1
|
de Carvalho CC, Murray IP, Nguyen H, Nguyen T, Cantu DC. Acyltransferase families that act on thioesters: Sequences, structures, and mechanisms. Proteins 2024; 92:157-169. [PMID: 37776148 DOI: 10.1002/prot.26599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023]
Abstract
Acyltransferases (AT) are enzymes that catalyze the transfer of acyl group to a receptor molecule. This review focuses on ATs that act on thioester-containing substrates. Although many ATs can recognize a wide variety of substrates, sequence similarity analysis allowed us to classify the ATs into fifteen distinct families. Each AT family is originated from enzymes experimentally characterized to have AT activity, classified according to sequence similarity, and confirmed with tertiary structure similarity for families that have crystallized structures available. All the sequences and structures of the AT families described here are present in the thioester-active enzyme (ThYme) database. The AT sequences and structures classified into families and available in the ThYme database could contribute to enlightening the understanding acyl transfer to thioester-containing substrates, most commonly coenzyme A, which occur in multiple metabolic pathways, mostly with fatty acids.
Collapse
Affiliation(s)
- Caio C de Carvalho
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada, USA
| | - Ian P Murray
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada, USA
| | - Hung Nguyen
- Department of Computer Science and Software Engineering, Auburn University, Auburn, Alabama, USA
| | - Tin Nguyen
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada, USA
- Department of Computer Science and Software Engineering, Auburn University, Auburn, Alabama, USA
| | - David C Cantu
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada, USA
| |
Collapse
|
2
|
Yu Q, Sun L, Peng F, Sun C, Xiong F, Sun M, Liu J, Peng C, Zhou Q. Antimicrobial Activity of Stilbenes from Bletilla striata against Cutibacterium acnes and Its Effect on Cell Membrane. Microorganisms 2023; 11:2958. [PMID: 38138103 PMCID: PMC10746055 DOI: 10.3390/microorganisms11122958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The abnormal proliferation of Cutibacterium acnes is the main cause of acne vulgaris. Natural antibacterial plant extracts have gained great interest due to the efficacy and safety of their use in skin care products. Bletilla striata is a common externally used traditional Chinese medicine, and several of its isolated stilbenes were reported to exhibit good antibacterial activity. In this study, the antimicrobial activity of stilbenes from B. striata (BSS) against C. acnes and its potential effect on cell membrane were elucidated by determining the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), bacterial growth curve, adenosine triphosphate (ATP) levels, membrane potential (MP), and the expression of genes related to fatty acid biosynthesis in the cell membrane. In addition, the morphological changes in C. acnes by BSS were observed using transmission electron microscopy (TEM). Experimentally, we verified that BSS possessed significant antibacterial activity against C. acnes, with an MIC and MBC of 15.62 μg/mL and 62.5 μg/mL, respectively. The growth curve indicated that BSS at 2 MIC, MIC, 1/2 MIC, and 1/4 MIC concentrations inhibited the growth of C. acnes. TEM images demonstrated that BSS at an MIC concentration disrupted the morphological structure and cell membrane in C. acnes. Furthermore, the BSS at the 2 MIC, MIC, and 1/2 MIC concentrations caused a decrease in the intracellular ATP levels and the depolarization of the cell membrane as well as BSS at an MIC concentration inhibited the expression of fatty acid biosynthesis-associated genes. In conclusion, BSS could exert good antimicrobial activity by interfering with cell membrane in C. acnes, which have the potential to be developed as a natural antiacne additive.
