1
|
Pandi-Perumal SR, Saravanan KM, Paul S, Warren Spence D, Chidambaram SB. Studying sleep orthologs in Epsilonproteobacteria through an evolutionary lens: investigating sleep mysteries through phylogenomics. World J Microbiol Biotechnol 2025; 41:154. [PMID: 40289222 DOI: 10.1007/s11274-025-04361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025]
Abstract
The current study employed phylogenomic methods to examine sleep-related genes' evolutionary role and significance in Sulfurimonas paralvinellae of the Epsilonproteobacteria class. This has facilitated the identification of conserved sleep orthologs, including DnaK (Hsp70), serine hydroxymethyltransferase (SHMT), and potassium channel family proteins, exhibiting sequence similarities ranging from 39.13% to 61.45%. These findings align with prior research indicating that chaperones and ion channels are conserved during sleep. This was demonstrated by the observation that proteins with fewer domains exhibited more significant conservation than others, such as adenylate kinase (AK). Distinct adaptations in bifunctional protein-serine/threonine kinases and phosphatases were linked to S. paralvinellae, an extremophilic organism adapted to high-pressure and/or high-temperature conditions, indicating functional divergence influenced by the organism's environment. The Gene Ontology study results indicated catalytic activity, potassium channel function, and cellular processes, underscoring the significance of ion channels in regulating the sleep-wake cycle. Furthermore, the categories not recognized as particularly significant for the over-represented genes encompassed metabolic and signal transduction categories, suggesting enhanced functional flexibility within this protein subfamily. The findings emphasize that orthologous interactions are complex and influenced by subfunctionalization and neofunctionalization of ecology and evolution. These findings enhance the existing understanding of the evolution of sleep-related genes and their association with metabolic and environmental changes, providing a foundation for subsequent experimental investigations and cross-taxonomic comparisons.
Collapse
Affiliation(s)
- Seithikurippu R Pandi-Perumal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India.
- Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India.
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | | | - Sayan Paul
- Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | | | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India.
- Centre for Experimental Pharmacology & Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, 570015, Karnataka, India.
| |
Collapse
|
2
|
Siddiqui MS, Shahi MH, Castresana JS. The role of the adenylate kinase 5 gene in various diseases and cancer. J Clin Transl Sci 2024; 8:e96. [PMID: 39655021 PMCID: PMC11626602 DOI: 10.1017/cts.2024.536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/21/2024] [Accepted: 05/01/2024] [Indexed: 12/12/2024] Open
Abstract
Adenylate kinases (AKs) are important enzymes involved in cellular energy metabolism. Among AKs, AK5 (adenylate kinase 5), a cytosolic protein, is emerging as a significant contributor to various diseases and cellular processes. This comprehensive review integrates findings from various research groups on AK5 since its discovery, shedding light on its multifaceted roles in nucleotide metabolism, energy regulation, and cellular differentiation. We investigate its implications in a spectrum of diseases, including autoimmune encephalitis, epilepsy, neurodegenerative disorders such as Alzheimer's and Parkinson's, diabetes, lower extremity arterial disease, celiac disease, and various cancers. Notably, AK5's expression levels and methylation status have been associated with cancer progression and patient outcomes, indicating its potential as a prognostic indicator. Furthermore, AK5 is implicated in regulating cellular processes in breast cancer, gastric cancer, colorectal carcinoma, prostate cancer, and colon adenocarcinoma, suggesting its relevance across different cancer types. However, a limitation lies in the need for more robust clinical validation and a deeper understanding of AK5's precise mechanisms in disease pathogenesis, despite its association with various pathophysiological conditions. Nonetheless, AK5 holds promise as a therapeutic target, with emerging evidence suggesting its potential in therapy development.
