1
|
Jiang X, Lu Y, Xie S, Chen Y, Liu X, Li S, Song S, Wang L, Lu D. miR-624 accelerates the growth of liver cancer cells by inhibiting EMC3. Noncoding RNA Res 2023; 8:641-644. [PMID: 37810370 PMCID: PMC10550760 DOI: 10.1016/j.ncrna.2023.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023] Open
Abstract
miRNA is a noncoding RNA found in recent years and more than one third of human genes are the target of miRNAs. miR-624, located on human chromosome 14, is associated with tumorigenesis. However, the role of miR-624 in human hepatocarcinogenesis is still unclear. Herein, our results indicate that miR-624 accelerates the growth of liver cancer cells in vivo and in vitro. Moreover, the modification distribution of H3K9me1 on chromosomes is different between rLV group and rLV-miR-624 group. miR-624 affects epigenetic regulation of several genes in human liver cancer cells, such as RAB21, SMARCD3, MAPK6,PRRX1, ZFHX3, EMC3 (TMEM111). Furthermore, miR-624 affects transcriptome of some genes in liver cancer, including RAB21, UBE2N, PPP1CC,KPNA3, RAB7A,CPEB2,KLF4, MARK2, JUN, ARF6, TMEM39A. On the other hand, miR-624 affects proteome of several genes in liver cancer, such as, RBM5,PTK2, KDM2A,POLR2H, POLR2G,CDK6,KIF15,CUL2,FKBP2,ErbB-3,JUN, PKM2, CyclinE,PLK1, mTOR, PPARγ, Rab7A,ARAF, UPF3B ,PTEN, SUZ12, GADD45, H3.3, CUL5, ARF6,EMC3,ATG4B,ATG14,CALR. Interestingly, miR-624 affects the RAB7A interaction network in liver cancer cells, involving in CLTC,ITGB1,HNRNPU, DARS1, RPS16, CTPS1,H3-3B,JUN,MYH10, CUL5, CPSF7. Strikingly, excessive MEC3 abrogates the carcinogenic functions of miR-624. Importantly, our findings indicate that miR-624 affects some signaling pathway in liver cancer, including Wnt signaling pathway,Hippo signaling pathway,mTOR signaling pathway, Ras signaling pathway,MAPK signaling pathway,PI3K-Akt signaling pathway, erbB signaling pathway. These results provide a basis for the treatment of human liver cancer.
Collapse
Affiliation(s)
- Xiaoxue Jiang
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Yi Lu
- Departments of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Sijie Xie
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Yingji Chen
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Xinlei Liu
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Shujie Li
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Shuting Song
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Liyan Wang
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Dongdong Lu
- Shanghai Putuo People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| |
Collapse
|
2
|
Sharma S, Sourirajan A, Baumler DJ, Dev K. Saccharomyces cerevisiae ER membrane protein complex subunit 4 (EMC4) plays a crucial role in eIF2B-mediated translation regulation and survival under stress conditions. J Genet Eng Biotechnol 2020; 18:15. [PMID: 32476094 PMCID: PMC7261713 DOI: 10.1186/s43141-020-00029-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/22/2020] [Indexed: 11/10/2022]
Abstract
Background Eukaryotic initiation factor 2B (eIF2B) initiates and regulates translation initiation in eukaryotes. eIF2B gene mutations cause leukoencephalopathy called vanishing white matter disease (VWM) in humans and slow growth (Slg−) and general control derepression (Gcd−) phenotypes in Saccharomyces cerevisiae. Results To suppress eIF2B mutations, S. cerevisiae genomic DNA library was constructed in high-copy vector (YEp24) and transformed into eIF2B mutant S. cerevisiae strains. The library was screened for wild-type genes rescuing S. cerevisiae (Slg−) and (Gcd−) phenotypes. A genomic clone, Suppressor-I (Sup-I), rescued S. cerevisiae Slg− and Gcd− phenotypes (gcd7-201 gcn2∆). The YEp24/Sup-I construct contained truncated TAN1, full length EMC4, full length YGL230C, and truncated SAP4 genes. Full length EMC4 (chaperone protein) gene was sub-cloned into pEG (KG) yeast expression vector and overexpressed in gcd7-201 gcn2∆ strain which suppressed the Slg− and Gcd− phenotype. A GST-Emc4 fusion protein of 47 kDa was detected by western blotting using α-GST antibodies. Suppression was specific to gcd7-201 gcn2∆ mutation in eIF2Bβ and Gcd1-502 gcn2∆ in eIF2Bγ subunit. Emc4p overexpression also protected the wild type and mutant (gcd7-201 gcn2∆, GCD7 gcn2∆, and GCD7 GCN2∆) strains from H2O2, ethanol, and caffeine stress. Conclusions Our results suggest that Emc4p is involved in eIF2B-mediated translational regulation under stress and could provide an amenable tool to understand the eIF2B-mediated defects.