Collapse
Affiliation(s)
- Qian Yu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Luyao Sun
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fu Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chen Sun
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fang Xiong
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Meiji Sun
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Juan Liu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qinmei Zhou
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
3
|
Genomic Insights into Omega-3 Polyunsaturated Fatty Acid Producing Shewanella sp. N2AIL from Fish Gut. BIOLOGY 2022; 11:biology11050632. [PMID: 35625360 PMCID: PMC9138089 DOI: 10.3390/biology11050632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022]
Abstract
The genus Shewanella is widely distributed in niches ranging from an aquatic environment to spoiled fish and is loaded with various ecologically and commercially important metabolites. Bacterial species under this genus find application in bioelectricity generation and bioremediation due to their capability to use pollutants as the terminal electron acceptor and could produce health-beneficial omega-3 fatty acids, particularly eicosapentaenoic acid (EPA). Here, the genome sequence of an EPA-producing bacterium, Shewanella sp. N2AIL, isolated from the gastrointestinal tract of Tilapia fish, is reported. The genome size of the strain was 4.8 Mb with a GC content of 46.3% containing 4385 protein-coding genes. Taxonogenomic analysis assigned this strain to the genus Shewanella on the basis of average nucleotide identity (ANI) and in silico DNA-DNA hybridization (DDH), phylogenetically most closely related with S. baltica NCTC 10735T. The comparative genome analysis with the type strain of S. baltica revealed 693 unique genes in the strain N2AIL, highlighting the variation at the strain level. The genes associated with stress adaptation, secondary metabolite production, antibiotic resistance, and metal reduction were identified in the genome suggesting the potential of the bacterium to be explored as an industrially important strain. PUFA synthase gene cluster of size ~20.5 kb comprising all the essential domains for EPA biosynthesis arranged in five ORFs was also identified in the strain N2AIL. The study provides genomic insights into the diverse genes of Shewanella sp. N2AIL, which is particularly involved in adaptation strategies and prospecting secondary metabolite potential, specifically the biosynthesis of omega-3 polyunsaturated fatty acids.
Collapse
|
4
|
Functional Analysis of an Acyltransferase-Like Domain from Polyunsaturated Fatty Acid Synthase in Thraustochytrium. Microorganisms 2021; 9:microorganisms9030626. [PMID: 33803061 PMCID: PMC8003026 DOI: 10.3390/microorganisms9030626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Biosynthesis of very long chain polyunsaturated fatty acids (VLCPUFA) such as docosahexaenoic acid (DHA, 22:6-4,7,10,13,16,19) and docosapentaenoic acid (DPA, 22:5-4,7,10,13,16) in protist Thraustochytrium is catalyzed by a polyunsaturated fatty acids (PUFA) synthase comprising three large subunits, each with multiple catalytic domains. This study used complementation test, in vitro assays, and functional expression to characterize an acyltransferase (AT)-like domain in Subunit-B of a PUFA synthase from Thraustochytrium. Complementation test in Escherichia coli showed that the AT-like domain could not restore the growth phenotype of a temperature-sensitive mutant (∆fabDts) defective in malonyl-CoA:ACP transacylase activity. In vitro assays showed that the AT-like domain possessed thioesterase activity towards a few acyl-CoAs tested where docosahexaenoyl-CoA (DHA-CoA) was the preferred substrate. Expression of this domain in an E. coli mutant (∆fadD) defective in acyl-CoA synthetase activity resulted in the increased accumulation of free fatty acids. Site-directed mutagenesis showed that the substitution of two putative active site residues, serine at 96 (S96) and histidine at 220 (H220), in the AT-like domain significantly reduced its activity towards DHA-CoA and accumulation of free fatty acids in the ∆fadD mutant. These results indicate that the AT-like domain of the PUFA synthase does not function as a malonyl-CoA:ACP transacylase, rather it functions as a thioesterase. It might catalyze the last step of the VLCPUFA biosynthesis by releasing freshly synthesized VLCPUFAs attached to ACP domains of the PUFA synthase in Thraustochytrium.