Collapse
Affiliation(s)
- M. Sarim Siddiqui
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh202002, India
| | - Mehdi H. Shahi
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh202002, India
| | - Javier S. Castresana
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, Pamplona31008, Spain
| |
Collapse
|
3
|
Regulation of Adenine Nucleotide Metabolism by Adenylate Kinase Isozymes: Physiological Roles and Diseases. Int J Mol Sci 2023; 24:ijms24065561. [PMID: 36982634 PMCID: PMC10056885 DOI: 10.3390/ijms24065561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Adenylate kinase (AK) regulates adenine nucleotide metabolism and catalyzes the ATP + AMP ⇌ 2ADP reaction in a wide range of organisms and bacteria. AKs regulate adenine nucleotide ratios in different intracellular compartments and maintain the homeostasis of the intracellular nucleotide metabolism necessary for growth, differentiation, and motility. To date, nine isozymes have been identified and their functions have been analyzed. Moreover, the dynamics of the intracellular energy metabolism, diseases caused by AK mutations, the relationship with carcinogenesis, and circadian rhythms have recently been reported. This article summarizes the current knowledge regarding the physiological roles of AK isozymes in different diseases. In particular, this review focused on the symptoms caused by mutated AK isozymes in humans and phenotypic changes arising from altered gene expression in animal models. The future analysis of intracellular, extracellular, and intercellular energy metabolism with a focus on AK will aid in a wide range of new therapeutic approaches for various diseases, including cancer, lifestyle-related diseases, and aging.
Collapse
|
4
|
Adenylate Kinase Isozyme 3 Regulates Mitochondrial Energy Metabolism and Knockout Alters HeLa Cell Metabolism. Int J Mol Sci 2022; 23:ijms23084316. [PMID: 35457131 PMCID: PMC9032187 DOI: 10.3390/ijms23084316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023] Open
Abstract
The balance between oxidative phosphorylation and glycolysis is important for cancer cell growth and survival, and changes in energy metabolism are an emerging therapeutic target. Adenylate kinase (AK) regulates adenine nucleotide metabolism, maintaining intracellular nucleotide metabolic homeostasis. In this study, we focused on AK3, the isozyme localized in the mitochondrial matrix that reversibly mediates the following reaction: Mg2+ GTP + AMP ⇌ Mg2+ GDP + ADP. Additionally, we analyzed AK3-knockout (KO) HeLa cells, which showed reduced proliferation and were detected at an increased number in the G1 phase. A metabolomic analysis showed decreased ATP; increased glycolytic metabolites such as glucose 6 phosphate (G6P), fructose 6 phosphate (F6P), and phosphoenolpyruvate (PEP); and decreased levels of tricarboxylic acid (TCA) cycle metabolites in AK3KO cells. An intracellular ATP evaluation of AK3KO HeLa cells transfected with ATeam plasmid, an ATP sensor, showed decreased whole cell levels. Levels of mitochondrial DNA (mtDNA), a complementary response to mitochondrial failure, were increased in AK3KO HeLa cells. Oxidative stress levels increased with changes in gene expression, evidenced as an increase in related enzymes such as superoxide dismutase 2 (SOD2) and SOD3. Phosphoenolpyruvate carboxykinase 2 (PCK2) expression and PEP levels increased, whereas PCK2 inhibition affected AK3KO HeLa cells more than wild-type (WT) cells. Therefore, we concluded that increased PCK2 expression may be complementary to increased GDP, which was found to be deficient through AK3KO. This study demonstrated the importance of AK3 in mitochondrial matrix energy metabolism.
