1
|
Shahbaz M, Farooq S, Choudhary MI, Yousuf S. Cocrystals of a coumarin derivative: an efficient approach towards anti-leishmanial cocrystals against MIL-resistant Leishmania tropica. IUCRJ 2024; 11:224-236. [PMID: 38427455 PMCID: PMC10916291 DOI: 10.1107/s2052252524001416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/13/2024] [Indexed: 03/03/2024]
Abstract
Leishmaniasis is a neglected parasitic tropical disease with numerous clinical manifestations. One of the causative agents of cutaneous leishmaniasis (CL) is Leishmania tropica (L. tropica) known for causing ulcerative lesions on the skin. The adverse effects of the recommended available drugs, such as amphotericin B and pentavalent antimonial, and the emergence of drug resistance in parasites, mean the search for new safe and effective anti-leishmanial agents is crucial. Miltefosine (MIL) was the first recommended oral medication, but its use is now limited because of the rapid emergence of resistance. Pharmaceutical cocrystallization is an effective method to improve the physicochemical and biological properties of active pharmaceutical ingredients (APIs). Herein, we describe the cocrystallization of coumarin-3-carboxylic acid (CU, 1a; 2-oxobenzopyrane-3-carboxylic acid, C10H6O4) with five coformers [2-amino-3-bromopyridine (1b), 2-amino-5-(trifluoromethyl)-pyridine (1c), 2-amino-6-methylpyridine (1d), p-aminobenzoic acid (1e) and amitrole (1f)] in a 1:1 stoichiometric ratio via the neat grinding method. The cocrystals 2-6 obtained were characterized via single-crystal X-ray diffraction, powder X-ray diffraction, differential scanning calorimetry and thermogravimetric analysis, as well as Fourier transform infrared spectroscopy. Non-covalent interactions, such as van der Waals, hydrogen bonding, C-H...π and π...π interactions contribute significantly towards the packing of a crystal structure and alter the physicochemical and biological activity of CU. In this research, newly synthesized cocrystals were evaluated for their anti-leishmanial activity against the MIL-resistant L. tropica and cytotoxicity against the 3T3 (normal fibroblast) cell line. Among the non-cytotoxic cocrystals synthesized (2-6), CU:1b (2, IC50 = 61.83 ± 0.59 µM), CU:1c (3, 125.7 ± 1.15 µM) and CU:1d (4, 48.71 ± 0.75 µM) appeared to be potent anti-leishmanial agents and showed several-fold more anti-leishmanial potential than the tested standard drug (MIL, IC50 = 169.55 ± 0.078 µM). The results indicate that cocrystals 2-4 are promising anti-leishmanial agents which require further exploration.
Collapse
Affiliation(s)
- Muhammad Shahbaz
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Saba Farooq
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - M. Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sammer Yousuf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
2
|
Valigurová A, Kolářová I. Unrevealing the Mystery of Latent Leishmaniasis: What Cells Can Host Leishmania? Pathogens 2023; 12:pathogens12020246. [PMID: 36839518 PMCID: PMC9967396 DOI: 10.3390/pathogens12020246] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Leishmania spp. (Kinetoplastida) are unicellular parasites causing leishmaniases, neglected tropical diseases of medical and veterinary importance. In the vertebrate host, Leishmania parasites multiply intracellularly in professional phagocytes, such as monocytes and macrophages. However, their close relative with intracellular development-Trypanosoma cruzi-can unlock even non-professional phagocytes. Since Leishmania and T. cruzi have similar organelle equipment, is it possible that Leishmania can invade and even proliferate in cells other than the professional phagocytes? Additionally, could these cells play a role in the long-term persistence of Leishmania in the host, even in cured individuals? In this review, we provide (i) an overview of non-canonical Leishmania host cells and (ii) an insight into the strategies that Leishmania may use to enter them. Many studies point to fibroblasts as already established host cells that are important in latent leishmaniasis and disease epidemiology, as they support Leishmania transformation into amastigotes and even their multiplication. To invade them, Leishmania causes damage to their plasma membrane and exploits the subsequent repair mechanism via lysosome-triggered endocytosis. Unrevealing the interactions between Leishmania and its non-canonical host cells may shed light on the persistence of these parasites in vertebrate hosts, a way to control latent leishmaniasis.
Collapse
Affiliation(s)
- Andrea Valigurová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
- Correspondence: (A.V.); (I.K.)
| | - Iva Kolářová
- Department of Parasitology, Faculty of Science, Charles University, Albertov 6, 128 44 Prague, Czech Republic
- Correspondence: (A.V.); (I.K.)
| |
Collapse
|
3
|
Soares Cavalcante-Costa V, Costa-Reginaldo M, Queiroz-Oliveira T, Silva Oliveira AC, Couto NF, dos Anjos DO, Lima-Santos J, Andrade LDO, Horta MF, Castro-Gomes T. Leishmania amazonensis hijacks host cell lysosomes involved in plasma membrane repair to induce invasion in fibroblasts. J Cell Sci 2019; 132:jcs.226183. [DOI: 10.1242/jcs.226183] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/12/2019] [Indexed: 11/20/2022] Open
Abstract
Intracellular parasites of the genus Leishmania are the causative agents of leishmaniasis. The disease is transmitted by the bite of a sand fly vector which inoculates the parasite into the skin of mammalian hosts, including humans. During chronic infection the parasite lives and replicates inside phagocytic cells, notably the macrophages. An interesting but overlooked finding is that other cell types and even non-phagocytic cells have been found infected by Leishmania spp. Nevertheless, the mechanisms by which Leishmania invades such cells were not studied to date. Here we show that L. amazonensis can actively induce their own entry into fibroblasts independently of actin cytoskeleton activity, thus by a mechanism that is distinct from phagocytosis. Invasion involves subversion of host cell functions such as calcium signaling and recruitment and exocytosis of host cell lysosomes involved in plasma membrane repair.
