1
|
Wang X, Wu Y, Zhao P, Wang X, Wu W, Yang J. The causal relationship between serum metabolites and acne vulgaris: a Mendelian randomization study. Sci Rep 2024; 14:11045. [PMID: 38744939 PMCID: PMC11093973 DOI: 10.1038/s41598-024-61850-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
In individuals with acne vulgaris, alterations occur in serum metabolite composition, yet the exact causal link between these metabolites and acne development remains elusive. Using genome-wide association datasets, we performed bidirectional Mendelian randomization (MR) to investigate the potential causal relationship between 309 serum metabolites and acne vulgaris. We performed sensitivity analysis to evaluate the presence of heterogeneity and pleiotropy. Forward MR analysis found 14 serum metabolites significantly associated with acne vulgaris, and reverse MR analysis found no significant association between acne vulgaris and these serum metabolites. Through validation using data from the FinnGen database of acne vulgaris studies, we found a conclusive and significant correlation between stearoylcarnitine and acne vulgaris. This provides new evidence in the search for new targets for the treatment of acne vulgaris.
Collapse
Affiliation(s)
- Xiaoyun Wang
- School of Basic Medical Sciences, Dali University, Dali, China
| | - Yujia Wu
- School of Basic Medical Sciences, Dali University, Dali, China
| | - Pengfei Zhao
- School of Basic Medical Sciences, Dali University, Dali, China
| | - Xinren Wang
- School of Basic Medical Sciences, Dali University, Dali, China
| | - Wenjuan Wu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Jiankang Yang
- School of Basic Medical Sciences, Dali University, Dali, China.
| |
Collapse
|
2
|
Marcinkiewicz-Siemion M, Ciborowski M, Ptaszynska-Kopczynska K, Szpakowicz A, Lisowska A, Jasiewicz M, Waszkiewicz E, Kretowski A, Musial WJ, Kaminski KA. LC-MS-based serum fingerprinting reveals significant dysregulation of phospholipids in chronic heart failure. J Pharm Biomed Anal 2018; 154:354-363. [PMID: 29571133 DOI: 10.1016/j.jpba.2018.03.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/10/2018] [Accepted: 03/14/2018] [Indexed: 12/31/2022]
Abstract
Cardiac and extracardiac lipid metabolism is known to be significantly altered in the course of the heart failure with reduced ejection fraction (HF-REF), however the precise mechanisms are not fully elucidated. The aim of the study was to use of untargeted metabolomics to identify and validate changes in the blood metabolites profile, occurring as a result of HF-REF development. The analyses were performed first in the derivation set (36 chronic HF-REF patients and 19 controls without the disease) and repeated in validation cohort (31 chronic HF-REF patients and 20 controls). Independent analyses of both sets revealed statistically significant decline in intensities of phosphatidylcholine (PC): 34:4 and 36:5, lysophosphatidylcholine (lyso-PC): 14:0, 15:0, 18:0, 18:2, 20:3, lysophosphatidylethanolamine (lyso-PE): 18:1 and 18:2 in chronic HF-REF patients. More symptomatic patients and those with ischaemic etiology of HF-REF presented greater deficit in phospholipids (PLs) intensities. The decrease of identified PLs intensities (as compared to controls) correlated with decreased serum cholesterol level, impaired renal function, reduced exercise capacity, enhanced ventilatory response and metabolic parameters associated with altered fatty acids oxidation. In multiple regression analysis PLs deficit was significantly associated with age, carnitines serum intensity, renal function, uric acid, cholesterol level. In conclusion, HF-REF is associated with significant disturbances in phospholipids metabolism. Greater reduction in serum intensities of particular identified PLs is associated with older age, worse clinical condition, impaired oxidative muscle metabolism and enhanced catabolic status.
Collapse
Affiliation(s)
- M Marcinkiewicz-Siemion
- Medical University of Bialystok, Cardiology Department, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - M Ciborowski
- Medical University of Bialystok, Clinical Research Centre, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - K Ptaszynska-Kopczynska
- Medical University of Bialystok, Cardiology Department, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - A Szpakowicz
- Medical University of Bialystok, Cardiology Department, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - A Lisowska
- Medical University of Bialystok, Cardiology Department, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - M Jasiewicz
- Medical University of Bialystok, Cardiology Department, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - E Waszkiewicz
- Medical University of Bialystok, Cardiology Department, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - A Kretowski
- Medical University of Bialystok, Clinical Research Centre, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - W J Musial
- Medical University of Bialystok, Cardiology Department, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - K A Kaminski
- Medical University of Bialystok, Cardiology Department, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland; Medical University of Bialystok, Department of Population Medicine and Civilization Disease Prevention, Waszyngtona 13A, 15-269 Bialystok, Poland.