Collapse
|
3
|
Volkmar N, Christianson JC. Squaring the EMC - how promoting membrane protein biogenesis impacts cellular functions and organismal homeostasis. J Cell Sci 2020; 133:133/8/jcs243519. [PMID: 32332093 PMCID: PMC7188443 DOI: 10.1242/jcs.243519] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Integral membrane proteins play key functional roles at organelles and the plasma membrane, necessitating their efficient and accurate biogenesis to ensure appropriate targeting and activity. The endoplasmic reticulum membrane protein complex (EMC) has recently emerged as an important eukaryotic complex for biogenesis of integral membrane proteins by promoting insertion and stability of atypical and sub-optimal transmembrane domains (TMDs). Although confirmed as a bona fide complex almost a decade ago, light is just now being shed on the mechanism and selectivity underlying the cellular responsibilities of the EMC. In this Review, we revisit the myriad of functions attributed the EMC through the lens of these new mechanistic insights, to address questions of the cellular and organismal roles the EMC has evolved to undertake. Summary: The EMC is an important factor facilitating membrane protein biogenesis. Here we discuss the broad cellular and organismal responsibilities overseen by client proteins requiring the EMC for maturation.
Collapse
Affiliation(s)
- Norbert Volkmar
- Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - John C Christianson
- Oxford Centre for Translational Myeloma Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Botnar Research Centre, Headington, Oxford OX3 7LD, UK
| |
Collapse
|
4
|
Mandal AK, Mount DB. Interaction Between ITM2B and GLUT9 Links Urate Transport to Neurodegenerative Disorders. Front Physiol 2019; 10:1323. [PMID: 31695625 PMCID: PMC6818471 DOI: 10.3389/fphys.2019.01323] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/03/2019] [Indexed: 11/13/2022] Open
Abstract
Hyperuricemia plays a critical causative role in gout. In contrast, hyperuricemia has a protective effect in neurodegenerative disorders, including Alzheimer's Disease. Genetic variation in the SLC2A9 gene, encoding the urate transporter GLUT9, exerts the largest single-gene effect on serum uric acid (SUA). We report here the identification of two GLUT9-interacting proteins, integral membrane protein 2B (ITM2B) and transmembrane protein 85 (TMEM85), isolated from a human kidney cDNA library using the dual-membrane yeast two-hybrid system. ITM2B is a ubiquitously expressed, N-glycosylated transmembrane regulatory protein, involved in familial dementias and retinal dystrophy; the function of TMEM85 is less defined. Using coimmunoprecipitation, we confirmed the physical interaction between ITM2B or TMEM85 and N-terminal GLUT9 isoforms (GLUT9a and GLUT9b) in transfected HEK 293T cells and Xenopus oocytes, wherein ITM2B but not TMEM85 inhibited GLUT9-mediated urate uptake. Additionally, co-expression of ITM2B with GLUT9 in oocytes inhibited N-glycosylation of GLUT9a more than GLUT9b and stimulated urate efflux by both isoforms. However, urate uptake by N-glycosylation and N-terminal deletion GLUT9 mutants was efficiently inhibited by ITM2B, indicating that neither N-glycosylation nor the N terminus is necessary for functional interaction of GLUT9 with ITM2B. Notably, ITM2B variants linked to familial Danish dementia and retinal dystrophy significantly attenuated the inhibition of GLUT9-mediated urate influx. We propose ITM2B as a potential regulatory link between urate homeostasis and neurodegenerative disorders.