Collapse
Affiliation(s)
- Victor Soares Cavalcante-Costa
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brasil
| | - Mariana Costa-Reginaldo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brasil
| | - Thamires Queiroz-Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brasil
| | - Anny Carolline Silva Oliveira
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brasil
| | - Natália Fernanda Couto
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brasil
| | | | - Jane Lima-Santos
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Bahia, Brasil
| | - Luciana de Oliveira Andrade
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brasil
| | - Maria Fátima Horta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brasil
| | - Thiago Castro-Gomes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brasil
| |
Collapse
|
4
|
Flieger A, Frischknecht F, Häcker G, Hornef MW, Pradel G. Pathways of host cell exit by intracellular pathogens. MICROBIAL CELL 2018; 5:525-544. [PMID: 30533418 PMCID: PMC6282021 DOI: 10.15698/mic2018.12.659] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Host cell exit is a critical step in the life-cycle of intracellular pathogens, intimately linked to barrier penetration, tissue dissemination, inflammation, and pathogen transmission. Like cell invasion and intracellular survival, host cell exit represents a well-regulated program that has evolved during host-pathogen co-evolution and that relies on the dynamic and intricate interplay between multiple host and microbial factors. Three distinct pathways of host cell exit have been identified that are employed by three different taxa of intracellular pathogens, bacteria, fungi and protozoa, namely (i) the initiation of programmed cell death, (ii) the active breaching of host cellderived membranes, and (iii) the induced membrane-dependent exit without host cell lysis. Strikingly, an increasing number of studies show that the majority of intracellular pathogens utilize more than one of these strategies, dependent on life-cycle stage, environmental factors and/or host cell type. This review summarizes the diverse exit strategies of intracellular-living bacterial, fungal and protozoan pathogens and discusses the convergently evolved commonalities as well as system-specific variations thereof. Key microbial molecules involved in host cell exit are highlighted and discussed as potential targets for future interventional approaches.
Collapse
Affiliation(s)
- Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | | | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, Medical Center - University of Freiburg, Germany
| | - Mathias W Hornef
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Biology II, RWTH Aachen University, Germany
| |
Collapse
|
5
|
Wu ÂC, Freitas MA, de O. Silva S, Nogueira PM, Soares RP, Pesquero JB, Gomes MA, Pesquero JL, Melo MN. Genetic differences between two Leishmania major-like strains revealed by suppression subtractive hybridization. Mol Biochem Parasitol 2015; 203:34-8. [DOI: 10.1016/j.molbiopara.2015.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 11/25/2022]
|
6
|
Almeida-Campos FR, Castro-Gomes T, Machado-Silva A, de Oliveira JS, Santoro MM, Frézard F, Horta MF. Activation of Leishmania spp. leishporin: evidence that dissociation of an inhibitor not only improves its lipid-binding efficiency but also endows it with the ability to form pores. Parasitol Res 2013; 112:3305-14. [PMID: 23812644 DOI: 10.1007/s00436-013-3510-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 06/14/2013] [Indexed: 11/29/2022]
Abstract
We have previously shown that various species of Leishmania produce a lytic activity, which, in Leishmania amazonensis, is mediated by a pore-forming cytolysin, called leishporin. It is toxic for macrophages in vitro and optimally active at pH 5.0 to 5.5 and at 37 °C, suggesting that it might be active inside phagolysosomes. Leishporin from both L. amazonensis (a-leishporin) and Leishmania guyanensis (g-leishporin) can be activated by proteases, suggesting either a limited proteolysis of an inactive precursor or a proteolytic degradation of a non-covalently linked inhibitor. Here, we show that both a- and g-leishporin are also activated in dissociating conditions, indicating the second hypothesis as the correct one. In fact, we further demonstrated that inactive leishporin is non-covalently associated with an inhibitor, possibly more than one oligopeptide that, when removed, renders leishporin hemolytically active. This activation was shown to be the result of both the improvement of leishporin's ability to bind to phospholipids and the emergence of its pore-forming ability. In vitro results demonstrate that leishporin can be released by the parasites, as they evolve in axenic cultures, in an inactive form that can be activated. These results are compatible with our hypothesis that leishporin can be activated in the protease-rich, low pH, and dissociating environment of parasitophorous vacuoles, leading to disruption of both vacuoles and plasma membranes with the release of amastigotes.
Collapse
Affiliation(s)
- Flávia Regina Almeida-Campos
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | |
Collapse
|
7
|
Reactive oxygen species and nitric oxide in cutaneous leishmaniasis. J Parasitol Res 2012; 2012:203818. [PMID: 22570765 PMCID: PMC3337613 DOI: 10.1155/2012/203818] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 11/18/2011] [Accepted: 11/22/2011] [Indexed: 01/03/2023] Open
Abstract
Cutaneous leishmaniasis affects millions of people around the world. Several species of Leishmania infect mouse strains, and murine models closely reproduce the cutaneous lesions caused by the parasite in humans. Mouse models have enabled studies on the pathogenesis and effector mechanisms of host resistance to infection. Here, we review the role of nitric oxide (NO), reactive oxygen species (ROS), and peroxynitrite (ONOO−) in the control of parasites by macrophages, which are both the host cells and the effector cells. We also discuss the role of neutrophil-derived oxygen and nitrogen reactive species during infection with Leishmania. We emphasize the role of these cells in the outcome of leishmaniasis early after infection, before the adaptive Th-cell immune response.
Collapse
|