1
|
Mori T, Teramoto T, Kakuta Y. Crystal structure of activating sulfotransferase SgdX2 involved in biosynthesis of secondary metabolite sungeidine. Biochem Biophys Res Commun 2024; 711:149891. [PMID: 38621346 DOI: 10.1016/j.bbrc.2024.149891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024]
Abstract
Microorganisms synthesize a plethora of complex secondary metabolites, many of which are beneficial to human health, such as anticancer agents and antibiotics. Among these, the Sungeidines are a distinct class of secondary metabolites known for their bulky and intricate structures. They are produced by a specific biosynthetic gene cluster within the genome of the soil-dwelling actinomycete Micromonospora sp. MD118. A notable enzyme in the Sungeidine biosynthetic pathway is the activating sulfotransferase SgdX2. In this pathway, SgdX2 mediates a key sulfation step, after which the product undergoes spontaneous dehydration to yield a Sungeidine compound. To delineate the structural basis for SgdX2's substrate recognition and catalytic action, we have determined the crystal structure of SgdX2 in complex with its sulfate donor product, 3'-phosphoadenosine 5'-phosphate (PAP), at a resolution of 1.6 Å. Although SgdX2 presents a compact overall structure, its core elements are conserved among other activating sulfotransferases. Our structural analysis reveals a unique substrate-binding pocket that accommodates bulky, complex substrates, suggesting a specialized adaptation for Sungeidine synthesis. Moreover, we have constructed a substrate docking model that provides insights into the molecular interactions between SgdX2 and Sungeidine F, enhancing our understanding of the enzyme's specificity and catalytic mechanism. The model supports a general acid-base catalysis mechanism, akin to other sulfotransferases, and underscores the minor role of disordered regions in substrate recognition. This integrative study of crystallography and computational modeling advances our knowledge of microbial secondary metabolite biosynthesis and may facilitate the development of novel biotechnological applications.
Collapse
Affiliation(s)
- Takahiro Mori
- Laboratory of Biophysical Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takamasa Teramoto
- Laboratory of Biophysical Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Yoshimitsu Kakuta
- Laboratory of Biophysical Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
2
|
Kurogi K, Suiko M, Sakakibara Y. Evolution and multiple functions of sulfonation and cytosolic sulfotransferases across species. Biosci Biotechnol Biochem 2024; 88:368-380. [PMID: 38271594 DOI: 10.1093/bbb/zbae008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Organisms have conversion systems for sulfate ion to take advantage of the chemical features. The use of biologically converted sulfonucleotides varies in an evolutionary manner, with the universal use being that of sulfonate donors. Sulfotransferases have the ability to transfer the sulfonate group of 3'-phosphoadenosine 5'-phosphosulfate to a variety of molecules. Cytosolic sulfotransferases (SULTs) play a role in the metabolism of low-molecular-weight compounds in response to the host organism's living environment. This review will address the diverse functions of the SULT in evolution, including recent findings. In addition to the diversity of vertebrate sulfotransferases, the molecular aspects and recent studies on bacterial and plant sulfotransferases are also addressed.
Collapse
Affiliation(s)
- Katsuhisa Kurogi
- Department of Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki, Japan
| | - Masahito Suiko
- Department of Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki, Japan
| | - Yoichi Sakakibara
- Department of Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
3
|
Kondo M, Ikenaka Y, Nakayama SMM, Kawai YK, Mizukawa H, Mitani Y, Nomyama K, Tanabe S, Ishizuka M. Sulfotransferases (SULTs), enzymatic and genetic variation in Carnivora: Limited sulfation capacity in pinnipeds. Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109476. [PMID: 36182081 DOI: 10.1016/j.cbpc.2022.109476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/13/2022] [Accepted: 09/25/2022] [Indexed: 10/14/2022]
Abstract
Wild carnivorans are one of the most important species due to their high positions in the food chain. They are also highly affected by numerous environmental contaminants through bioaccumulation and biomagnification. Xenobiotic metabolism is a significant chemical defense system from xenobiotics because it degrades the activity of a wide range of chemicals, generally into less active forms, resulting in their deactivation. Sulfotransferases (SULTs) are one of the most important xenobiotic metabolic enzymes, which catalyze the sulfonation of a variety of endogenous and exogenous chemicals, such as hormones, neurotransmitters, and a wide range of xenobiotic compounds. Although SULTs are of such high importance, little research has focused on these enzymes in wild carnivorans. In this study, we clarified the genetic properties of SULTs in a wide range of mammals, focusing on carnivorans, using in silico genetic analyses. We found genetic deficiencies of SULT1E1 and SULT1D1 isoforms in all pinnipeds analyzed and nonsense mutations in SULT1Cs in several carnivorans including pinnipeds. We further investigated the enzymatic activity of SULT1E1 in vitro using liver cytosols from pinnipeds. Using a SULT1E1 probe substrate, we found highly limited estradiol sulfonation in pinnipeds, whereas other mammals had relatively high sulfation. These results suggest that pinnipeds have severely or completely absent SULT1E1 activity, which importantly catalyzes the metabolism of estrogens, drugs, and environmental toxins. This further implies a high susceptibility to a wide range of xenobiotics in these carnivorans, which are constantly exposed to environmental chemicals throughout their lifetime.
