1
|
D'Urso G, Guyomar C, Chat S, Giudice E, Gillet R. Insights into the ribosomal trans-translation rescue system: lessons from recent structural studies. FEBS J 2023; 290:1461-1472. [PMID: 35015931 DOI: 10.1111/febs.16349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/27/2021] [Accepted: 01/10/2022] [Indexed: 11/29/2022]
Abstract
The arrest of protein synthesis caused when ribosomes stall on an mRNA lacking a stop codon is a deadly risk for all cells. In bacteria, this situation is remedied by the trans-translation quality control system. Trans-translation occurs because of the synergistic action of two main partners, transfer-messenger RNA (tmRNA) and small protein B (SmpB). These act in complex to monitor protein synthesis, intervening when necessary to rescue stalled ribosomes. During this process, incomplete nascent peptides are tagged for destruction, problematic mRNAs are degraded and the previously stalled ribosomes are recycled. In this 'Structural Snapshot' article, we describe the mechanism at the molecular level, a view updated after the most recent structural studies using cryo-electron microscopy.
Collapse
Affiliation(s)
- Gaetano D'Urso
- Institut de Génétique et Développement de Rennes (IGDR), CNRS, Univ. Rennes, France
| | - Charlotte Guyomar
- Institut de Génétique et Développement de Rennes (IGDR), CNRS, Univ. Rennes, France
| | - Sophie Chat
- Institut de Génétique et Développement de Rennes (IGDR), CNRS, Univ. Rennes, France
| | - Emmanuel Giudice
- Institut de Génétique et Développement de Rennes (IGDR), CNRS, Univ. Rennes, France
| | - Reynald Gillet
- Institut de Génétique et Développement de Rennes (IGDR), CNRS, Univ. Rennes, France
| |
Collapse
|
2
|
Structures of tmRNA and SmpB as they transit through the ribosome. Nat Commun 2021; 12:4909. [PMID: 34389707 PMCID: PMC8363625 DOI: 10.1038/s41467-021-24881-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 07/13/2021] [Indexed: 01/01/2023] Open
Abstract
In bacteria, trans-translation is the main rescue system, freeing ribosomes stalled on defective messenger RNAs. This mechanism is driven by small protein B (SmpB) and transfer-messenger RNA (tmRNA), a hybrid RNA known to have both a tRNA-like and an mRNA-like domain. Here we present four cryo-EM structures of the ribosome during trans-translation at resolutions from 3.0 to 3.4 Å. These include the high-resolution structure of the whole pre-accommodated state, as well as structures of the accommodated state, the translocated state, and a translocation intermediate. Together, they shed light on the movements of the tmRNA-SmpB complex in the ribosome, from its delivery by the elongation factor EF-Tu to its passage through the ribosomal A and P sites after the opening of the B1 bridges. Additionally, we describe the interactions between the tmRNA-SmpB complex and the ribosome. These explain why the process does not interfere with canonical translation.
Collapse
|
3
|
Himeno H, Kurita D, Muto A. Mechanism of trans-translation revealed by in vitro studies. Front Microbiol 2014; 5:65. [PMID: 24600445 PMCID: PMC3929946 DOI: 10.3389/fmicb.2014.00065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 02/04/2014] [Indexed: 11/28/2022] Open
Abstract
tmRNA is a bacterial small RNA having a structure resembling the upper half of tRNA and its 3′ end accepts alanine followed by binding to EF-Tu like tRNA. Instead of lacking a lower half of the cloverleaf structure including the anticodon, tmRNA has a short coding sequence for tag-peptide that serves as a target of cellular proteases. An elaborate coordination of two functions as tRNA and mRNA facilitates an irregular translation termed trans-translation: a single polypeptide is synthesized from two mRNA molecules. It allows resumption of translation stalled on a truncated mRNA, producing a chimeric polypeptide comprising the C-terminally truncated polypeptide derived from truncated mRNA and the C-terminal tag-peptide encoded by tmRNA. Trans-translation promotes recycling of the stalled ribosomes in the cell, and the resulting C-terminally tagged polypeptide is preferentially degraded by cellular proteases. Biochemical studies using in vitro trans-translation systems together with structural studies have unveiled the molecular mechanism of trans-translation, during which the upper and lower halves of tRNA are mimicked by the tRNA-like structure of tmRNA and a tmRNA-specific binding protein called SmpB, respectively. They mimic not only the tRNA structure but also its behavior perhaps at every step of the trans-translation process in the ribosome. Furthermore, the C-terminal tail of SmpB, which is unstructured in solution, occupies the mRNA path in the ribosome to play a crucial role in trans-translation, addressing how tmRNA·SmpB recognizes the ribosome stalled on a truncated mRNA.