Collapse
|
5
|
Candidate genes linked to QTL regions associated with fatty acid composition in oil palm. Biologia (Bratisl) 2021. [DOI: 10.2478/s11756-020-00563-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Kumar V, Sharma A, Pratap S, Kumar P. Biochemical and biophysical characterization of 1,4-naphthoquinone as a dual inhibitor of two key enzymes of type II fatty acid biosynthesis from Moraxella catarrhalis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:1131-1142. [PMID: 30282611 DOI: 10.1016/j.bbapap.2018.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/17/2018] [Accepted: 08/20/2018] [Indexed: 02/03/2023]
Abstract
The fatty acid biosynthesis (FAS II) is a vital process in bacteria and regarded as an attractive pathway for the development of potential antimicrobial agents. In this study, we report 1,4-naphthoquinone (NPQ) as a dual inhibitor of two key enzymes of FAS II pathway, namely FabD (Malonyl-CoA:ACP transacylase) and FabZ (β-hydroxyacyl-ACP dehydratase). Mode of inhibition of NPQ was found to be non-competitive for both enzymes with IC50 of 26.67 μΜ and 23.18 μΜ against McFabZ and McFabD respectively. Conformational changes in secondary and tertiary structures marked by the loss of helical contents were observed in both enzymes upon NPQ binding. The fluorescence quenching was found to be static with a stable ground state complex formation. ITC based studies have shown that NPQ is binding to McFabZ with a stronger affinity (~1.5×) as compared to McFabD. Molecular docking studies have found that NPQ interacts with key residues of both McFabD (Ser209, Arg126, and Leu102) and McFabZ (His74 and Tyr112) enzymes. Both complexes have shown the structural stability during the 20 ns run of molecular dynamics based simulations. Altogether, the present study suggests that NPQ scaffold can be exploited as a multi-targeted inhibitor of FAS II pathway, and these biochemical and biophysical findings will further help in the development of potent antibacterial agents targeting FAS II pathway.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, India
| | - Anchal Sharma
- Department of Biotechnology, Indian Institute of Technology Roorkee, India
| | - Shivendra Pratap
- Department of Biotechnology, Indian Institute of Technology Roorkee, India
| | - Pravindra Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, India.
| |
Collapse
|
7
|
Biophysical and in silico interaction studies of aporphine alkaloids with Malonyl-CoA: ACP transacylase (FabD) from drug resistant Moraxella catarrhalis. Biochimie 2018; 149:18-33. [DOI: 10.1016/j.biochi.2018.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/21/2018] [Indexed: 01/23/2023]
|
8
|
Suo B, Yang H, Wang Y, Lv H, Li Z, Xu C, Ai Z. Comparative Proteomic and Morphological Change Analyses of Staphylococcus aureus During Resuscitation From Prolonged Freezing. Front Microbiol 2018; 9:866. [PMID: 29774015 PMCID: PMC5943506 DOI: 10.3389/fmicb.2018.00866] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 04/13/2018] [Indexed: 12/05/2022] Open
Abstract
When frozen, Staphylococcus aureus survives in a sublethally injured state. However, S. aureus can recover at a suitable temperature, which poses a threat to food safety. To elucidate the resuscitation mechanism of freezing survived S. aureus, we used cells stored at -18°C for 90 days as controls. After resuscitating the survived cells at 37°C, the viable cell numbers were determined on tryptic soy agar with 0.6% yeast extract (TSAYE), and the non-injured-cell numbers were determined on TSAYE supplemented with 10% NaCl. The results showed that the total viable cell number did not increase within the first 3 h of resuscitation, but the osmotic regulation ability of freezing survived cells gradually recovered to the level of healthy cells, which was evidenced by the lack of difference between the two samples seen by differential cell enumeration. Scanning electron microscopy (SEM) showed that, compared to late exponential stage cells, some frozen survived cells underwent splitting and cell lysis due to deep distortion and membrane rupture. Transmission electron microscopy (TEM) showed that, in most of the frozen survived cells, the nucleoids (low electronic density area) were loose, and the cytoplasmic matrices (high electronic density area) were sparse. Additionally, a gap was seen to form between the cytoplasmic membranes and the cell walls in the frozen survived cells. The morphological changes were restored when the survived cells were resuscitated at 37°C. We also analyzed the differential proteome after resuscitation using non-labeled high-performance liquid chromatography–mass spectrometry (HPLC-MS). The results showed that, compared with freezing survived S. aureus cells, the cells resuscitated for 1 h had 45 upregulated and 73 downregulated proteins. The differentially expressed proteins were functionally categorized by gene ontology enrichment, KEGG pathway, and STRING analyses. Cell membrane synthesis-related proteins, oxidative stress resistance-related proteins, metabolism-related proteins, and virulence factors exhibited distinct expression patterns during resuscitation. These findings have implications in the understanding of the resuscitation mechanism of freezing survived S. aureus, which may facilitate the development of novel technologies for improved detection and control of foodborne pathogens in frozen food.