Collapse
Affiliation(s)
- Mitsuki Kondo
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan(1)
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan(1); Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa; Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Japan; One Health Research Center, Hokkaido University, Japan
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan(1); Biomedical Sciences Department, School of Veterinary Medicine, The University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia
| | - Yusuke K Kawai
- Laboratory of Toxicology, Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan(2)
| | - Hazuki Mizukawa
- Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, Tarumi 3-5-7, Matsuyama 790-8566, Japan
| | - Yoko Mitani
- Field Science Center for Northern Biosphere, Hokkaido University, N11, W10, Kita-ku, Sapporo 060-0811, Japan(3)
| | - Kei Nomyama
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan(4)
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan(4)
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan(1).
| |
Collapse
|
4
|
Tzertzinis G, Baker B, Benner J, Brown E, Corrêa IR, Ettwiller L, McClung C, Schildkraut I. Coelenterazine sulfotransferase from Renilla muelleri. PLoS One 2022; 17:e0276315. [PMID: 36251663 PMCID: PMC9576082 DOI: 10.1371/journal.pone.0276315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/04/2022] [Indexed: 11/19/2022] Open
Abstract
The luciferin sulfokinase (coelenterazine sulfotransferase) of Renilla was previously reported to activate the storage form, luciferyl sulfate (coelenterazine sulfate) to luciferin (coelenterazine), the substrate for the luciferase bioluminescence reaction. The gene coding for the coelenterazine sulfotransferase has not been identified. Here we used a combined proteomic/transcriptomic approach to identify and clone the sulfotransferase cDNA. Multiple isoforms of coelenterazine sulfotransferase were identified from the anthozoan Renilla muelleri by intersecting its transcriptome with the LC-MS/MS derived peptide sequences of coelenterazine sulfotransferase purified from Renilla. Two of the isoforms were expressed in E. coli, purified, and partially characterized. The encoded enzymes display sulfotransferase activity that is comparable to that of the native sulfotransferase isolated from Renilla reniformis that was reported in 1970. The bioluminescent assay for sensitive detection of 3'-phosphoadenosine 5'-phosphate (PAP) using the recombinant sulfotransferase is demonstrated.
Collapse
Affiliation(s)
- George Tzertzinis
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Brenda Baker
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Jack Benner
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Elizabeth Brown
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Ivan R. Corrêa
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | | | - Colleen McClung
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Ira Schildkraut
- New England Biolabs, Ipswich, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
5
|
Sun Y, Machalz D, Wolber G, Parr MK, Bureik M. Functional Expression of All Human Sulfotransferases in Fission Yeast, Assay Development, and Structural Models for Isoforms SULT4A1 and SULT6B1. Biomolecules 2020; 10:E1517. [PMID: 33171978 PMCID: PMC7694633 DOI: 10.3390/biom10111517] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 11/29/2022] Open
Abstract
Cytosolic sulfotransferases (SULTs) catalyze phase II (conjugation) reactions of drugs and endogenous compounds. A complete set of recombinant fission yeast strains each expressing one of the 14 human SULTs was generated, including SULT4A1 and SULT6B1. Sulfation of test substrates by whole-cell biotransformation was successfully demonstrated for all enzymes for which substrates were previously known. The results proved that the intracellular production of the cofactor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) necessary for SULT activity in fission yeast is sufficiently high to support metabolite production. A modified variant of sulfotransferase assay was also developed that employs permeabilized fission yeast cells (enzyme bags). Using this approach, SULT4A1-dependent sulfation of 1-naphthol was observed. Additionally, a new and convenient SULT activity assay is presented. It is based on the sulfation of a proluciferin compound, which was catalyzed by SULT1E1, SULT2A1, SULT4A1, and SULT6B1. For the latter two enzymes this study represents the first demonstration of their enzymatic functionality. Furthermore, the first catalytically competent homology models for SULT4A1 and SULT6B1 in complex with PAPS are reported. Through mechanistic molecular modeling driven by substrate docking, we pinned down the increased activity levels of these two isoforms to optimized substrate binding.