| |
Collapse
|
3
|
Minkler PE, Stoll MSK, Ingalls ST, Kerner J, Hoppel CL. Quantitative acylcarnitine determination by UHPLC-MS/MS--Going beyond tandem MS acylcarnitine "profiles". Mol Genet Metab 2015; 116:231-41. [PMID: 26458767 PMCID: PMC5009370 DOI: 10.1016/j.ymgme.2015.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 01/22/2023]
Abstract
Tandem MS "profiling" of acylcarnitines and amino acids was conceived as a first-tier screening method, and its application to expanded newborn screening has been enormously successful. However, unlike amino acid screening (which uses amino acid analysis as its second-tier validation of screening results), acylcarnitine "profiling" also assumed the role of second-tier validation, due to the lack of a generally accepted second-tier acylcarnitine determination method. In this report, we present results from the application of our validated UHPLC-MS/MS second-tier method for the quantification of total carnitine, free carnitine, butyrobetaine, and acylcarnitines to patient samples with known diagnoses: malonic acidemia, short-chain acyl-CoA dehydrogenase deficiency (SCADD) or isobutyryl-CoA dehydrogenase deficiency (IBD), 3-methyl-crotonyl carboxylase deficiency (3-MCC) or ß-ketothiolase deficiency (BKT), and methylmalonic acidemia (MMA). We demonstrate the assay's ability to separate constitutional isomers and diastereomeric acylcarnitines and generate values with a high level of accuracy and precision. These capabilities are unavailable when using tandem MS "profiles". We also show examples of research interest, where separation of acylcarnitine species and accurate and precise acylcarnitine quantification is necessary.
Collapse
MESH Headings
- Acetyl-CoA C-Acyltransferase/blood
- Acetyl-CoA C-Acyltransferase/cerebrospinal fluid
- Acetyl-CoA C-Acyltransferase/deficiency
- Acetyl-CoA C-Acyltransferase/urine
- Acyl-CoA Dehydrogenase/blood
- Acyl-CoA Dehydrogenase/cerebrospinal fluid
- Acyl-CoA Dehydrogenase/deficiency
- Acyl-CoA Dehydrogenase/urine
- Amino Acid Metabolism, Inborn Errors/blood
- Amino Acid Metabolism, Inborn Errors/cerebrospinal fluid
- Amino Acid Metabolism, Inborn Errors/diagnosis
- Amino Acid Metabolism, Inborn Errors/urine
- Betaine/analogs & derivatives
- Betaine/blood
- Betaine/cerebrospinal fluid
- Betaine/urine
- Carbon-Carbon Ligases/blood
- Carbon-Carbon Ligases/cerebrospinal fluid
- Carbon-Carbon Ligases/deficiency
- Carbon-Carbon Ligases/urine
- Carnitine/analogs & derivatives
- Carnitine/blood
- Carnitine/cerebrospinal fluid
- Carnitine/urine
- Chromatography, High Pressure Liquid/methods
- Chromatography, High Pressure Liquid/standards
- Female
- Humans
- Infant, Newborn
- Isomerism
- Lipid Metabolism, Inborn Errors/blood
- Lipid Metabolism, Inborn Errors/cerebrospinal fluid
- Lipid Metabolism, Inborn Errors/diagnosis
- Lipid Metabolism, Inborn Errors/urine
- Male
- Neonatal Screening
- Reproducibility of Results
- Sensitivity and Specificity
- Tandem Mass Spectrometry/standards
- Urea Cycle Disorders, Inborn/blood
- Urea Cycle Disorders, Inborn/cerebrospinal fluid
- Urea Cycle Disorders, Inborn/diagnosis
- Urea Cycle Disorders, Inborn/urine
Collapse
Affiliation(s)
- Paul E Minkler
- Center for Mitochondrial Diseases, Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Maria S K Stoll
- Center for Mitochondrial Diseases, Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Stephen T Ingalls
- Center for Mitochondrial Diseases, Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Janos Kerner
- Center for Mitochondrial Diseases, Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Charles L Hoppel
- Center for Mitochondrial Diseases, Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
4
|
Stäubert C, Bhuiyan H, Lindahl A, Broom OJ, Zhu Y, Islam S, Linnarsson S, Lehtiö J, Nordström A. Rewired metabolism in drug-resistant leukemia cells: a metabolic switch hallmarked by reduced dependence on exogenous glutamine. J Biol Chem 2015; 290:8348-59. [PMID: 25697355 DOI: 10.1074/jbc.m114.618769] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cancer cells that escape induction therapy are a major cause of relapse. Understanding metabolic alterations associated with drug resistance opens up unexplored opportunities for the development of new therapeutic strategies. Here, we applied a broad spectrum of technologies including RNA sequencing, global untargeted metabolomics, and stable isotope labeling mass spectrometry to identify metabolic changes in P-glycoprotein overexpressing T-cell acute lymphoblastic leukemia (ALL) cells, which escaped a therapeutically relevant daunorubicin treatment. We show that compared with sensitive ALL cells, resistant leukemia cells possess a fundamentally rewired central metabolism characterized by reduced dependence on glutamine despite a lack of expression of glutamate-ammonia ligase (GLUL), a higher demand for glucose and an altered rate of fatty acid β-oxidation, accompanied by a decreased pantothenic acid uptake capacity. We experimentally validate our findings by selectively targeting components of this metabolic switch, using approved drugs and starvation approaches followed by cell viability analyses in both the ALL cells and in an acute myeloid leukemia (AML) sensitive/resistant cell line pair. We demonstrate how comparative metabolomics and RNA expression profiling of drug-sensitive and -resistant cells expose targetable metabolic changes and potential resistance markers. Our results show that drug resistance is associated with significant metabolic costs in cancer cells, which could be exploited using new therapeutic strategies.