Collapse
|
5
|
Chen F, Li C, Cao H, Zhang H, Lu C, Li R, Zhu Z, Chen L, Zhao Y. Identification of Adenylate Kinase 5 as a Protein Target of Ginsenosides in Brain Tissues Using Mass Spectrometry-Based Drug Affinity Responsive Target Stability (DARTS) and Cellular Thermal Shift Assay (CETSA) Techniques. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2741-2751. [PMID: 35184563 DOI: 10.1021/acs.jafc.1c07819] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ginseng is a very famous Chinese herbal medicine with various pharmacological effects. Ginsenosides, the main effective compounds of ginseng, show favorable biological activities in the central nervous system (CNS), but the protein targets of ginsenosides in brain tissues have not been clarified clearly. First, we screened proteins that interact with ginsenosides by mass spectrometry-based drug affinity responsive target stability (DARTS) and cellular thermal shift assay (CETSA). Then, we identified and confirmed adenylate kinase 5 (AK5) as a target protein of ginsenosides by biolayer interferometry (BLI), isothermal titration calorimetry (ITC), and molecular docking. Finally, an enzyme activity kit was used to determine the effect of 20(S)-protopanaxadiol (PPD), a ginseng saponin metabolite, on AK5 activities in vivo and in vitro. We screened out seven overlapping target proteins by proteomics of DARTS and CETSA. The BLI direct action assays showed that the direct interaction of PPD with AK5 was higher compared to the parental ginsenosides. Subsequently, BLI kinetic analysis and ITC assay showed that PPD specifically bound to AK5. Furthermore, key amino acid mutations predicted by molecular docking decreased the affinity between PPD and AK5. Enzyme activity assays showed that PPD increased AK5 activities in vivo and in vitro. The above-mentioned findings indicated that AK5 is a protein target of ginsenoside in the brain and PPD is considered to be a small-molecular activator of AK5, which can improve comprehension of the molecular mechanisms of ginseng pharmacological effects in the CNS and further develop AK5 activators based on the dammarane-type triterpenoid structure.
Collapse
Affiliation(s)
- Feiyan Chen
- Research and Innovation Center, College of Traditional Chinese Medicine, Integrated Chinese and Western Medicine College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chu Li
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huiying Cao
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hantao Zhang
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cai Lu
- Department of Medicinal Chemistry and Analysis, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ruimei Li
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhu Zhu
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lin Chen
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yunan Zhao
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
6
|
Muñiz-Castrillo S, Hedou JJ, Ambati A, Jones D, Vogrig A, Pinto AL, Benaiteau M, de Broucker T, Fechtenbaum L, Labauge P, Murnane M, Nocon C, Taifas I, Vialatte de Pémille C, Psimaras D, Joubert B, Dubois V, Wucher V, Desestret V, Mignot E, Honnorat J. Distinctive clinical presentation and pathogenic specificities of anti-AK5 encephalitis. Brain 2021; 144:2709-2721. [PMID: 33843981 DOI: 10.1093/brain/awab153] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/10/2021] [Accepted: 03/28/2021] [Indexed: 11/12/2022] Open
Abstract
Limbic encephalitis (LE) with antibodies against adenylate kinase 5 (AK5) has been difficult to characterize because of its rarity. In this study, we identified 10 new cases and reviewed 16 previously reported patients, investigating clinical features, IgG subclasses, human leukocyte antigen (HLA), and CSF proteomic profiles. Patients with anti-AK5 LE were mostly men (20/26, 76.9%) of median age 66 years old (range 48-94). Predominant symptom was severe episodic amnesia in all patients, frequently associated with depression (17/25, 68.0%). Weight loss, asthenia, and anorexia were also highly characteristic, being present in 11/25 (44.0%) patients. Although epilepsy was always