Collapse
Affiliation(s)
- Yanan Sun
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China;
- Pharmaceutical and Medicinal Chemistry (Pharmaceutical Analyses), Institute of Pharmacy, Freie Universitaet Berlin, 14195 Berlin, Germany
| | - David Machalz
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universitaet Berlin, 14195 Berlin, Germany; (D.M.); (G.W.)
| | - Gerhard Wolber
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universitaet Berlin, 14195 Berlin, Germany; (D.M.); (G.W.)
| | - Maria Kristina Parr
- Pharmaceutical and Medicinal Chemistry (Pharmaceutical Analyses), Institute of Pharmacy, Freie Universitaet Berlin, 14195 Berlin, Germany
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China;
| |
Collapse
|
6
|
Teramoto T, Adachi R, Sakakibara Y, Liu MC, Suiko M, Kimura M, Kakuta Y. On the similar spatial arrangement of active site residues in PAPS-dependent and phenolic sulfate-utilizing sulfotransferases. FEBS Lett 2009; 583:3091-4. [PMID: 19695253 DOI: 10.1016/j.febslet.2009.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 08/11/2009] [Accepted: 08/11/2009] [Indexed: 10/20/2022]
Abstract
Mammalian sulfotransferases (STs) utilize exclusively the sulfuryl group donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to catalyze the sulfurylation reactions based on a sequential transfer mechanism. In contrast, the commensal intestinal bacterial arylsulfate sulfotransferases (ASSTs) do not use PAPS as the sulfuryl group donor, but instead catalyze sulfuryl transfer from phenolic sulfate to a phenol via a Ping-Pong mechanism. Interestingly, structural comparison revealed a similar spatial arrangement of the active site residues as well as the cognate substrates in mouse ST (mSULT1D1) and Escherichia coli CFT073 ASST, despite that their overall structures bear no discernible relationship. These observations suggest that the active sites of PAPS-dependent SULT1D1 and phenolic sulfate-utilizing ASST represent an example of convergent evolution.
Collapse
Affiliation(s)
- Takamasa Teramoto
- Laboratory of Structural Biology, Department of Systems Life Sciences, Graduate School, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
Teramoto T, Sakakibara Y, Liu MC, Suiko M, Kimura M, Kakuta Y. Snapshot of a Michaelis complex in a sulfuryl transfer reaction: Crystal structure of a mouse sulfotransferase, mSULT1D1, complexed with donor substrate and accepter substrate. Biochem Biophys Res Commun 2009; 383:83-7. [PMID: 19344693 DOI: 10.1016/j.bbrc.2009.03.146] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 03/23/2009] [Indexed: 10/21/2022]
Abstract
We report the crystal structure of mouse sulfotransferase, mSULT1D1, complexed with donor substrate 3'-phosphoadenosine 5'-phosphosulfate and accepter substrate p-nitrophenol. The structure is the first report of the native Michaelis complex of sulfotransferase. In the structure, three proposed catalytic residues (Lys48, Lys106, and His108) were in proper positions for engaging in the sulfuryl transfer reaction. The data strongly support that the sulfuryl transfer reaction proceeds through an S(N)2-like in-line displacement mechanism.
Collapse
Affiliation(s)
- Takamasa Teramoto
- Department of Systems Life Sciences, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Structural basis for the broad range substrate specificity of a novel mouse cytosolic sulfotransferase—mSULT1D1. Biochem Biophys Res Commun 2009; 379:76-80. [DOI: 10.1016/j.bbrc.2008.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 12/03/2008] [Indexed: 11/18/2022]
|