Collapse
Affiliation(s)
- Claudia Stäubert
- From the Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden, the Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden, the Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Hasanuzzaman Bhuiyan
- Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, 17177 Stockholm, Sweden, and
| | - Anna Lindahl
- Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, 17177 Stockholm, Sweden, and
| | - Oliver Jay Broom
- From the Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden
| | - Yafeng Zhu
- Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, 17177 Stockholm, Sweden, and
| | - Saiful Islam
- the Departments of Medical Biochemistry and Biophysics and
| | | | - Janne Lehtiö
- Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, 17177 Stockholm, Sweden, and
| | - Anders Nordström
- From the Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden, the Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden, Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, 17177 Stockholm, Sweden, and
| |
Collapse
|
5
|
Wu T, Xie G, Ni Y, Liu T, Yang M, Wei H, Jia W, Ji G. Serum metabolite signatures of type 2 diabetes mellitus complications. J Proteome Res 2015; 14:447-456. [PMID: 25245142 DOI: 10.1021/pr500825y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A number of metabolic conditions, including hypoglycemia, high blood pressure (HBP), dyslipidemia, nerve damage and amputation, and vision problems, occur as a result of uncontrolled blood glucose levels over a prolonged period of time. The different components of diabetic complications are not independent but rather interdependent of each other, rendering the disease difficult to diagnose and control. The underlying pathogenesis of those components cannot be easily elucidated because of the heterogeneous, polygenic, and multifactorial nature of the disease. Metabonomics offers a snapshot of distinct biochemical variations that may reflect the unique metabolic phenotype under pathophysiological conditions. Here we report a mass-spectrometry-based metabonomic study designed to identify the distinct metabolic changes associated with several complications of type 2 diabetes mellitus (T2DM). The 292 patients recruited in the study were divided into five groups, including T2DM with HBP, T2DM with nonalcoholic fatty liver disease (NAFLD), T2DM with HBP and NAFLD, T2DM with HBP and coronary heart disease (CHD), and T2DM with HBP, NAFLD, and CHD. Serum differential metabolites were identified in each group of T2DM complication, mainly involving bile acid, fatty acid, amino acid, lipid, carbohydrate, steroids metabolism, and tricarboxylic acids cycle. These broad-spectrum metabolic changes emphasize the complex abnormalities present among these complications with elevated blood glucose levels, providing a novel strategy for stratifying patients with T2DM complications using blood-based metabolite markers.
Collapse
Affiliation(s)
- Tao Wu
- Center of Chinese Medical Therapy and Systems Biology, Shanghai University of Traditional Chinese Medicine , 1200 Cailun Road, Shanghai 201203, China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Recent progress in cryopreservation of bovine oocytes. BIOMED RESEARCH INTERNATIONAL 2014; 2014:570647. [PMID: 24738063 PMCID: PMC3971499 DOI: 10.1155/2014/570647] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 01/20/2014] [Indexed: 12/18/2022]
Abstract
Principle of oocyte cryoinjury is first overviewed and then research history of cryopreservation using bovine oocytes is summarized for the last two decades with a few special references to recent progresses. Various types of cryodevices have been developed to accelerate the cooling rate and applied to the oocytes from large domestic species enriched with cytoplasmic lipid droplets. Two recent approaches include the qualitative improvement of IVM oocytes prior to the vitrification and the short-term recovery culture of vitrified-warmed oocytes prior to the subsequent IVF. Supplementation of L-carnitine to IVM medium of bovine oocytes has been reported to reduce the amount of cytoplasmic lipid droplets and improve the cryotolerance of the oocytes, but it is still controversial whether the positive effect of L-carnitine is reproducible. Incidence of multiple aster formation, a possible cause for low developmental potential of vitrified-warmed bovine oocytes, was inhibited by a short-term culture of the postwarm oocytes in the presence of Rho-associated coiled-coil kinase (ROCK) inhibitor. Use of an antioxidant α-tocopherol, instead of the ROCK inhibitor, also supported the revivability of the postwarm bovine oocytes. Further improvements of the vitrification procedure, combined with pre- and postvitrification chemical treatment, would overcome the high sensitivity of bovine oocytes to cryopreservation.