lacking at disease onset, seizures developed later in a subset of patients (4/25, 16.0%). All patients presented CSF abnormalities, such as pleocytosis (18/25, 72.0%), oligoclonal bands (18/25, 72.0%), and increased Tau (11/14, 78.6%). Temporal lobe hyper-intensities were almost always present at disease onset (23/26, 88.5%), evolving nearly invariably toward a severe atrophy in subsequent MRIs (17/19, 89.5%). This finding was in line with a poor response to immunotherapy, with only 5/25 (20.0%) patients responding. IgG1 was the predominant subclass, being the most frequently detected and the one with highest titres in nine CSF-serum paired samples. Temporal biopsy from one of our new cases showed massive lymphocytic infiltrates dominated by both CD4+ and CT8+ T-cells, intense granzyme B expression, and abundant macrophages/microglia. HLA analysis in 11 patients showed a striking association with HLA-B*08:01 (7/11, 63.6%; OR = 13.4, 95% CI [3.8-47.4]), C*07:01 (8/11, 72.7%; OR = 11.0, 95% CI [2.9-42.5]), DRB1*03:01 (8/11, 72.7%; OR = 14.4, 95% CI [3.7-55.7]), DQB1*02:01 (8/11, 72.7%; OR = 13.5, 95% CI [3.5-52.0]), and DQA1*05:01 (8/11, 72.7%; OR = 14.4, 95% CI [3.7-55.7]) alleles, which formed the extended haplotype B8-C7-DR3-DQ2 in 6/11 (54.5%) patients (OR = 16.5, 95% CI [4.8-57.1]). Finally, we compared the CSF proteomic profile of five anti-AK5 patients with that of 40 controls and 10 cases with other more common non-paraneoplastic LE (five with antibodies against leucine-rich glioma inactivated 1 and five against contactin-associated protein-like 2), as well as 10 cases with paraneoplastic neurological syndromes (five with antibodies against Yo and five against Ma2). These comparisons revealed, respectively, 31 and seven significantly up-regulated proteins in anti-AK5 LE, mapping to apoptosis pathways and innate/adaptive immune responses. These findings suggest that the clinical manifestations of anti-AK5 LE result from a distinct T-cell mediated pathogenesis, with major cytotoxicity-induced apoptosis leading to a prompt and aggressive neuronal loss, likely explaining the poor prognosis and response to immunotherapy.
Collapse
Affiliation(s)
- Sergio Muñiz-Castrillo
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France.,SynatAc Team, Institute NeuroMyoGène, INSERM U1217/CNRS UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Aditya Ambati
- Stanford University Center for Narcolepsy, Palo Alto, CA, USA
| | - David Jones
- Pathology and Laboratory Medicine, Albany Medical Center Hospital, Albany, NY, USA
| | - Alberto Vogrig
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France.,SynatAc Team, Institute NeuroMyoGène, INSERM U1217/CNRS UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Anne-Laurie Pinto
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France.,SynatAc Team, Institute NeuroMyoGène, INSERM U1217/CNRS UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Marie Benaiteau
- Neurology Department, Hôpital Pierre-Paul Riquet, Toulouse, France
| | - Thomas de Broucker
- Neurology Department, Hôpital Pierre Delafontaine, Centre Hospitalier de Saint-Denis, Saint-Denis, France
| | - Laura Fechtenbaum
- Neurology Department, Centre Hospitalier Henri Mondor, Paris, France
| | - Pierre Labauge
- Neurology Department, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Matthew Murnane
- Neurology Department, Albany Medical Center Hospital, Albany, NY, USA
| | - Claire Nocon
- Neurology Department, Centre Hospitalier de Dax, Dax, France
| | - Irina Taifas
- Neurology Department, Hôpital d´Instruction des Armées Percy, Clamart, France
| | | | - Dimitri Psimaras
- Neurology Department 2-Mazarin, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, APHP, Paris, France.,Brain and Spinal Cord Institute, INSERM U1127/CNRS UMR 7255, Université Pierre-et-Marie-Curie, Universités Sorbonnes, Paris, France
| | - Bastien Joubert
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France.,SynatAc Team, Institute NeuroMyoGène, INSERM U1217/CNRS UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Valérie Dubois
- HLA Laboratory, French Blood Service, EFS Auvergne-Rhône-Alpes, Lyon, France
