently received considerable attention. In the current literature a dualistic picture can be found: thermostability seems to be associated with enhanced rigidity of the protein scaffold in parallel with the reduction of flexible parts of the structure. In contradiction to such arguments it has been shown by experimental studies and computer simulation that thermal tolerance of a protein is not necessarily correlated with the suppression of internal fluctuations and mobility. Both concepts, rigidity and flexibility, are derived from mechanical engineering and represent temporally insensitive features describing static properties, neglecting that relative motion at certain time scales is possible in structurally stable regions of a protein. This suggests that a strict separation of rigid and flexible parts of a protein molecule does not describe the reality correctly. In this work the concepts of mobility/flexibility versus rigidity will be critically reconsidered by taking into account molecular dynamics calculations of heat capacity and conformational entropy, salt bridge networks, electrostatic interactions in folded and unfolded states, and the emerging picture of protein thermostability in view of recently developed network theories. Last, but not least, the influence of high temperature on the active site and activity of enzymes will be considered.
Collapse
Affiliation(s)
- Andrey Karshikoff
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Lennart Nilsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Rudolf Ladenstein
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
23
|
Wang H, Heilshorn SC. Adaptable hydrogel networks with reversible linkages for tissue engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:3717-36. [PMID: 25989348 PMCID: PMC4528979 DOI: 10.1002/adma.201501558] [Citation(s) in RCA: 462] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 04/18/2015] [Indexed: 05/19/2023]
Abstract
Adaptable hydrogels have recently emerged as a promising platform for three-dimensional (3D) cell encapsulation and culture. In conventional, covalently crosslinked hydrogels, degradation is typically required to allow complex cellular functions to occur, leading to bulk material degradation. In contrast, adaptable hydrogels are formed by reversible crosslinks. Through breaking and re-formation of the reversible linkages, adaptable hydrogels can be locally modified to permit complex cellular functions while maintaining their long-term integrity. In addition, these adaptable materials can have biomimetic viscoelastic properties that make them well suited for several biotechnology and medical applications. In this review, an overview of adaptable-hydrogel design considerations and linkage selections is presented, with a focus on various cell-compatible crosslinking mechanisms that can be exploited to form adaptable hydrogels for tissue engineering.
Collapse
Affiliation(s)
- Huiyuan Wang
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
| | - Sarah C. Heilshorn
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
24
|
Buchko GW, Abendroth J, Clifton MC, Robinson H, Zhang Y, Hewitt SN, Staker BL, Edwards TE, Van Voorhis WC, Myler PJ. Structure of a CutA1 divalent-cation tolerance protein from Cryptosporidium parvum, the protozoal parasite responsible for cryptosporidiosis. Acta Crystallogr F Struct Biol Commun 2015; 71:522-30. [PMID: 25945704 PMCID: PMC4427160 DOI: 10.1107/s2053230x14028210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/29/2014] [Indexed: 11/11/2022] Open
Abstract
Cryptosporidiosis is an infectious disease caused by protozoan parasites of the Cryptosporidium genus. Infection is associated with mild to severe diarrhea that usually resolves spontaneously in healthy human adults, but may lead to severe complications in young children and in immunocompromised patients. The genome of C. parvum contains a gene, CUTA_CRYPI, that may play a role in regulating the intracellular concentration of copper, which is a toxic element in excess. Here, the crystal structure of this CutA1 protein, Cp-CutA1, is reported at 2.0 Å resolution. As observed for other CutA1 structures, the 117-residue protein is a trimer with a core ferrodoxin-like fold. Circular dichroism spectroscopy shows little, in any, unfolding of Cp-CutA1 up to 353 K. This robustness is corroborated by (1)H-(15)N HSQC spectra at 333 K, which are characteristic of a folded protein, suggesting that NMR spectroscopy may be a useful tool to further probe the function of the CutA1 proteins. While robust, Cp-CutA1 is not as stable as the homologous protein from a hyperthermophile, perhaps owing to a wide β-bulge in β2 that protrudes Pro48 and Ser49 outside the β-sheet.