Collapse
Affiliation(s)
- Asim K. Mandal
- Renal Divisions, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - David B. Mount
- Renal Divisions, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- VA Boston Healthcare System, Boston, MA, United States
| |
Collapse
|
5
|
Chitwood PJ, Hegde RS. The Role of EMC during Membrane Protein Biogenesis. Trends Cell Biol 2019; 29:371-384. [PMID: 30826214 DOI: 10.1016/j.tcb.2019.01.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 12/11/2022]
Abstract
Ten years ago, high-throughput genetic interaction analyses revealed an abundant and widely conserved protein complex residing in the endoplasmic reticulum (ER) membrane. Dubbed the ER membrane protein complex (EMC), its disruption has since been found to affect wide-ranging processes, including protein trafficking, organelle communication, ER stress, viral maturation, lipid homeostasis, and others. However, its molecular function has remained enigmatic. Recent studies suggest a role for EMC during membrane protein biogenesis. Biochemical reconstitution experiments show that EMC can directly mediate the insertion of transmembrane domains (TMDs) into the lipid bilayer. Given the large proportion of genes encoding membrane proteins, a central role for EMC as a TMD insertion factor can explain its high abundance, wide conservation, and pleiotropic phenotypes.
Collapse
Affiliation(s)
- Patrick J Chitwood
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB20QH, UK
| | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB20QH, UK.
| |
Collapse
|
6
|
Sharma S, Sourirajan A, Dev K. Role of Saccharomyces cerevisiae TAN1 (tRNA acetyltransferase) in eukaryotic initiation factor 2B (eIF2B)-mediated translation control and stress response. 3 Biotech 2017; 7:223. [PMID: 28677085 DOI: 10.1007/s13205-017-0857-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/17/2017] [Indexed: 10/19/2022] Open
Abstract
Eukaryotic initiation factor 2B (eIF2B) controls the first step of translation by catalyzing guanine nucleotide exchange on eukaryotic initiation factor 2 (eIF2). Mutations in the genes encoding eIF2B subunits inhibit the nucleotide exchange and eventually slow down the process of translation, causing vanishing white matter disease. We constructed a Saccharomyces cerevisiae genomic DNA library in YEp24 vector and screened it for the identification of extragenic suppressors of eIF2B mutations, corresponding to human eIF2B mutations. We found a suppressor-II (Sup-II) genomic clone, as suppressor of eIF2Bβ (gcd7-201) mutation. Identification of Sup-II reveals the presence of truncated SEC15, full-length TAN1 (tRNA acetyltransferase), full-length EMC4, full-length YGL230C (putative protein) and truncated SAP4 genes. Full-length TAN1 (tRNA acetyltransferase) gene, subcloned into pEG(KG) vector and overexpressed in gcd7-201 gcn2∆ strain, suppresses the slow-growth (Slg-) and general control derepression (Gcd-) phenotype of gcd7-201 gcn2∆ mutation, but YGL230C did not show any effect. A GST-Tan1p fusion protein of 60 kDa was detected by western blotting using α-GST antibodies. Interestingly, Tan1p overexpression also suppresses the temperature-sensitive (Ts-), Slg- and Gcd- phenotype of eIF2Bγ (gcd1-502) mutant. Role of Tan1p protein in eIF2B-mediated translation regulation was also studied. Results revealed that Tan1p overexpression confers resistance to GCD7 GCN2, gcd7-201 gcn2∆, GCD7 gcn2∆ growth defect under ethanol, H2O2 and caffeine stress. No resistance to DMSO-, NaCl- and DTT-mediated growth defect upon GCD7 gcn2∆, GCD7 GCN2, gcd7-201 gcn2∆ was observed by overexpression of TAN1. Hence, we proposed that Tan1p is involved directly or indirectly in regulating eIF2B-mediated translation.