| | - Valentin Wucher
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France.,SynatAc Team, Institute NeuroMyoGène, INSERM U1217/CNRS UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Virginie Desestret
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France.,SynatAc Team, Institute NeuroMyoGène, INSERM U1217/CNRS UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Emmanuel Mignot
- Stanford University Center for Narcolepsy, Palo Alto, CA, USA
| | - Jérôme Honnorat
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France.,SynatAc Team, Institute NeuroMyoGène, INSERM U1217/CNRS UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
7
|
Al-Aama JY, Shaik NA, Banaganapalli B, Salama MA, Rashidi O, Sahly AN, Mohsen MO, Shawoosh HA, Shalabi HA, Edreesi MA, Alharthi SE, Wang J, Elango R, Saadah OI. Whole exome sequencing of a consanguineous family identifies the possible modifying effect of a globally rare AK5 allelic variant in celiac disease development among Saudi patients. PLoS One 2017; 12:e0176664. [PMID: 28505210 PMCID: PMC5432167 DOI: 10.1371/journal.pone.0176664] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 04/14/2017] [Indexed: 12/20/2022] Open
Abstract
Celiac disease (CD), a multi-factorial auto-inflammatory disease of the small intestine, is known to occur in both sporadic and familial forms. Together HLA and Non-HLA genes can explain up to 50% of CD’s heritability. In order to discover the missing heritability due to rare variants, we have exome sequenced a consanguineous Saudi family presenting CD in an autosomal recessive (AR) pattern. We have identified a rare homozygous insertion c.1683_1684insATT, in the conserved coding region of AK5 gene that showed classical AR model segregation in this family. Sequence validation of 200 chromosomes each of sporadic CD cases and controls, revealed that this extremely rare (EXac MAF 0.000008) mutation is highly penetrant among general Saudi populations (MAF is 0.62). Genotype and allelic distribution analysis have indicated that this AK5 (c.1683_1684insATT) mutation is negatively selected among patient groups and positively selected in the control group, in whom it may modify the risk against CD development [p<0.002]. Our observation gains additional support from computational analysis which predicted that Iso561 insertion shifts the existing H-bonds between 400th and 556th amino acid residues lying near the functional domain of adenylate kinase. This shuffling of amino acids and their H-bond interactions is likely to disturb the secondary structure orientation of the polypeptide and induces the gain-of-function in nucleoside phosphate kinase activity of AK5, which may eventually down-regulates the reactivity potential of CD4+ T-cells against gluten antigens. Our study underlines the need to have population-specific genome databases to avoid false leads and to identify true candidate causal genes for the familial form of celiac disease.
Collapse
Affiliation(s)
- Jumana Yousuf Al-Aama
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noor Ahmad Shaik
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Babajan Banaganapalli
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed A. Salama
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Omran Rashidi
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed N. Sahly
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed O. Mohsen
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Harbi A. Shawoosh
- Department of Pediatrics, King Fahd Armed Forces Hospital, Jeddah, Saudi Arabia
| | | | - Mohammad Al Edreesi
- Division of Gastroenterology, Department of Pediatrics, Dhahran Health Center, Saudi Aramco Medical Services Organization, Dhahran, Saudi Arabia
| | - Sameer E. Alharthi
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jun Wang
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ramu Elango
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
- * E-mail: (RE); (OIS)
| | - Omar I. Saadah
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
- Division of Pediatric Gastroenterology, Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- * E-mail: (RE); (OIS)