Collapse
Affiliation(s)
- Garry W. Buchko
- Seattle Structural Genomics Center for Infectious Disease, USA
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Jan Abendroth
- Seattle Structural Genomics Center for Infectious Disease, USA
- Beryllium, Bainbridge Island, Washington, USA
| | - Matthew C. Clifton
- Seattle Structural Genomics Center for Infectious Disease, USA
- Beryllium, Bainbridge Island, Washington, USA
| | - Howard Robinson
- Biology Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Yanfeng Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Stephen N. Hewitt
- Seattle Structural Genomics Center for Infectious Disease, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Bart L. Staker
- Seattle Structural Genomics Center for Infectious Disease, USA
- Seattle Biomedical Research Institute, Seattle, Washington, USA
| | - Thomas E. Edwards
- Seattle Structural Genomics Center for Infectious Disease, USA
- Beryllium, Bainbridge Island, Washington, USA
| | - Wesley C. Van Voorhis
- Seattle Structural Genomics Center for Infectious Disease, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Peter J. Myler
- Seattle Structural Genomics Center for Infectious Disease, USA
- Seattle Biomedical Research Institute, Seattle, Washington, USA
- Department of Medical Education and Biomedical Informatics and Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
25
|
Bagautdinov B, Matsuura Y, Yamamoto H, Sawano M, Ogasahara K, Takehira M, Kunishima N, Katoh E, Yutani K. Thermodynamic analysis of unusually thermostable CutA1 protein from human brain and its protease susceptibility. J Biochem 2014; 157:169-76. [PMID: 25344844 DOI: 10.1093/jb/mvu062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Unusually stable proteins are a disadvantage for the metabolic turnover of proteins in cells. The CutA1 proteins from Pyrococcus horikoshii and from Oryza sativa (OsCutA1) have unusually high denaturation temperatures (Td) of nearly 150 and 100 °C, respectively, at pH 7.0. It seemed that the CutA1 protein from the human brain (HsCutA1) also has a remarkably high stability. Therefore, the thermodynamic stabilities of HsCutA1 and its protease susceptibility were examined. The Td was remarkably high, being over 95 °C at pH 7.0. The unfolding Gibbs energy (ΔG(0)H2O) was 174 kJ/mol at 37 °C from the denaturant denaturation. The thermodynamic analysis showed that the unfolding enthalpy and entropy values of HsCutA1 were considerably lower than those of OsCutA1 with a similar stability to HsCutA1, which should be related to flexibility of the unstructured properties in both N- and C-terminals of HsCutA1. HsCutA1 was almost completely digested after 1-day incubation at 37 °C by subtilisin, although OsCutA1 was hardly digested at the same conditions. These results indicate that easily available fragmentation of HsCutA1 with remarkably high thermodynamic stability at the body temperature should be important for its protein catabolism in the human cells.
Collapse
Affiliation(s)
- Bagautdin Bagautdinov
- RIKEN SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan; Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan; and National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Yoshinori Matsuura
- RIKEN SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan; Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan; and National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Hitoshi Yamamoto
- RIKEN SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan; Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan; and National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Masahide Sawano
- RIKEN SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan; Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan; and National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Kyoko Ogasahara
- RIKEN SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan; Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan; and National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Michiyo Takehira
- RIKEN SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan; Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan; and National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Naoki Kunishima
- RIKEN SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan; Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan; and National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Etsuko Katoh
- RIKEN SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan; Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan; and National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Katsuhide Yutani
- RIKEN SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan; Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan; and National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| |
Collapse
|
26
|