Collapse
Affiliation(s)
- Sonum Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Anuradha Sourirajan
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Kamal Dev
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, India.
| |
Collapse
|
7
|
Yachdav G, Kloppmann E, Kajan L, Hecht M, Goldberg T, Hamp T, Hönigschmid P, Schafferhans A, Roos M, Bernhofer M, Richter L, Ashkenazy H, Punta M, Schlessinger A, Bromberg Y, Schneider R, Vriend G, Sander C, Ben-Tal N, Rost B. PredictProtein--an open resource for online prediction of protein structural and functional features. Nucleic Acids Res 2014; 42:W337-43. [PMID: 24799431 PMCID: PMC4086098 DOI: 10.1093/nar/gku366] [Citation(s) in RCA: 443] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
PredictProtein is a meta-service for sequence analysis that has been predicting
structural and functional features of proteins since 1992. Queried with a
protein sequence it returns: multiple sequence alignments, predicted aspects of
structure (secondary structure, solvent accessibility, transmembrane helices
(TMSEG) and strands, coiled-coil regions, disulfide bonds and disordered
regions) and function. The service incorporates analysis methods for the
identification of functional regions (ConSurf), homology-based inference of Gene
Ontology terms (metastudent), comprehensive subcellular localization prediction
(LocTree3), protein–protein binding sites (ISIS2),
protein–polynucleotide binding sites (SomeNA) and predictions of the
effect of point mutations (non-synonymous SNPs) on protein function (SNAP2). Our
goal has always been to develop a system optimized to meet the demands of
experimentalists not highly experienced in bioinformatics. To this end, the
PredictProtein results are presented as both text and a series of intuitive,
interactive and visually appealing figures. The web server and sources are
available at http://ppopen.rostlab.org.
Collapse
Affiliation(s)
- Guy Yachdav
- Department of Informatics, Bioinformatics & Computational Biology i12, TUM (Technische Universität München), Garching/Munich 85748, Germany Biosof LLC, New York, NY 10001, USA TUM Graduate School, Center of Doctoral Studies in Informatics and its Applications (CeDoSIA), TUM (Technische Universität München), Garching/Munich 85748, Germany
| | - Edda Kloppmann
- Department of Informatics, Bioinformatics & Computational Biology i12, TUM (Technische Universität München), Garching/Munich 85748, Germany New York Consortium on Membrane Protein Structure (NYCOMPS), Columbia University, New York, NY 10032, USA
| | - Laszlo Kajan
- Department of Informatics, Bioinformatics & Computational Biology i12, TUM (Technische Universität München), Garching/Munich 85748, Germany
| | - Maximilian Hecht
- Department of Informatics, Bioinformatics & Computational Biology i12, TUM (Technische Universität München), Garching/Munich 85748, Germany TUM Graduate School, Center of Doctoral Studies in Informatics and its Applications (CeDoSIA), TUM (Technische Universität München), Garching/Munich 85748, Germany
| | - Tatyana Goldberg
- Department of Informatics, Bioinformatics & Computational Biology i12, TUM (Technische Universität München), Garching/Munich 85748, Germany TUM Graduate School, Center of Doctoral Studies in Informatics and its Applications (CeDoSIA), TUM (Technische Universität München), Garching/Munich 85748, Germany
| | - Tobias Hamp
- Department of Informatics, Bioinformatics & Computational Biology i12, TUM (Technische Universität München), Garching/Munich 85748, Germany
| | - Peter Hönigschmid
- Department of Genome Oriented Bioinformatics, Technische Universität München, Wissenschaftszentrum Weihenstephan, Freising 85354, Germany
| | - Andrea Schafferhans
- Department of Informatics, Bioinformatics & Computational Biology i12, TUM (Technische Universität München), Garching/Munich 85748, Germany