| |
Collapse
|
8
|
Do LD, Chanson E, Desestret V, Joubert B, Ducray F, Brugière S, Couté Y, Formaglio M, Rogemond V, Thomas-Antérion C, Borrega L, Laurens B, Tison F, Curot J, De Brouker T, Lebrun-Frenay C, Delattre JY, Antoine JC, Honnorat J. Characteristics in limbic encephalitis with anti–adenylate kinase 5 autoantibodies. Neurology 2017; 88:514-524. [DOI: 10.1212/wnl.0000000000003586] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 09/26/2016] [Indexed: 11/15/2022] Open
Abstract
Objective:To report 10 patients with limbic encephalitis (LE) and adenylate kinase 5 autoantibodies (AK5-Abs).Methods:We conducted a retrospective study in a cohort of 50 patients with LE with uncharacterized autoantibodies and identified a specific target using immunohistochemistry, Western blotting, immunoprecipitation, mass spectrometry, and cell-based assay.Results:AK5 (a known autoantigen of LE) was identified as the target of antibodies in the CSFs and sera of 10 patients with LE (median age 64 years; range 57–80), which was characterized by subacute anterograde amnesia without seizure and sometimes preceded by a prodromal phase of asthenia or mood disturbances. Anterograde amnesia can be isolated, but some patients also complained of prosopagnosia, paroxysmal anxiety, or abnormal behavior. No associated cancer was observed. All 10 patients had bilateral hippocampal hypersignal on a brain MRI. CSF analysis generally showed a mild pleiocytosis with elevated immunoglobulin G index and oligoclonal bands, as well as high levels of tau protein with normal concentration of Aβ42 and phospho-tau, suggesting a process of neuronal death. Except for one patient, clinical response to immunotherapy was unfavorable, with persistence of severe anterograde amnesia. Two patients evolved to severe cognitive decline. Hippocampal atrophy was observed on control brain MRI. Using in vitro tests on hippocampal neurons, we did not identify clues suggesting a direct pathogenic role of AK5-Abs.Conclusions:AK5-Abs should be systematically considered in aged patients with subacute anterograde amnesia. Recognition of this disorder is important to develop new treatment strategies to prevent irreversible limbic damage.
Collapse
|
9
|
The many isoforms of human adenylate kinases. Int J Biochem Cell Biol 2014; 49:75-83. [PMID: 24495878 DOI: 10.1016/j.biocel.2014.01.014] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 02/05/2023]
Abstract
Adenine nucleotides are involved in a variety of cellular metabolic processes, including nucleic acid synthesis and repair, formation of coenzymes, energy transfer, cell and ciliary motility, hormone secretion, gene expression regulation and ion-channel control. Adenylate kinases are abundant phosphotransferases that catalyze the interconversion of adenine nucleotides and thus regulate the adenine nucleotide ratios in different intracellular compartments. Nine different adenylate kinase isoenzymes have been identified and characterized so far in human tissues, named AK1 to AK9 according to their order of discovery. Adenylate kinases differ in molecular weight, tissue distribution, subcellular localization, substrate and phosphate donor specificity and kinetic properties. The preferred substrate and phosphate donor of all adenylate kinases are AMP and ATP respectively, but some members of the family can phosphorylate other substrates and use other phosphate donors. In addition to their nucleoside monophosphate kinase activity, adenylate kinases were found to possess nucleoside diphosphate kinase activity as they are able to phosphorylate both ribonucleoside and deoxyribonucleoside diphosphates to their corresponding triphosphates. Nucleoside analogues are structural analogues of natural nucleosides, used in the treatment of cancer and viral infections. They are inactive prodrugs that are dependent on intracellular phosphorylation to their pharmacologically active triphosphate form. Novel data presented in this review confirm the role of adenylate kinases in the activation of deoxyadenosine and deoxycytidine nucleoside analogues.