High Thermal Stability and Unique Trimer Formation of Cytochromec′ from ThermophilicHydrogenophilus thermoluteolus. Biosci Biotechnol Biochem 2014; 77:1677-81. [DOI: 10.1271/bbb.130226] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Bagautdinov B. The structures of the CutA1 proteins from Thermus thermophilus and Pyrococcus horikoshii: characterization of metal-binding sites and metal-induced assembly. Acta Crystallogr F Struct Biol Commun 2014; 70:404-13. [PMID: 24699729 PMCID: PMC3976053 DOI: 10.1107/s2053230x14003422] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 02/15/2014] [Indexed: 11/10/2022] Open
Abstract
CutA1 (copper tolerance A1) is a widespread cytoplasmic protein found in archaea, bacteria, plants and animals, including humans. In Escherichia coli it is implicated in divalent metal tolerance, while the mammalian CutA1 homologue has been proposed to mediate brain enzyme acetylcholinesterase activity and copper homeostasis. The X-ray structures of CutA1 from the thermophilic bacterium Thermus thermophilus (TtCutA1) with and without bound Na(+) at 1.7 and 1.9 Å resolution, respectively, and from the hyperthermophilic archaeon Pyrococcus horikoshii (PhCutA1) in complex with Na(+) at 1.8 Å resolution have been determined. Both are short and rigid proteins of about 12 kDa that form intertwined compact trimers in the crystal and solution. The main difference in the structures is a wide-type β-bulge on top of the TtCutA1 trimer. It affords a mechanism for lodging a single-residue insertion in the middle of β2 while preserving the interprotomer main-chain hydrogen-bonding network. The liganded forms of the proteins provide new structural information about the metal-binding sites and CutA1 assembly. The Na(+)-TtCutA1 structure unveils a dodecameric assembly with metal ions in the trimer-trimer interfaces and the lateral clefts of the trimer. For Na(+)-PhCutA1, the metal ion associated with six waters in an octahedral geometry. The structures suggest that CutA1 may contribute to regulating intracellular metal homeostasis through various binding modes.
Collapse
Affiliation(s)
- Bagautdin Bagautdinov
- Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| |
Collapse
|
28
|
Ramirez MA, Chen Z. Synthesis of an intein-mediated artificial protein hydrogel. J Vis Exp 2014:e51202. [PMID: 24514743 DOI: 10.3791/51202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We present the synthesis of a highly stable protein hydrogel mediated by a split-intein-catalyzed protein trans-splicing reaction. The building blocks of this hydrogel are two protein block-copolymers each containing a subunit of a trimeric protein that serves as a crosslinker and one half of a split intein. A highly hydrophilic random coil is inserted into one of the block-copolymers for water retention. Mixing of the two protein block copolymers triggers an intein trans-splicing reaction, yielding a polypeptide unit with crosslinkers at either end that rapidly self-assembles into a hydrogel. This hydrogel is very stable under both acidic and basic conditions, at temperatures up to 50 °C, and in organic solvents. The hydrogel rapidly reforms after shear-induced rupture. Incorporation of a "docking station peptide" into the hydrogel building block enables convenient incorporation of "docking protein"-tagged target proteins. The hydrogel is compatible with tissue culture growth media, supports the diffusion of 20 kDa molecules, and enables the immobilization of bioactive globular proteins. The application of the intein-mediated protein hydrogel as an organic-solvent-compatible biocatalyst was demonstrated by encapsulating the horseradish peroxidase enzyme and corroborating its activity.
Collapse
Affiliation(s)
- Miguel A Ramirez
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station
| | | |
Collapse
|
29
|
Bhuiya MW, Suryadi J, Zhou Z, Brown BA. Structure of the Aeropyrum pernix L7Ae multifunctional protein and insight into its extreme thermostability. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:979-88. [PMID: 23989144 PMCID: PMC3758144 DOI: 10.1107/s1744309113021799] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 08/05/2013] [Indexed: 11/11/2022]
Abstract
Archaeal ribosomal protein L7Ae is a multifunctional RNA-binding protein that directs post-transcriptional modification of archaeal RNAs. The L7Ae protein from Aeropyrum pernix (Ap L7Ae), a member of the Crenarchaea, was found to have an extremely high melting temperature (>383 K). The crystal structure of Ap L7Ae has been determined to a resolution of 1.56 Å. The structure of Ap L7Ae was compared with the structures of two homologs: hyperthermophilic Methanocaldococcus jannaschii L7Ae and the mesophilic counterpart mammalian 15.5 kD protein. The primary stabilizing feature in the Ap L7Ae protein appears to be the large number of ion pairs and extensive ion-pair network that connects secondary-structural elements. To our knowledge, Ap L7Ae is among the most thermostable single-domain monomeric proteins presently observed.
