1
|
Mahapatra C, Kishore A, Gawad J, Al-Emam A, Kouzeiha RA, Rusho MA. Review of electrophysiological models to study membrane potential changes in breast cancer cell transformation and tumor progression. Front Physiol 2025; 16:1536165. [PMID: 40110186 PMCID: PMC11920174 DOI: 10.3389/fphys.2025.1536165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/14/2025] [Indexed: 03/22/2025] Open
Abstract
The transformation of normal breast cells into cancerous cells is a complex process influenced by both genetic and microenvironmental factors. Recent studies highlight the significant role of membrane potential (Vm) alterations in this transformation. Cancer cells typically exhibit a depolarized resting membrane potential (RMP) compared to normal cells, which correlates with increased cellular activity and more aggressive cancer behavior. These RMP and Vm changes are associated with altered ion channel activity, altered calcium dynamics, mitochondrial dysfunction, modified gap junction communication, and disrupted signaling pathways. Such fluctuations in RMP and Vm influence key processes in cancer progression, including cell proliferation, migration, and invasion. Notably, more aggressive subtypes of breast cancer cells display more frequent and pronounced Vm fluctuations. Understanding the electrical properties of cancer cells provides new insights into their behavior and offers potential therapeutic targets, such as ion channels and Vm regulation. This review synthesizes current research on how various factors modulate membrane potential and proposes an electrophysiological model of breast cancer cells based on experimental and clinical data from the literature. These findings may pave the way for novel pharmacological targets for clinicians, researchers, and pharmacologists in treating breast cancer.
Collapse
Affiliation(s)
| | - Arnaw Kishore
- Microbiology and Immunology, Xavier University School of Medicine, Aruba, Netherlands
| | - Jineetkumar Gawad
- Department of Pharmaceutical Chemistry, VIVA Institute of Pharmacy, Virar, India
| | - Ahmed Al-Emam
- Department of Pathology, College of Medicine, King Khalid University, Asir, Saudi Arabia
| | - Riad Azzam Kouzeiha
- Faculty of Medical Sciences, Lebanese University, Hadath Campus, Beirut, Lebanon
| | - Maher Ali Rusho
- Department of Biomedical Engineering, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
2
|
Nandi S, Sikder R, Rapior S, Arnould S, Simal-Gandara J, Acharya K. A review for cancer treatment with mushroom metabolites through targeting mitochondrial signaling pathway: In vitro and in vivo evaluations, clinical studies and future prospects for mycomedicine. Fitoterapia 2024; 172:105681. [PMID: 37743029 DOI: 10.1016/j.fitote.2023.105681] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Resistance to apoptosis stands as a roadblock to the successful pharmacological execution of anticancer drug effect. A comprehensive insight into apoptotic signaling pathways and an understanding of the mechanisms of apoptosis resistance are crucial to unveil new drug targets. At this juncture, researchers are heading towards natural sources in particular, mushroom as their potential drugs leads to being the reliable source of potent bioactive compounds. Given the continuous increase in cancer cases, the potent anticancer efficacy of mushrooms has inevitably become a fascinating object to researchers due to their higher safety margin and multitarget. This review aimed to collect and summarize all the available scientific data on mushrooms from their extracts to bioactive molecules in order to suggest their anticancer attributes via a mitochondrion -mediated intrinsic signaling mechanism. Compiled data revealed that bioactive components of mushrooms including polysaccharides, sterols and terpenoids as well as extracts prepared using 15 different solvents from 53 species could be effective in the supportive treatment of 20 various cancers. The underlying therapeutic mechanisms of the studied mushrooms are explored in this review through diverse and complementary investigations: in vitro assays, pre-clinical studies and clinical randomized controlled trials. The processes mainly involved were ROS production, mitochondrial membrane dysfunction, and action of caspase 3, caspase 9, XIAP, cIAP, p53, Bax, and Bcl-2. In summary, the study provides facts pertaining to the potential beneficial effect of mushroom extracts and their active compounds against various types of cancer and is shedding light on the underlying targeted signaling pathways.