| | - Manfred Roos
- Department of Informatics, Bioinformatics & Computational Biology i12, TUM (Technische Universität München), Garching/Munich 85748, Germany
| | - Michael Bernhofer
- Department of Informatics, Bioinformatics & Computational Biology i12, TUM (Technische Universität München), Garching/Munich 85748, Germany
| | - Lothar Richter
- Department of Informatics, Bioinformatics & Computational Biology i12, TUM (Technische Universität München), Garching/Munich 85748, Germany
| | - Haim Ashkenazy
- The Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Marco Punta
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK Institute for Food and Plant Sciences WZW-Weihenstephan, Alte Akademie 8, Freising 85350, Germany
| | - Avner Schlessinger
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Yana Bromberg
- Biosof LLC, New York, NY 10001, USA Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Reinhard Schneider
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Gerrit Vriend
- Luxembourg University & Luxembourg Centre for Systems Biomedicine, 4362 Belval, Luxembourg
| | - Chris Sander
- CMBI, NCMLS, Radboudumc Nijmegen Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Nir Ben-Tal
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, 10065 NY, USA
| | - Burkhard Rost
- Department of Informatics, Bioinformatics & Computational Biology i12, TUM (Technische Universität München), Garching/Munich 85748, Germany Biosof LLC, New York, NY 10001, USA New York Consortium on Membrane Protein Structure (NYCOMPS), Columbia University, New York, NY 10032, USA The Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel Department of Biochemistry and Molecular Biophysics & New York Consortium on Membrane Protein Structure (NYCOMPS), Columbia University, New York, NY 10032, USA Institute for Advanced Study (TUM-IAS), Garching/Munich 85748, Germany
| |
Collapse
|
8
|
The human septin7 and the yeast CDC10 septin prevent Bax and copper mediated cell death in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3186-3194. [DOI: 10.1016/j.bbamcr.2013.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/08/2013] [Accepted: 09/10/2013] [Indexed: 01/18/2023]
|
9
|
Integrated genomic, transcriptomic, and RNA-interference analysis of genes in somatic copy number gains in pancreatic ductal adenocarcinoma. Pancreas 2013; 42:1016-26. [PMID: 23851435 DOI: 10.1097/mpa.0b013e318287d043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES This study used an integrated analysis of copy number, gene expression, and RNA interference screens for identification of putative driver genes harbored in somatic copy number gains in pancreatic ductal adenocarcinoma (PDAC). METHODS Somatic copy number gain data on 60 PDAC genomes were extracted from public data sets to identify genomic loci that are recurrently gained. Array-based data from a panel of 29 human PDAC cell lines were used to quantify associations between copy number and gene expression for the set of genes found in somatic copy number gains. The most highly correlated genes were assessed in a compendium of pooled short hairpin RNA screens on 27 of the same human PDAC cell lines. RESULTS A catalog of 710 protein-coding and 46 RNA genes mapping to 20 recurrently gained genomic loci were identified. The gene set was further refined through stringent integration of copy number, gene expression, and RNA interference screening data to uncover 34 candidate driver genes. CONCLUSIONS Among the candidate genes from the integrative analysis, ECT2 was found to have significantly higher essentiality in specific PDAC cell lines with genomic gains at the 3q26.3 locus, which harbors this gene, suggesting that ECT2 may play an oncogenic role in the PDAC neoplastic process.