Collapse
Affiliation(s)
| | - Jimmy Suryadi
- Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Zholi Zhou
- Bristol-Myers Squibb, Syracuse, NY 13221, USA
| | - Bernard Andrew Brown
- Womble Carlyle Sandridge and Rice LLP, One West Fourth Street, Winston-Salem, NC 27101, USA
| |
Collapse
|
30
|
Two-Component Protein Hydrogels Assembled Using an Engineered Disulfide-Forming Protein–Ligand Pair. Biomacromolecules 2013; 14:2909-16. [DOI: 10.1021/bm400814u] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Ramirez M, Guan D, Ugaz V, Chen Z. Intein-triggered artificial protein hydrogels that support the immobilization of bioactive proteins. J Am Chem Soc 2013; 135:5290-3. [PMID: 23509910 DOI: 10.1021/ja401075s] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein hydrogels have important applications in tissue engineering, drug delivery, and biofabrication. We present the development of a novel self-assembling protein hydrogel triggered by mixing two soluble protein block copolymers, each containing one half of a split intein. Mixing these building blocks initiates an intein trans-splicing reaction that yields a hydrogel that is highly stable over a wide range of pH (6-10) and temperature (4-50 °C), instantaneously recovers its mechanical properties after shear-induced breakdown, and is compatible with both aqueous and organic solvents. Incorporating a "docking station" peptide into the hydrogel building blocks enables simple and stable immobilization of docking protein-fused bioactive proteins in the hydrogel. This intein-triggered protein hydrogel technology opens new avenues for both in vitro metabolic pathway construction and functional/biocompatible tissue engineering scaffolds and provides a convenient platform for immobilizing enzymes in industrial biocatalysis.
Collapse
Affiliation(s)
- Miguel Ramirez
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | |
Collapse
|
32
|
Khan S, Lindahl S, Turner C, Karlsson EN. Immobilization of thermostable β-glucosidase variants on acrylic supports for biocatalytic processes in hot water. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2012.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Matsuura Y, Takehira M, Sawano M, Ogasahara K, Tanaka T, Yamamoto H, Kunishima N, Katoh E, Yutani K. Role of charged residues in stabilization of Pyrococcus horikoshii CutA1, which has a denaturation temperature of nearly 150 °C. FEBS J 2011; 279:78-90. [DOI: 10.1111/j.1742-4658.2011.08400.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Hayashi S, Akanuma S, Onuki W, Tokunaga C, Yamagishi A. Substitutions of coenzyme-binding, nonpolar residues improve the low-temperature activity of thermophilic dehydrogenases. Biochemistry 2011; 50:8583-93. [PMID: 21894900 DOI: 10.1021/bi200925f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although enzymes of thermophilic organisms are often very resistant to thermal denaturation, they are usually less active than their mesophilic or psychrophilic homologues at moderate or low temperatures. To explore the structural features that would improve the activity of a thermophilic enzyme at less than optimal temperatures, we randomly mutated the DNA of single-site mutants of the thermostable Thermus thermophilus 3-isopropylmalate dehydrogenase that already had improved low-temperature activity and selected for additional improved low-temperature activity. A mutant (Ile279 → Val) with improved low-temperature activity contained a residue that directly interacts with the adenine of the coenzyme NAD(+), suggesting that modulation of the coenzyme-binding pocket's volume can enhance low-temperature activity. This idea was further supported by a saturation mutagenesis study of the two codons of two other residues that interact with the adenine. Furthermore, a similar type of amino acid substitution also improved the catalytic efficiency of another thermophilic dehydrogenase, T. thermophilus lactate dehydrogenase. Steady-state kinetic experiments showed that the mutations all favorably affected the catalytic turnover numbers. Thermal stability measurements demonstrated that the mutants remain very resistant to heat. Calculation of the energetic contributions to catalysis indicated that the increased turnover numbers are the result of destabilized enzyme-substrate-coenzyme complexes. Therefore, small changes in the side chain volumes of coenzyme-binding residues improved the catalytic efficiencies of two thermophilic dehydrogenases while preserving their high thermal stabilities and may be a way to improve low-temperature activities of dehydrogenases in general.