Collapse
Affiliation(s)
- Sudeshna Nandi
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, WB 700019, India
| | - Rimpa Sikder
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, WB 700019, India
| | - Sylvie Rapior
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Laboratory of Botany, Phytochemistry and Mycology, Faculty of Pharmacy, 15 Avenue Charles Flahault, 34093 Montpellier, France
| | - Stéphanie Arnould
- Centre for Integrative Biology, Molecular, Cellular & Developmental biology unit, CNRS UMR 5077, Université Toulouse III, 118 route de Narbonne, 31062 Toulouse, France
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain.
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, WB 700019, India.
| |
Collapse
|
3
|
Yang Y, Chen CF, Guo FF, Gu YQ, Liang H, Chen ZF. In vitro and in vivo antitumor activities of Ru and Cu complexes with terpyridine derivatives as ligands. J Inorg Biochem 2023; 246:112284. [PMID: 37327592 DOI: 10.1016/j.jinorgbio.2023.112284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023]
Abstract
Six terpyridine ligands(L1-L6) with chlorophenol or bromophenol moiety were obtained to prepare metal terpyridine derivatives complexes: [Ru(L1)(DMSO)Cl2] (1), [Ru(L2)(DMSO)Cl2] (2), [Ru(L3)(DMSO)Cl2] (3), [Cu(L4)Br2]·DMSO (4), Cu(L5)Br2 (5), and [Cu(L6)Br2]⋅CH3OH (6). The complexes were fully characterized. Ru complexes 1-3 showed low cytotoxicity against the tested cell lines. Cu complexes 4-6 exhibited higher cytotoxicity against several tested cancer cell lines compared to their ligands and cisplatin, and lower toxicity towards normal human cells. Copper(II) complexes 4-6 arrested T-24 cell cycle in G1 phase. The mechanism studies indicated that complexes 4-6 accumulated in mitochondria of T-24 cells and caused significant reduction of the mitochondrial membrane potential, increase of the intracellular ROS levels and the release of Ca2+, and the activation of the Caspase cascade, finally inducing apoptosis. Animal studies showed that complex 6 obviously inhibited the tumor growth in a mouse xenograft model bearing T-24 tumor cells without significant toxicity.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Department of Chemistry and Pharmacy, Guilin Normal College, Guilin 541004, China
| | - Cai-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Fei-Fei Guo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yun-Qiong Gu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; School of Environment and Life Science, Nanning Normal University, Nanning 530001, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
4
|
Popov LD. Mitochondria as intracellular signalling organelles. An update. Cell Signal 2023:110794. [PMID: 37422005 DOI: 10.1016/j.cellsig.2023.110794] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/23/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023]
Abstract
Traditionally, mitochondria are known as "the powerhouse of the cell," responsible for energy (ATP) generation (by the electron transport chain, oxidative phosphorylation, the tricarboxylic acid cycle, and fatty acid ß-oxidation), and for the regulation of several metabolic processes, including redox homeostasis, calcium signalling, and cellular apoptosis. The extensive studies conducted in the last decades portray mitochondria as multifaceted signalling organelles that ultimately command cells' survival or death. Based on current knowledge, we'll outline the mitochondrial signalling to other intracellular compartments in homeostasis and pathology-related mitochondrial stress conditions here. The following topics are discussed: (i) oxidative stress and mtROS signalling in mitohormesis, (ii) mitochondrial Ca2+ signalling; (iii) the anterograde (nucleus-to-mitochondria) and retrograde (mitochondria-to-nucleus) signal transduction, (iv) the mtDNA role in immunity and inflammation, (v) the induction of mitophagy- and apoptosis - signalling cascades, (vi) the mitochondrial dysfunctions (mitochondriopathies) in cardiovascular, neurodegenerative, and malignant diseases. The novel insights into molecular mechanisms of mitochondria-mediated signalling can explain mitochondria adaptation to metabolic and environmental stresses to achieve cell survival.