Collapse
Affiliation(s)
- Biao Suo
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China.,Key Laboratory of Staple Grain Processing, Ministry of Agriculture, Zhengzhou, China.,Henan Engineering Laboratory of Quick-Frozen Flour-Rice Food and Prepared Food, Henan Engineering Research Center for Cold-Chain Food, Henan Agricultural University, Zhengzhou, China
| | - Hua Yang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yuexia Wang
- Key Laboratory of Staple Grain Processing, Ministry of Agriculture, Zhengzhou, China
| | - Haipeng Lv
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zhen Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China.,Key Laboratory of Staple Grain Processing, Ministry of Agriculture, Zhengzhou, China
| | - Chao Xu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China.,Key Laboratory of Staple Grain Processing, Ministry of Agriculture, Zhengzhou, China
| | - Zhilu Ai
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China.,Key Laboratory of Staple Grain Processing, Ministry of Agriculture, Zhengzhou, China.,Henan Engineering Laboratory of Quick-Frozen Flour-Rice Food and Prepared Food, Henan Engineering Research Center for Cold-Chain Food, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
9
|
Marcella AM, Barb AW. The R117A variant of the Escherichia coli transacylase FabD synthesizes novel acyl-(acyl carrier proteins). Appl Microbiol Biotechnol 2017; 101:8431-8441. [DOI: 10.1007/s00253-017-8586-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/29/2017] [Accepted: 10/09/2017] [Indexed: 11/24/2022]
|
10
|
Clinical Relevance of Type II Fatty Acid Synthesis Bypass in Staphylococcus aureus. Antimicrob Agents Chemother 2017; 61:AAC.02515-16. [PMID: 28193654 DOI: 10.1128/aac.02515-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/06/2017] [Indexed: 12/14/2022] Open
Abstract
The need for new antimicrobials to treat bacterial infections has led to the use of type II fatty acid synthesis (FASII) enzymes as front-line targets. However, recent studies suggest that FASII inhibitors may not work against the opportunist pathogen Staphylococcus aureus, as environmental fatty acids favor emergence of multi-anti-FASII resistance. As fatty acids are abundant in the host and one FASII inhibitor, triclosan, is widespread, we investigated whether fatty acid pools impact resistance in clinical and veterinary S. aureus isolates. Simple addition of fatty acids to the screening medium led to a 50% increase in triclosan resistance, as tested in 700 isolates. Moreover, nonculturable triclosan-resistant fatty acid auxotrophs, which escape detection under routine conditions, were uncovered in primary patient samples. FASII bypass in selected isolates correlated with polymorphisms in the acc and fabD loci. We conclude that fatty-acid-dependent strategies to escape FASII inhibition are common among S. aureus isolates and correlate with anti-FASII resistance and emergence of nonculturable variants.
Collapse
|
11
|
Chen JW, Liu WJ, Hu DX, Wang X, Balamurugan S, Alimujiang A, Yang WD, Liu JS, Li HY. Identification of a malonyl CoA-acyl carrier protein transacylase and its regulatory role in fatty acid biosynthesis in oleaginous microalga Nannochloropsis oceanica. Biotechnol Appl Biochem 2017; 64:620-626. [DOI: 10.1002/bab.1531] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/25/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Jia-Wen Chen
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes; College of Life Science; Jinan University; Guangzhou People's Republic of China
| | - Wan-Jun Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes; College of Life Science; Jinan University; Guangzhou People's Republic of China
| | - Dong-Xiong Hu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes; College of Life Science; Jinan University; Guangzhou People's Republic of China
| | - Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes; College of Life Science; Jinan University; Guangzhou People's Republic of China
| | - Srinivasan Balamurugan
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes; College of Life Science; Jinan University; Guangzhou People's Republic of China
| | - Adili Alimujiang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes; College of Life Science; Jinan University; Guangzhou People's Republic of China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes; College of Life Science; Jinan University; Guangzhou People's Republic of China
| | - Jie-Sheng Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes; College of Life Science; Jinan University; Guangzhou People's Republic of China
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes; College of Life Science; Jinan University; Guangzhou People's Republic of China
| |
Collapse
|
12
|
Environmental fatty acids enable emergence of infectious Staphylococcus aureus resistant to FASII-targeted antimicrobials. Nat Commun 2016; 7:12944. [PMID: 27703138 PMCID: PMC5059476 DOI: 10.1038/ncomms12944] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 08/16/2016] [Indexed: 01/11/2023] Open
Abstract
The bacterial pathway for fatty acid biosynthesis, FASII, is a target for development of new anti-staphylococcal drugs. This strategy is based on previous reports indicating that self-synthesized fatty acids appear to be indispensable for Staphylococcus aureus growth and virulence, although other bacteria can use exogenous fatty acids to compensate FASII inhibition. Here we report that staphylococci can become resistant to the FASII-targeted inhibitor triclosan via high frequency mutations in fabD, one of the FASII genes. The fabD mutants can be conditional for FASII and not require exogenous fatty acids for normal growth, and can use diverse fatty acid combinations (including host fatty acids) when FASII is blocked. These mutants show cross-resistance to inhibitors of other FASII enzymes and are infectious in mice. Clinical isolates bearing fabD polymorphisms also bypass FASII inhibition. We propose that fatty acid-rich environments within the host, in the presence of FASII inhibitors, might favour the emergence of staphylococcal strains displaying resistance to multiple FASII inhibitors. The bacterial pathway for fatty acid biosynthesis, FASII, is a target for development of new anti-staphylococcal drugs. Here, Morvan et al. show that exogenous fatty acids can favour the emergence of staphylococcal strains displaying resistance to multiple FASII inhibitors.