Collapse
Affiliation(s)
- Sayaka Hayashi
- Department of Molecular Biology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | |
Collapse
|
35
|
Akanuma S, Iwami S, Yokoi T, Nakamura N, Watanabe H, Yokobori SI, Yamagishi A. Phylogeny-Based Design of a B-Subunit of DNA Gyrase and Its ATPase Domain Using a Small Set of Homologous Amino Acid Sequences. J Mol Biol 2011; 412:212-25. [DOI: 10.1016/j.jmb.2011.07.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 10/17/2022]
|
36
|
Moskaleva O, Melnik B, Gabdulkhakov A, Garber M, Nikonov S, Stolboushkina E, Nikulin A. The structures of mutant forms of Hfq from Pseudomonas aeruginosa reveal the importance of the conserved His57 for the protein hexamer organization. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:760-4. [PMID: 20606268 DOI: 10.1107/s1744309110017331] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 05/11/2010] [Indexed: 11/11/2022]
Abstract
The bacterial Sm-like protein Hfq forms homohexamers both in solution and in crystals. The monomers are organized as a continuous beta-sheet passing through the whole hexamer ring with a common hydrophobic core. Analysis of the Pseudomonas aeruginosa Hfq (PaeHfq) hexamer structure suggested that solvent-inaccessible intermonomer hydrogen bonds created by conserved amino-acid residues should also stabilize the quaternary structure of the protein. In this work, one such conserved residue, His57, in PaeHfq was replaced by alanine, threonine or asparagine. The crystal structures of His57Thr and His57Ala Hfq were determined and the stabilities of all of the mutant forms and of the wild-type protein were measured. The results obtained demonstrate the great importance of solvent-inaccessible conserved hydrogen bonds between the Hfq monomers in stabilization of the hexamer structure.
Collapse
|
37
|
Ganguli S, Yoshimoto K, Tomita S, Sakuma H, Matsuoka T, Shiraki K, Nagasaki Y. Improving the Heat Resistance of Ribonuclease A by the Addition of Poly(N,N-diethylaminoethyl methacrylate)-graft-poly(ethylene glycol) (PEAMA-g-PEG). Macromol Biosci 2010; 10:853-9. [DOI: 10.1002/mabi.200900432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Nakamura A, Takumi K, Miki K. Crystal Structure of a Thermophilic GrpE Protein: Insight into Thermosensing Function for the DnaK Chaperone System. J Mol Biol 2010; 396:1000-11. [DOI: 10.1016/j.jmb.2009.12.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 12/11/2009] [Accepted: 12/16/2009] [Indexed: 01/26/2023]
|
39
|
Kawamura K, Nagayoshi H, Yao T. Stability of ribonuclease A under hydrothermal conditions in relation to the origin-of-life hypothesis: verification with the hydrothermal micro-flow reactor system. RESEARCH ON CHEMICAL INTERMEDIATES 2009. [DOI: 10.1007/s11164-009-0071-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Sakai-Kato K, Umezawa Y, Mikoshiba K, Aruga J, Utsunomiya-Tate N. Stability of folding structure of Zic zinc finger proteins. Biochem Biophys Res Commun 2009; 384:362-5. [PMID: 19422807 DOI: 10.1016/j.bbrc.2009.04.151] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 04/28/2009] [Indexed: 11/16/2022]
Abstract
Zic family proteins have five C(2)H(2)-type zinc finger (ZF) motifs. We physicochemically characterized the folding properties of Zic ZFs. Alteration of chelation with zinc ions and of hydrophobic interactions changed circular dichroism spectra, suggesting that they caused structural changes. The motifs were heat stable, but electrostatic interactions had little effect on structural stability. These results highlight the importance of chelating interactions and hydrophobic interactions for the stability of the folding structure of Zic ZF proteins.