Collapse
|
10
|
Adenylate Kinase Isoform Network: A Major Hub in Cell Energetics and Metabolic Signaling. SYSTEMS BIOLOGY OF METABOLIC AND SIGNALING NETWORKS 2014. [DOI: 10.1007/978-3-642-38505-6_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
11
|
Kong F, Binas B, Moon JH, Kang SS, Kim HJ. Differential expression of adenylate kinase 4 in the context of disparate stress response strategies of HEK293 and HepG2 cells. Arch Biochem Biophys 2013; 533:11-7. [DOI: 10.1016/j.abb.2013.02.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/05/2013] [Accepted: 02/22/2013] [Indexed: 10/27/2022]
|
12
|
Amiri M, Conserva F, Panayiotou C, Karlsson A, Solaroli N. The human adenylate kinase 9 is a nucleoside mono- and diphosphate kinase. Int J Biochem Cell Biol 2013; 45:925-31. [PMID: 23416111 DOI: 10.1016/j.biocel.2013.02.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 12/13/2012] [Accepted: 02/01/2013] [Indexed: 11/25/2022]
Abstract
Adenylate kinases regulate adenine nucleotide levels and are present in different intracellular compartments. These enzymes also participate in the activation of pharmacologically active nucleoside and nucleotide analogs. We have in the present study identified the ninth isoform of the adenylate kinase family of enzymes and accordingly named the protein adenylate kinase 9 (AK9). Initially a full-length cDNA of a hypothetical protein containing a predicted adenylate kinase domain was identified and subsequently cloned and expressed in Escherichia coli. The substrate specificity of the recombinant protein showed that the enzyme catalyzed the phosphorylation of AMP, dAMP, CMP and dCMP with ATP as phosphate donor, while only AMP and CMP were phosphorylated when GTP was the phosphate donor. The kinetic parameters of AK9 were determined for AMP, dAMP and CMP with ATP as phosphate donor. Interestingly, in addition to the diphosphate products, a nucleoside diphosphate kinase (NDPK) activity was also present with subsequent triphosphates formed. With ATP or GTP as phosphate donor it was possible to detect the production of ATP, CTP, GTP, UTP, dATP, dCTP, dGTP and TTP as enzymatic products from the corresponding diphosphate substrates. A number of previously characterized adenylate kinases were also tested and found to possess a broad phosphotransferase activity similar to AK9. These enzymes are accordingly suggested to be regarded as nucleoside mono- and diphosphate kinases with catalytic activities possibly determined by local substrate concentrations.
Collapse
Affiliation(s)
- Marjan Amiri
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institute, F68, SE-141 86 Huddinge, Sweden
| | | | | | | | | |
Collapse
|
13
|
Eyckmans M, Benoot D, Van Raemdonck GA, Zegels G, Van Ostade XW, Witters E, Blust R, De Boeck G. Comparative proteomics of copper exposure and toxicity in rainbow trout, common carp and gibel carp. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2012; 7:220-32. [DOI: 10.1016/j.cbd.2012.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 03/09/2012] [Accepted: 03/13/2012] [Indexed: 01/30/2023]
|
14
|
Caba O, Díaz-Gavilán M, Rodríguez-Serrano F, Boulaiz H, Aránega A, Gallo MA, Marchal JA, Campos JM. Anticancer activity and cDNA microarray studies of a (RS)-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-yl]-6-chloro-9H-purine, and an acyclic (RS)-O,N-acetalic 6-chloro-7H-purine. Eur J Med Chem 2011; 46:3802-3809. [PMID: 21684047 DOI: 10.1016/j.ejmech.2011.05.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 05/11/2011] [Accepted: 05/19/2011] [Indexed: 02/04/2023]
Abstract
Completing a SAR study, a series of (RS)-6-substituted-7- or 9-(1,2,3,5-tetrahydro-4,1-benzoxazepine-3-yl)-7H or 9H-purines was previously prepared. The most potent antiproliferative agent against the MCF-7 adenocarcinoma cell line that belongs to the benzoxazepine O,N-acetalic family is (RS)-9-[1-(9H-fluorenyl-9-methoxycarbonyl)-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-yl]-6-chloro-9H-purine (16, IC(50) = 0.67 ± 0.18 μM), whilst (RS)-7-{2-(N-hydroxymethylphenyl)-2-nitrobenzenesulfonamido]-1-methoxyethyl}-6-chloro-7H-purine (37) shows the lowest IC(50) value between the family of acyclic O,N-acetals (IC(50) = 3.25 ± 0.23 μM). Moreover, 16 showed the better in vitro Therapeutic Index in breast cell lines (3.19), whilst 37 was found to be 3.69-fold more active against HT-29 human colon cancer cell line than versus IEC-6 normal rat intestinal epithelial cell line. The global apoptotic cells caused by 16 and 37 against MCF-7 were 80.08% and 54.85% of cell population after 48 h, respectively. cDNA microarray technology reveals potential drug targets, which are mainly centred on positive apoptosis regulatory pathway genes, and the repression of genes involved in carcinogenesis, proliferation and tumour invasion.