Collapse
Affiliation(s)
- Hyouta Himeno
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University Hirosaki, Japan ; RNA Research Center, Hirosaki University Hirosaki, Japan
| | - Daisuke Kurita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University Hirosaki, Japan ; RNA Research Center, Hirosaki University Hirosaki, Japan
| | - Akira Muto
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University Hirosaki, Japan
| |
Collapse
|
4
|
Janssen BD, Hayes CS. The tmRNA ribosome-rescue system. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 86:151-91. [PMID: 22243584 DOI: 10.1016/b978-0-12-386497-0.00005-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The bacterial tmRNA quality control system monitors protein synthesis and recycles stalled translation complexes in a process termed "ribosome rescue." During rescue, tmRNA acts first as a transfer RNA to bind stalled ribosomes, then as a messenger RNA to add the ssrA peptide tag to the C-terminus of the nascent polypeptide chain. The ssrA peptide targets tagged peptides for proteolysis, ensuring rapid degradation of potentially deleterious truncated polypeptides. Ribosome rescue also facilitates turnover of the damaged messages responsible for translational arrest. Thus, tmRNA increases the fidelity of gene expression by promoting the synthesis of full-length proteins. In addition to serving as a global quality control system, tmRNA also plays important roles in bacterial development, pathogenesis, and environmental stress responses. This review focuses on the mechanism of tmRNA-mediated ribosome rescue and the role of tmRNA in bacterial physiology.
Collapse
Affiliation(s)
- Brian D Janssen
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | | |
Collapse
|
5
|
Steger J, Micura R. Functionalized polystyrene supports for solid-phase synthesis of glycyl-, alanyl-, and isoleucyl-RNA conjugates as hydrolysis-resistant mimics of peptidyl-tRNAs. Bioorg Med Chem 2011; 19:5167-74. [PMID: 21807524 PMCID: PMC3162138 DOI: 10.1016/j.bmc.2011.07.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/08/2011] [Accepted: 07/10/2011] [Indexed: 12/20/2022]
Abstract
RNA-peptide conjugates that mimic amino acid-charged tRNAs and peptidyl-tRNAs are of high importance for structural and functional investigations of ribosomal complexes. Here, we present the synthesis of glycyl-, alanyl-, and isoleucyladenosine modified solid supports that are eligible for the synthesis of stable 3′-aminoacyl- and 3′-peptidyl-tRNA termini with an amide instead of the natural ester linkage. The present work significantly expands the range of accessible peptidyl-tRNA mimics for ribosomal studies.
Collapse
Affiliation(s)
- Jessica Steger
- Institute of Organic Chemistry and Center for Molecular Biosciences CMBI, University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
6
|
Keiler KC, Ramadoss NS. Bifunctional transfer-messenger RNA. Biochimie 2011; 93:1993-7. [PMID: 21664408 DOI: 10.1016/j.biochi.2011.05.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 05/25/2011] [Indexed: 01/14/2023]
Abstract
Transfer-messenger RNA (tmRNA) is a bifunctional RNA that has properties of a tRNA and an mRNA. tmRNA uses these two functions to release ribosomes stalled during translation and target the nascent polypeptides for degradation. This concerted reaction, known as trans-translation, contributes to translational quality control and regulation of gene expression in bacteria. tmRNA is conserved throughout bacteria, and is one of the most abundant RNAs in the cell, suggesting that trans-translation is of fundamental importance for bacterial fitness. Mutants lacking tmRNA activity typically have severe phenotypes, including defects in viability, virulence, and responses to environmental stresses.
Collapse
Affiliation(s)
- Kenneth C Keiler
- Pennsylvania State University, Department of Biochemistry & Molecular Biology, 401 Althouse Lab, University Park, PA 16802, USA.
| | | |
Collapse
|
7
|
Kurita D, Muto A, Himeno H. tRNA/mRNA Mimicry by tmRNA and SmpB in Trans-Translation. J Nucleic Acids 2011; 2011:130581. [PMID: 21253384 PMCID: PMC3022190 DOI: 10.4061/2011/130581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 12/15/2010] [Indexed: 11/20/2022] Open
Abstract
Since accurate translation from mRNA to protein is critical to survival, cells have developed translational quality control systems. Bacterial ribosomes stalled on truncated mRNA are rescued by a system involving tmRNA and SmpB referred to as trans-translation. Here, we review current understanding of the mechanism of trans-translation. Based on results obtained by using directed hydroxyl radical probing, we propose a new type of molecular mimicry during trans-translation. Besides such chemical approaches, biochemical and cryo-EM studies have revealed the structural and functional aspects of multiple stages of trans-translation. These intensive works provide a basis for studying the dynamics of tmRNA/SmpB in the ribosome.