Collapse
|
10
|
Kazemzadeh L, Cvijovic M, Petranovic D. Boolean model of yeast apoptosis as a tool to study yeast and human apoptotic regulations. Front Physiol 2012; 3:446. [PMID: 23233838 PMCID: PMC3518040 DOI: 10.3389/fphys.2012.00446] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 11/07/2012] [Indexed: 01/14/2023] Open
Abstract
Programmed cell death (PCD) is an essential cellular mechanism that is evolutionary conserved, mediated through various pathways and acts by integrating different stimuli. Many diseases such as neurodegenerative diseases and cancers are found to be caused by, or associated with, regulations in the cell death pathways. Yeast Saccharomyces cerevisiae, is a unicellular eukaryotic organism that shares with human cells components and pathways of the PCD and is therefore used as a model organism. Boolean modeling is becoming promising approach to capture qualitative behavior and describe essential properties of such complex networks. Here we present large literature-based and to our knowledge first Boolean model that combines pathways leading to apoptosis (a type of PCD) in yeast. Analysis of the yeast model confirmed experimental findings of anti-apoptotic role of Bir1p and pro-apoptotic role of Stm1p and revealed activation of the stress protein kinase Hog proposing the maximal level of activation upon heat stress. In addition we extended the yeast model and created an in silico humanized yeast in which human pro- and anti-apoptotic regulators Bcl-2 family and Valosin-contain protein (VCP) are included in the model. We showed that accumulation of Bax in silico humanized yeast shows apoptotic markers and that VCP is essential target of Akt Signaling. The presented Boolean model provides comprehensive description of yeast apoptosis network behavior. Extended model of humanized yeast gives new insights of how complex human disease like neurodegeneration can initially be tested.
Collapse
Affiliation(s)
- Laleh Kazemzadeh
- Department of Chemical and Biological Engineering, Chalmers University of Technology Gothenburg, Sweden ; Digital Enterprise Research Institute, National University of Ireland Galway, Ireland
| | | | | |
Collapse
|
11
|
Clapp C, Portt L, Khoury C, Sheibani S, Eid R, Greenwood M, Vali H, Mandato CA, Greenwood MT. Untangling the Roles of Anti-Apoptosis in Regulating Programmed Cell Death using Humanized Yeast Cells. Front Oncol 2012; 2:59. [PMID: 22708116 PMCID: PMC3374133 DOI: 10.3389/fonc.2012.00059] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 05/24/2012] [Indexed: 11/13/2022] Open
Abstract
Genetically programmed cell death (PCD) mechanisms, including apoptosis, are important for the survival of metazoans since it allows, among things, the removal of damaged cells that interfere with normal function. Cell death due to PCD is observed in normal processes such as aging and in a number of pathophysiologies including hypoxia (common causes of heart attacks and strokes) and subsequent tissue reperfusion. Conversely, the loss of normal apoptotic responses is associated with the development of tumors. So far, limited success in preventing unwanted PCD has been reported with current therapeutic approaches despite the fact that inhibitors of key apoptotic inducers such as caspases have been developed. Alternative approaches have focused on mimicking anti-apoptotic processes observed in cells displaying increased resistance to apoptotic stimuli. Hormesis and pre-conditioning are commonly observed cellular strategies where sub-lethal levels of pro-apoptotic stimuli lead to increased resistance to higher or lethal levels of stress. Increased expression of anti-apoptotic sequences is a common mechanism mediating these protective effects. The relevance of the latter observation is exemplified by the observation that transgenic mice overexpressing anti-apoptotic genes show significant reductions in tissue damage following ischemia. Thus strategies aimed at increasing the levels of anti-apoptotic proteins, using gene therapy or cell penetrating recombinant proteins are being evaluated as novel therapeutics to decrease cell death following acute periods of cell death inducing stress. In spite of its functional and therapeutic importance, more is known regarding the processes involved in apoptosis than anti-apoptosis. The genetically tractable yeast Saccharomyces cerevisiae has emerged as an exceptional model to study multiple aspects of PCD including the mitochondrial mediated apoptosis observed in metazoans. To increase our knowledge of the process of anti-apoptosis, we screened a human heart cDNA expression library in yeast cells undergoing PCD due to the conditional expression of a mammalian pro-apoptotic Bax cDNA. Analysis of the multiple Bax suppressors identified revealed several previously known as well as a large number of clones representing potential novel anti-apoptotic sequences. The focus of this review is to report on recent achievements in the use of humanized yeast in genetic screens to identify novel stress-induced PCD suppressors, supporting the use of yeast as a unicellular model organism to elucidate anti-apoptotic and cell survival mechanisms.