Collapse
Affiliation(s)
- Octavio Caba
- Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Instituto de Biopatología y Medicina Regenerativa, 18071 Granada, Spain
| | | | | | | | | | | | | | | |
Collapse
|
15
|
The characterization of human adenylate kinases 7 and 8 demonstrates differences in kinetic parameters and structural organization among the family of adenylate kinase isoenzymes. Biochem J 2011; 433:527-34. [PMID: 21080915 DOI: 10.1042/bj20101443] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Differences in expression profiles, substrate specificities, kinetic properties and subcellular localization among the AK (adenylate kinase) isoenzymes have been shown to be important for maintaining a proper adenine nucleotide composition for many different cell functions. In the present study, human AK7 was characterized and its substrate specificity, kinetic properties and subcellular localization determined. In addition, a novel member of the human AK family, with two functional domains, was identified and characterized and assigned the name AK8. AK8 is the second known human AK with two complete and active AK domains within its polypeptide chain, a feature that has previously been shown for AK5. The full-length AK8, as well as its two domains AK8p1 and AK8p2, all showed similar AK enzyme activity. AK7, full-length AK8, AK8p1 and AK8p2 phosphorylated AMP, CMP, dAMP and dCMP with ATP as the phosphate donor, and also AMP, CMP and dCMP with GTP as the phosphate donor. Both AK7 and full-length AK8 showed highest affinity for AMP with ATP as the phosphate donor, and proved to be more efficient in AMP phosphorylation as compared with the major cytosolic isoform AK1. Expression of the proteins fused with green fluorescent protein demonstrated a cytosolic localization for both AK7 and AK8.
Collapse
|
16
|
Panayiotou C, Solaroli N, Johansson M, Karlsson A. Evidence of an intact N-terminal translocation sequence of human mitochondrial adenylate kinase 4. Int J Biochem Cell Biol 2009; 42:62-9. [PMID: 19766732 DOI: 10.1016/j.biocel.2009.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 09/08/2009] [Accepted: 09/11/2009] [Indexed: 10/20/2022]
Abstract
Adenylate kinases are abundant nucleoside monophosphate kinases, which catalyze the phosphorylation of AMP by using ATP or GTP as phosphate donors. A previously cloned cDNA was named adenylate kinase 4 (AK4) based on its sequence similarity with known AKs but with no confirmed AK enzyme activity. In the present study the AK4 cDNA was expressed in Escherichia coli and the substrate specificity and kinetic properties of the recombinant protein were characterized. The enzyme catalyzed the phosphorylation of AMP, dAMP, CMP and dCMP with ATP or GTP as phosphate donors and AK4 also phosphorylated AMP with UTP as phosphate donor. The kinetic parameters of the enzyme were determined for AMP and dAMP with ATP as phosphate donor and for AMP with GTP as phosphate donor. AK4 showed its highest efficiency when phosphorylating AMP with GTP and a slightly lower efficiency for the phosphorylation of AMP with ATP. Among the three reactions for which kinetics were performed, dAMP was the poorest substrate. The AK4 mitochondrial localization was confirmed by expression of AK4 as a fusion protein with GFP in HeLa cells. The mitochondrial import sequence was shown to be located within the first N-terminal 11 amino acid residues, very close to the ATP-binding region of the enzyme. Import analysis suggested that the mitochondrial import sequence was not cleaved and thus the enzyme retained its activity upon entering the mitochondria. Site directed mutagenesis of amino acids Lys 4 and Arg 7 showed that these two residues were essential for mitochondrial import.
Collapse
Affiliation(s)
- Christakis Panayiotou
- Department of Laboratory Medicine, Karolinska Institute, F68, S-141 86 Huddinge, Sweden.
| | | | | | | |
Collapse
|