Collapse
Affiliation(s)
- Daisuke Kurita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | | | | |
Collapse
|
8
|
Weis F, Bron P, Giudice E, Rolland JP, Thomas D, Felden B, Gillet R. tmRNA-SmpB: a journey to the centre of the bacterial ribosome. EMBO J 2010; 29:3810-8. [PMID: 20953161 DOI: 10.1038/emboj.2010.252] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 09/21/2010] [Indexed: 11/09/2022] Open
Abstract
Ribosomes mediate protein synthesis by decoding the information carried by messenger RNAs (mRNAs) and catalysing peptide bond formation between amino acids. When bacterial ribosomes stall on incomplete messages, the trans-translation quality control mechanism is activated by the transfer-messenger RNA bound to small protein B (tmRNA-SmpB ribonucleoprotein complex). Trans-translation liberates the stalled ribosomes and triggers degradation of the incomplete proteins. Here, we present the cryo-electron microscopy structures of tmRNA-SmpB accommodated or translocated into stalled ribosomes. Two atomic models for each state are proposed. This study reveals how tmRNA-SmpB crosses the ribosome and how, as the problematic mRNA is ejected, the tmRNA resume codon is placed onto the ribosomal decoding site by new contacts between SmpB and the nucleotides upstream of the tag-encoding sequence. This provides a structural basis for the transit of the large tmRNA-SmpB complex through the ribosome and for the means by which the tmRNA internal frame is set for translation to resume.
Collapse
Affiliation(s)
- Félix Weis
- Université de Rennes, UMR CNRS Equipe Structure et Dynamique des Macromolécules, Rennes, France
| | | | | | | | | | | | | |
Collapse
|
9
|
Visualizing the transfer-messenger RNA as the ribosome resumes translation. EMBO J 2010; 29:3819-25. [PMID: 20940705 PMCID: PMC2989109 DOI: 10.1038/emboj.2010.255] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 09/22/2010] [Indexed: 11/08/2022] Open
Abstract
Bacterial ribosomes stalled by truncated mRNAs are rescued by transfer-messenger RNA (tmRNA), a dual-function molecule that contains a tRNA-like domain (TLD) and an internal open reading frame (ORF). Occupying the empty A site with its TLD, the tmRNA enters the ribosome with the help of elongation factor Tu and a protein factor called small protein B (SmpB), and switches the translation to its own ORF. In this study, using cryo-electron microscopy, we obtained the first structure of an in vivo-formed complex containing ribosome and the tmRNA at the point where the TLD is accommodated into the ribosomal P site. We show that tmRNA maintains a stable 'arc and fork' structure on the ribosome when its TLD moves to the ribosomal P site and translation resumes on its ORF. Based on the density map, we built an atomic model, which suggests that SmpB interacts with the five nucleotides immediately upstream of the resume codon, thereby determining the correct selection of the reading frame on the ORF of tmRNA.
Collapse
|
10
|
Shpanchenko OV, Bugaeva EY, Golovin AV, Dontsova OA. Trans-translation: Findings and hypotheses. Mol Biol 2010. [DOI: 10.1134/s0026893310040011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Weis F, Bron P, Rolland JP, Thomas D, Felden B, Gillet R. Accommodation of tmRNA-SmpB into stalled ribosomes: a cryo-EM study. RNA (NEW YORK, N.Y.) 2010; 16:299-306. [PMID: 20038631 PMCID: PMC2811659 DOI: 10.1261/rna.1757410] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 10/27/2009] [Indexed: 05/28/2023]
Abstract
In eubacteria, translation of defective messenger RNAs (mRNAs) produces truncated polypeptides that stall on the ribosome. A quality control mechanism referred to as trans-translation is performed by transfer-messenger RNA (tmRNA), a specialized RNA acting as both a tRNA and an mRNA, associated with small protein B (SmpB). So far, a clear view of the structural movements of both the protein and RNA necessary to perform accommodation is still lacking. By using a construct containing the tRNA-like domain as well as the extended helix H2 of tmRNA, we present a cryo-electron microscopy study of the process of accommodation. The structure suggests how tmRNA and SmpB move into the ribosome decoding site after the release of EF-Tu.GDP. While two SmpB molecules are bound per ribosome in a preaccommodated state, our results show that during accommodation the SmpB protein interacting with the small subunit decoding site stays in place while the one interacting with the large subunit moves away. Relative to canonical translation, an additional movement is observed due to the rotation of H2. This suggests that the larger movement required to resume translation on a tmRNA internal open reading frame starts during accommodation.