Collapse
|
13
|
Liu Y, Feng Y, Wang Y, Li X, Cao X, Xue S. Structural and biochemical characterization of MCAT from photosynthetic microorganism Synechocystis sp. PCC 6803 reveal its stepwise catalytic mechanism. Biochem Biophys Res Commun 2015; 457:398-403. [DOI: 10.1016/j.bbrc.2015.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 01/03/2015] [Indexed: 11/26/2022]
|
14
|
Beld J, Lee DJ, Burkart MD. Fatty acid biosynthesis revisited: structure elucidation and metabolic engineering. MOLECULAR BIOSYSTEMS 2015; 11:38-59. [PMID: 25360565 PMCID: PMC4276719 DOI: 10.1039/c4mb00443d] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases' many intricate structural and regulatory elements. In this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field.
Collapse
Affiliation(s)
- Joris Beld
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA.
| | | | | |
Collapse
|
15
|
Puniya BL, Kulshreshtha D, Verma SP, Kumar S, Ramachandran S. Integrated gene co-expression network analysis in the growth phase of Mycobacterium tuberculosis reveals new potential drug targets. MOLECULAR BIOSYSTEMS 2014; 9:2798-815. [PMID: 24056838 DOI: 10.1039/c3mb70278b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have carried out weighted gene co-expression network analysis of Mycobacterium tuberculosis to gain insights into gene expression architecture during log phase growth. The differentially expressed genes between at least one pair of 11 different M. tuberculosis strains as source of biological variability were used for co-expression network analysis. This data included genes with highest coefficient of variation in expression. Five distinct modules were identified using topological overlap based clustering. All the modules together showed significant enrichment in biological processes: fatty acid biosynthesis, cell membrane, intracellular membrane bound organelle, DNA replication, Quinone biosynthesis, cell shape and peptidoglycan biosynthesis, ribosome and structural constituents of ribosome and transposition. We then extracted the co-expressed connections which were supported either by transcriptional regulatory network or STRING database or high edge weight of topological overlap. The genes trpC, nadC, pitA, Rv3404c, atpA, pknA, Rv0996, purB, Rv2106 and Rv0796 emerged as top hub genes. After overlaying this network on the iNJ661 metabolic network, the reactions catalyzed by 15 highly connected metabolic genes were knocked down in silico and evaluated by Flux Balance Analysis. The results showed that in 12 out of 15 cases, in 11 more than 50% of reactions catalyzed by genes connected through co-expressed connections also had altered fluxes. The modules 'Turquoise', 'Blue' and 'Red' also showed enrichment in essential genes. We could map 152 of the previously known or proposed drug targets in these modules and identified 15 new potential drug targets based on their high degree of co-expressed connections and strong correlation with module eigengenes.