Collapse
Affiliation(s)
- Kumiko Sakai-Kato
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, 202-8585, Japan
| | | | | | | | | |
Collapse
|
41
|
Ganguli S, Yoshimoto K, Tomita S, Sakuma H, Matsuoka T, Shiraki K, Nagasaki Y. Regulation of Lysozyme Activity Based on Thermotolerant Protein/Smart Polymer Complex Formation. J Am Chem Soc 2009; 131:6549-53. [DOI: 10.1021/ja900786z] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sumon Ganguli
- Graduate School of Pure and Applied Science, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8573, Japan, Center for Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ten-noudai 1-1-1, Tsukuba 305-8577, Japan, Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8571, Japan, Master’s School of Medical Science, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Ten
| | - Keitaro Yoshimoto
- Graduate School of Pure and Applied Science, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8573, Japan, Center for Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ten-noudai 1-1-1, Tsukuba 305-8577, Japan, Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8571, Japan, Master’s School of Medical Science, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Ten
| | - Shunsuke Tomita
- Graduate School of Pure and Applied Science, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8573, Japan, Center for Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ten-noudai 1-1-1, Tsukuba 305-8577, Japan, Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8571, Japan, Master’s School of Medical Science, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Ten
| | - Hiroshi Sakuma
- Graduate School of Pure and Applied Science, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8573, Japan, Center for Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ten-noudai 1-1-1, Tsukuba 305-8577, Japan, Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8571, Japan, Master’s School of Medical Science, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Ten
| | - Tsuneyoshi Matsuoka
- Graduate School of Pure and Applied Science, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8573, Japan, Center for Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ten-noudai 1-1-1, Tsukuba 305-8577, Japan, Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8571, Japan, Master’s School of Medical Science, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Ten
| | - Kentaro Shiraki
- Graduate School of Pure and Applied Science, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8573, Japan, Center for Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ten-noudai 1-1-1, Tsukuba 305-8577, Japan, Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8571, Japan, Master’s School of Medical Science, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Ten
| | - Yukio Nagasaki
- Graduate School of Pure and Applied Science, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8573, Japan, Center for Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ten-noudai 1-1-1, Tsukuba 305-8577, Japan, Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8571, Japan, Master’s School of Medical Science, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Ten
| |
Collapse
|
42
|
Abstract
Although the energetic balance of forces stabilizing proteins has been established qualitatively over the last decades, quantification of the energetic contribution of particular interactions still poses serious problems. The reasons are the strong cooperativity and the interdependence ofnoncovalent interactions. Salt bridges are a typical example. One expects that ionizable side chains frequently form ion pairs in innumerable crystal structures. Since electrostatic attraction between opposite charges is strong per se, salt bridges can intuitively be regarded as an important factor stabilizing the native structure. Is that really so? In this chapter we critically reassess the available methods to delineate the role ofelectrostatic interactions and salt bridges to protein stability, and discuss the progress and the obstacles in this endeavor. The basic problem is that formation of salt bridges depends on the ionization properties of the participating groups, which is significantly influenced by the protein environment. Furthermore, salt bridges experience thermal fluctuations, continuously break and re-form, and their lifespan in solution is governed by the flexibility of the protein. Finally, electrostatic interactions are long-range and might be significant in the unfolded state, thus seriously influencing the energetic profile. Elimination of salt bridges by protonation/deprotonation at extreme pH or by mutation provides only rough energetic estimates, since there is no way to account for the nonadditive response of the protein moiety. From what we know so far, the strength of electrostatic interactions is strongly context-dependent, yet it is unlikely that salt bridges are dominant factors governing protein stability. Nevertheless, proteins from thermophiles and hyperthermophiles exhibit more, and frequently networked, salt bridges than proteins from the mesophilic counterparts. Increasing the thermal (not the thermodynamic) stability of proteins by optimization of charge-charge interactions is a good example for an evolutionary solution utilizing physical factors.
Collapse
Affiliation(s)
- Ilian Jelesarov
- Biochemisches Institut der Universität Zürich, Zürich, Switzerland
| | | |
Collapse
|
43
|
Bagautdinov B, Matsuura Y, Bagautdinova S, Kunishima N, Yutani K. Structure of putative CutA1 from Homo sapiens determined at 2.05 A resolution. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:351-7. [PMID: 18453701 PMCID: PMC2376402 DOI: 10.1107/s1744309108009846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Accepted: 04/10/2008] [Indexed: 11/10/2022]
Abstract
The structure of human brain CutA1 (HsCutA1) has been determined using diffraction data to 2.05 A resolution. HsCutA1 has been implicated in the anchoring of acetylcholinesterase in neuronal cell membranes, while its bacterial homologue Escherichia coli CutA1 is involved in copper tolerance. Additionally, the structure of HsCutA1 bears similarity to that of the signal transduction protein PII, which is involved in regulation of nitrogen metabolism. Although several crystal structures of CutA1 from various sources with different rotation angles and degrees of interaction between trimer interfaces have been reported, the specific functional role of CutA1 is still unclear. In this study, the X-ray structure of HsCutA1 was determined in space group P2(1)2(1)2(1), with unit-cell parameters a = 68.69, b = 88.84, c = 125.33 A and six molecules per asymmetric unit. HsCutA1 is a trimeric molecule with intertwined antiparallel beta-strands; each subunit has a molecular weight of 14.6 kDa and contains 135 amino-acid residues. In order to obtain clues to the possible function of HsCutA1, its crystal structure was compared with those of other CutA1 and PII proteins.