Collapse
|
7
|
Kerner J, Minkler PE, Lesnefsky EJ, Hoppel CL. Fatty acid chain elongation in palmitate-perfused working rat heart: mitochondrial acetyl-CoA is the source of two-carbon units for chain elongation. J Biol Chem 2014; 289:10223-34. [PMID: 24558043 DOI: 10.1074/jbc.m113.524314] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rat hearts were perfused with [1,2,3,4-(13)C4]palmitic acid (M+4), and the isotopic patterns of myocardial acylcarnitines and acyl-CoAs were analyzed using ultra-HPLC-MS/MS. The 91.2% (13)C enrichment in palmitoylcarnitine shows that little endogenous (M+0) palmitate contributed to its formation. The presence of M+2 myristoylcarnitine (95.7%) and M+2 acetylcarnitine (19.4%) is evidence for β-oxidation of perfused M+4 palmitic acid. Identical enrichment data were obtained in the respective acyl-CoAs. The relative (13)C enrichment in M+4 (84.7%, 69.9%) and M+6 (16.2%, 17.8%) stearoyl- and arachidylcarnitine, respectively, clearly shows that the perfused palmitate is chain-elongated. The observed enrichment of (13)C in acetylcarnitine (19%), M+6 stearoylcarnitine (16.2%), and M+6 arachidylcarnitine (17.8%) suggests that the majority of two-carbon units for chain elongation are derived from β-oxidation of [1,2,3,4-(13)C4]palmitic acid. These data are explained by conversion of the M+2 acetyl-CoA to M+2 malonyl-CoA, which serves as the acceptor for M+4 palmitoyl-CoA in chain elongation. Indeed, the (13)C enrichment in mitochondrial acetyl-CoA (18.9%) and malonyl-CoA (19.9%) are identical. No (13)C enrichment was found in acylcarnitine species with carbon chain lengths between 4 and 12, arguing against the simple reversal of fatty acid β-oxidation. Furthermore, isolated, intact rat heart mitochondria 1) synthesize malonyl-CoA with simultaneous inhibition of carnitine palmitoyltransferase 1b and 2) catalyze the palmitoyl-CoA-dependent incorporation of (14)C from [2-(14)C]malonyl-CoA into lipid-soluble products. In conclusion, rat heart has the capability to chain-elongate fatty acids using mitochondria-derived two-carbon chain extenders. The data suggest that the chain elongation process is localized on the outer surface of the mitochondrial outer membrane.
Collapse
|
8
|
Rosca MG, Lemieux H, Hoppel CL. Mitochondria in the elderly: Is acetylcarnitine a rejuvenator? Adv Drug Deliv Rev 2009; 61:1332-1342. [PMID: 19720100 DOI: 10.1016/j.addr.2009.06.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Accepted: 06/01/2009] [Indexed: 12/21/2022]
Abstract
Endogenous acetylcarnitine is an indicator of acetyl-CoA synthesized by multiple metabolic pathways involving carbohydrates, amino acids, fatty acids, sterols, and ketone bodies, and utilized mainly by the tricarboxylic acid cycle. Acetylcarnitine supplementation has beneficial effects in elderly animals and humans, including restoration of mitochondrial content and function. These effects appear to be dose-dependent and occur even after short-term therapy. In order to set the stage for understanding the mechanism of action of acetylcarnitine, we review the metabolism and role of this compound. We suggest that acetylation of mitochondrial proteins leads to a specific increase in mitochondrial gene expression and mitochondrial protein synthesis. In the aged rat heart, this effect is translated to increased cytochrome b content, restoration of complex III activity, and oxidative phosphorylation, resulting in amelioration of the age-related mitochondrial defect.
Collapse
Affiliation(s)
- Mariana G Rosca
- Center for Mitochondrial Diseases and Departments of Medicine and Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Hélène Lemieux
- Center for Mitochondrial Diseases and Departments of Medicine and Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Charles L Hoppel
- Center for Mitochondrial Diseases and Departments of Medicine and Pharmacology, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|