Collapse
Affiliation(s)
- Felix Weis
- Universite de Rennes 1, INSERM U835, Laboratoire de Biochimie Pharmaceutique, 35043 Rennes Cedex, France
| | | | | | | | | | | |
Collapse
|
12
|
Shpanchenko OV, Golovin AV, Bugaeva EY, Isaksson LA, Dontsova OA. Structural aspects oftrans-translation. IUBMB Life 2010; 62:120-4. [DOI: 10.1002/iub.296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Bugaeva EY, Surkov S, Golovin AV, Ofverstedt LG, Skoglund U, Isaksson LA, Bogdanov AA, Shpanchenko OV, Dontsova OA. Structural features of the tmRNA-ribosome interaction. RNA (NEW YORK, N.Y.) 2009; 15:2312-2320. [PMID: 19861420 PMCID: PMC2779675 DOI: 10.1261/rna.1584209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 09/08/2009] [Indexed: 05/28/2023]
Abstract
Trans-translation is a process which switches the synthesis of a polypeptide chain encoded by a nonstop messenger RNA to the mRNA-like domain of a transfer-messenger RNA (tmRNA). It is used in bacterial cells for rescuing the ribosomes arrested during translation of damaged mRNA and directing this mRNA and the product polypeptide for degradation. The molecular basis of this process is not well understood. Earlier, we developed an approach that allowed isolation of tmRNA-ribosomal complexes arrested at a desired step of tmRNA passage through the ribosome. We have here exploited it to examine the tmRNA structure using chemical probing and cryo-electron microscopy tomography. Computer modeling has been used to develop a model for spatial organization of the tmRNA inside the ribosome at different stages of trans-translation.
Collapse
MESH Headings
- Base Sequence
- Cryoelectron Microscopy
- Escherichia coli/chemistry
- Escherichia coli/metabolism
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Biosynthesis
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Bacterial/ultrastructure
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- RNA, Messenger/ultrastructure
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- RNA, Transfer/ultrastructure
- Ribosomes/chemistry
- Ribosomes/metabolism
- Ribosomes/ultrastructure
Collapse
Affiliation(s)
- Elizaveta Y Bugaeva
- Belozersky Institute, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Watts T, Cazier D, Healey D, Buskirk A. SmpB contributes to reading frame selection in the translation of transfer-messenger RNA. J Mol Biol 2009; 391:275-81. [PMID: 19540849 DOI: 10.1016/j.jmb.2009.06.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 06/09/2009] [Accepted: 06/16/2009] [Indexed: 11/26/2022]
Abstract
Transfer-messenger RNA (tmRNA) acts first as a tRNA and then as an mRNA template to rescue stalled ribosomes in eubacteria. Together with its protein partner, SmpB (small protein B), tmRNA enters stalled ribosomes and transfers an Ala residue to the growing polypeptide chain. A remarkable step then occurs: the ribosome leaves the stalled mRNA and resumes translation using tmRNA as a template, adding a short peptide tag that destines the aborted protein for destruction. Exactly how the ribosome switches templates, resuming translation on tmRNA in the proper reading frame, remains unknown. Within the tmRNA sequence itself, five nucleotides (U85AGUC) immediately upstream of the first codon appear to direct frame selection. In particular, mutation of the conserved A86 results in severe loss of function both in vitro and in vivo. The A86C mutation causes translation to resume exclusively in the +1 frame. Several candidate binding partners for this upstream sequence have been identified in vitro. Using a genetic selection for tmRNA activity in Escherichia coli, we identified mutations in the SmpB protein that restore the function of A86C tmRNA in vivo. The SmpB mutants increase tagging in the normal reading frame and reduce tagging in the +1 frame. These results demonstrate that SmpB is functionally linked with the sequence upstream of the tmRNA template; both contribute to reading frame selection on tmRNA.
Collapse
Affiliation(s)
- Talina Watts
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | | | | | | |
Collapse
|