Collapse
Affiliation(s)
- Bagautdin Bagautdinov
- Protein Structure Analysis Team, RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.
| | | | | | | | | |
Collapse
|
44
|
Koga Y, Katsumi R, You DJ, Matsumura H, Takano K, Kanaya S. Crystal structure of highly thermostable glycerol kinase from a hyperthermophilic archaeon in a dimeric form. FEBS J 2008; 275:2632-43. [DOI: 10.1111/j.1742-4658.2008.06410.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Effects of introducing negative charges into the molecular surface of thermolysin by site-directed mutagenesis on its activity and stability. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:481-8. [DOI: 10.1016/j.bbapap.2007.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 11/12/2007] [Accepted: 12/10/2007] [Indexed: 11/22/2022]
|
46
|
Clark AT, Smith K, Muhandiram R, Edmondson SP, Shriver JW. Carboxyl pK(a) values, ion pairs, hydrogen bonding, and the pH-dependence of folding the hyperthermophile proteins Sac7d and Sso7d. J Mol Biol 2007; 372:992-1008. [PMID: 17692336 PMCID: PMC2083566 DOI: 10.1016/j.jmb.2007.06.089] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 06/19/2007] [Accepted: 06/29/2007] [Indexed: 10/23/2022]
Abstract
Sac7d and Sso7d are homologous, hyperthermophile proteins with a high density of charged surface residues and potential ion pairs. To determine the relative importance of specific amino acid side-chains in defining the stability and function of these Archaeal chromatin proteins, pK(a) values were measured for the acidic residues in both proteins using (13)C NMR chemical shifts. The stability of Sso7d enabled titrations to pH 1 under low-salt conditions. Two aspartate residues in Sso7d (D16 and D35) and a single glutamate residue (G54) showed significantly perturbed pK(a) values in low salt, indicating that the observed pH-dependence of stability was primarily due to these three residues. The pH-dependence of backbone amide NMR resonances demonstrated that perturbation of all three pK(a) values was primarily the result of side-chain to backbone amide hydrogen bonds. Few of the significantly perturbed acidic pK(a) values in Sac7d and Sso7d could be attributed to primarily ion pair or electrostatic interactions. A smaller perturbation of E48 (E47 in Sac7d) was ascribed to an ion pair interaction that may be important in defining the DNA binding surface. The small number (three) of significantly altered pK(a) values was in good agreement with a linkage analysis of the temperature, pH, and salt-dependence of folding. The linkage of the ionization of two or more side-chains to protein folding led to apparent cooperativity in the pH-dependence of folding, although each group titrated independently with a Hill coefficient near unity. These results demonstrate that the acid pH-dependence of protein stability in these hyperthermophile proteins is due to independent titration of acidic residues with pK(a) values perturbed primarily by hydrogen bonding of the side-chain to the backbone. This work demonstrates the need for caution in using structural data alone to argue the importance of ion pairs in stabilizing hyperthermophile proteins.
Collapse
Affiliation(s)
- Andrew T Clark
- Alabama High Field NMR Laboratory, Laboratory for Structural Biology, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Kelley Smith
- Alabama High Field NMR Laboratory, Laboratory for Structural Biology, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Ranjith Muhandiram
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Stephen P Edmondson
- Alabama High Field NMR Laboratory, Laboratory for Structural Biology, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| | - John W Shriver
- Alabama High Field NMR Laboratory, Laboratory for Structural Biology, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| |
Collapse
|