Collapse
Affiliation(s)
- Bhanwar Lal Puniya
- G N Ramachandran Knowledge Centre for Genome Informatics, CSIR - Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India.
| | | | | | | | | |
Collapse
|
16
|
Tian J, Zheng M, Yang G, Zheng L, Chen J, Yang B. Cloning and stress-responding expression analysis of malonyl CoA-acyl carrier protein transacylase gene of Nannochloropsis gaditana. Gene 2013; 530:33-8. [DOI: 10.1016/j.gene.2013.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/11/2013] [Accepted: 08/02/2013] [Indexed: 11/25/2022]
|
17
|
Liu Y, Zhang Y, Cao X, Xue S. Cloning, purification, crystallization and preliminary X-ray crystallographic analysis of MCAT from Synechocystis sp. PCC 6803. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1256-9. [PMID: 24192363 DOI: 10.1107/s1744309113026274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/23/2013] [Indexed: 11/10/2022]
Abstract
Malonyl-coenzymeA:acyl-carrier protein transacylase (MCAT), which catalyzes the transfer of the malonyl group from malonyl-CoA to acyl-carrier protein (ACP), is an essential enzyme in type II fatty-acid synthesis. The enzyme MCAT from Synechocystis sp. PCC 6803 (spMCAT), the first MCAT counterpart from a cyanobacterium, was cloned, purified and crystallized in order to determine its three-dimensional crystal structure. A higher-quality crystal with better diffraction was obtained by crystallization optimization. The crystal diffracted to 1.8 Å resolution and belonged to the orthorhombic space group P2(1)2(1)2, with unit-cell parameters a = 43.22, b = 149.21, c = 40.59 Å. Matthews coefficient calculations indicated that the crystal contained one spMCAT molecule in the asymmetric unit with a Matthews coefficient of 2.18 Å(3) Da(-1) and a solvent content of 43.65%.
Collapse
Affiliation(s)
- Yinghui Liu
- Marine Bioproducts Engineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | | | | | | |
Collapse
|
18
|
Liew CW, Nilsson M, Chen MW, Sun H, Cornvik T, Liang ZX, Lescar J. Crystal structure of the acyltransferase domain of the iterative polyketide synthase in enediyne biosynthesis. J Biol Chem 2012; 287:23203-15. [PMID: 22589546 DOI: 10.1074/jbc.m112.362210] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Biosynthesis of the enediyne natural product dynemicin in Micromonospora chersina is initiated by DynE8, a highly reducing iterative type I polyketide synthase that assembles polyketide intermediates from the acetate units derived solely from malonyl-CoA. To understand the substrate specificity and the evolutionary relationship between the acyltransferase (AT) domains of DynE8, fatty acid synthase, and modular polyketide synthases, we overexpressed a 44-kDa fragment of DynE8 (hereafter named AT(DYN10)) encompassing its entire AT domain and the adjacent linker domain. The crystal structure at 1.4 Å resolution unveils a α/β hydrolase and a ferredoxin-like subdomain with the Ser-His catalytic dyad located in the cleft between the two subdomains. The linker domain also adopts a α/β fold abutting the AT catalytic domain. Co-crystallization with malonyl-CoA yielded a malonyl-enzyme covalent complex that most likely represents the acyl-enzyme intermediate. The structure explains the preference for malonyl-CoA with a conserved arginine orienting the carboxylate group of malonate and several nonpolar residues that preclude α-alkyl malonyl-CoA binding. Co-crystallization with acetyl-CoA revealed two noncovalently bound acetates generated by the enzymatic hydrolysis of acetyl-CoA that acts as an inhibitor for DynE8. This suggests that the AT domain can upload the acyl groups from either malonyl-CoA or acetyl-CoA onto the catalytic Ser(651) residue. However, although the malonyl group can be transferred to the acyl carrier protein domain, transfer of the acetyl group to the acyl carrier protein domain is suppressed. Local structural differences may account for the different stability of the acyl-enzyme intermediates.
Collapse
Affiliation(s)
- Chong Wai Liew
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | | | | | | | | | | | | |
Collapse
|
19
|
Sreshty MAL, Surolia A, Sastry GN, Murty US. Deorphanization of Malonyl CoA:ACP Transacylase Drug Target in Plasmodium falciparum (PfFabD) Using Bacterial Antagonists: A ‘Piggyback’ Approach for Antimalarial Drug Discovery. Mol Inform 2012; 31:281-99. [DOI: 10.1002/minf.201100051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 02/16/2012] [Indexed: 11/09/2022]
|