Collapse
Affiliation(s)
- Caitlin Clapp
- Department of Chemistry and Chemical Engineering, Royal Military College Kingston, ON, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Williams D, Norman G, Khoury C, Metcalfe N, Briard J, Laporte A, Sheibani S, Portt L, Mandato CA, Greenwood MT. Evidence for a second messenger function of dUTP during Bax mediated apoptosis of yeast and mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:315-21. [PMID: 21145358 DOI: 10.1016/j.bbamcr.2010.11.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 11/02/2010] [Accepted: 11/29/2010] [Indexed: 01/26/2023]
Abstract
The identification of novel anti-apoptotic sequences has lead to new insights into the mechanisms involved in regulating different forms of programmed cell death. For example, the anti-apoptotic function of free radical scavenging proteins supports the pro-apoptotic function of Reactive Oxygen Species (ROS). Using yeast as a model of eukaryotic mitochondrial apoptosis, we show that a cDNA corresponding to the mitochondrial variant of the human DUT gene (DUT-M) encoding the deoxyuridine triphosphatase (dUTPase) enzyme can prevent apoptosis in yeast in response to internal (Bax expression) and to exogenous (H(2)O(2) and cadmium) stresses. Of interest, cell death was not prevented under culture conditions modeling chronological aging, suggesting that DUT-M only protects dividing cells. The anti-apoptotic function of DUT-M was confirmed by demonstrating that an increase in dUTPase protein levels is sufficient to confer increased resistance to H(2)O(2) in cultured C2C12 mouse skeletal myoblasts. Given that the function of dUTPase is to decrease the levels of dUTP, our results strongly support an emerging role for dUTP as a pro-apoptotic second messenger in the same vein as ROS and ceramide.
Collapse
Affiliation(s)
- Drew Williams
- Department of Anatomy and Cell Biology, McGill University. Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Portt L, Norman G, Clapp C, Greenwood M, Greenwood MT. Anti-apoptosis and cell survival: a review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:238-59. [PMID: 20969895 DOI: 10.1016/j.bbamcr.2010.10.010] [Citation(s) in RCA: 447] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 10/04/2010] [Accepted: 10/11/2010] [Indexed: 02/08/2023]
Abstract
Type I programmed cell death (PCD) or apoptosis is critical for cellular self-destruction for a variety of processes such as development or the prevention of oncogenic transformation. Alternative forms, including type II (autophagy) and type III (necrotic) represent the other major types of PCD that also serve to trigger cell death. PCD must be tightly controlled since disregulated cell death is involved in the development of a large number of different pathologies. To counter the multitude of processes that are capable of triggering death, cells have devised a large number of cellular processes that serve to prevent inappropriate or premature PCD. These cell survival strategies involve a myriad of coordinated and systematic physiological and genetic changes that serve to ward off death. Here we will discuss the different strategies that are used to prevent cell death and focus on illustrating that although anti-apoptosis and cellular survival serve to counteract PCD, they are nevertheless mechanistically distinct from the processes that regulate cell death.
Collapse
Affiliation(s)
- Liam Portt
- Department of Chemistry and Chemical Engineering, Royal Military College, Ontario, Canada
| | | | | | | | | |
Collapse
|
14
|
Expressing and functional analysis of mammalian apoptotic regulators in yeast. Cell Death Differ 2009; 17:737-45. [DOI: 10.1038/cdd.2009.177] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
15
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2009. [DOI: 10.1002/yea.1618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|