Collapse
Affiliation(s)
- Lucia-Doina Popov
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania.
| |
Collapse
|
5
|
Ashrafuzzaman M. Mitochondrial ion channels in aging and related diseases. Curr Aging Sci 2022; 15:97-109. [PMID: 35043775 DOI: 10.2174/1874609815666220119094324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/06/2021] [Accepted: 11/16/2021] [Indexed: 11/22/2022]
Abstract
Transport of materials and information across cellular boundaries, such as plasma, mitochondrial and nuclear membranes, happens mainly through varieties of ion channels and pumps. Various biophysical and biochemical processes play vital roles. The underlying mechanisms and associated phenomenological lipid membrane transports are linked directly or indirectly to the cell health condition. Mitochondrial membranes (mitochondrial outer membrane (MOM) and mitochondrial inner membrane (MIM)) host crucial cellular processes. Their malfunction is often found responsible for the rise of cell-originated diseases, including cancer, Alzheimer's, neurodegenerative disease, etc. A large number of ion channels active across MOM and MIM are known to belong to vital cell-based structures found to be linked directly to cellular signaling. Hence their malfunctions are often found to contribute to abnormalities in intracellular communication, which may even be associated with the rise of various diseases. In this article, the aim is to pinpoint ion channels that are directly or indirectly linked to especially aging and related abnormalities in health conditions. An attempt has been made to address the natural structures of these channels, their mutated conditions, and the ways we may cause interventions in their malfunctioning. The malfunction of ion channel subunits, including especially various proteins, involved directly in channel formation and/or indirectly in channel stabilization, leads to the rise of various channel-specific diseases, which are known as channelopathies. Channelopathies in aging will be discussed briefly. This mini-review may be found as an important reference for drug discovery scientists dealing with aging-related diseases.
Collapse
Affiliation(s)
- Md Ashrafuzzaman
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Zeng Z, Fang C, Zhang Y, Chen CX, Zhang YF, Zhang K. Mitochondria-Targeted Nanocarriers Promote Highly Efficient Cancer Therapy: A Review. Front Bioeng Biotechnol 2021; 9:784602. [PMID: 34869294 PMCID: PMC8633539 DOI: 10.3389/fbioe.2021.784602] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/18/2021] [Indexed: 12/15/2022] Open
Abstract
Mitochondria are the primary organelles which can produce adenosine triphosphate (ATP). They play vital roles in maintaining normal functions. They also regulated apoptotic pathways of cancer cells. Given that, designing therapeutic agents that precisely target mitochondria is of great importance for cancer treatment. Nanocarriers can combine the mitochondria with other therapeutic modalities in cancer treatment, thus showing great potential to cancer therapy in the past few years. Herein, we summarized lipophilic cation- and peptide-based nanosystems for mitochondria targeting. This review described how mitochondria-targeted nanocarriers promoted highly efficient cancer treatment in photodynamic therapy (PDT), chemotherapy, combined immunotherapy, and sonodynamic therapy (SDT). We further discussed mitochondria-targeted nanocarriers’ major challenges and future prospects in clinical cancer treatment.
Collapse
Affiliation(s)
- Zeng Zeng
- Department of Medical Ultrasound, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Chao Fang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying Zhang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cong-Xian Chen
- Department of Medical Ultrasound, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Yi-Feng Zhang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kun Zhang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Kravenska Y, Checchetto V, Szabo I. Routes for Potassium Ions across Mitochondrial Membranes: A Biophysical Point of View with Special Focus on the ATP-Sensitive K + Channel. Biomolecules 2021; 11:1172. [PMID: 34439838 PMCID: PMC8393992 DOI: 10.3390/biom11081172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 12/18/2022] Open
Abstract
Potassium ions can cross both the outer and inner mitochondrial membranes by means of multiple routes. A few potassium-permeable ion channels exist in the outer membrane, while in the inner membrane, a multitude of different potassium-selective and potassium-permeable channels mediate K+ uptake into energized mitochondria. In contrast, potassium is exported from the matrix thanks to an H+/K+ exchanger whose molecular identity is still debated. Among the K+ channels of the inner mitochondrial membrane, the most widely studied is the ATP-dependent potassium channel, whose pharmacological activation protects cells against ischemic damage and neuronal injury. In this review, we briefly summarize and compare the different hypotheses regarding the molecular identity of this patho-physiologically relevant channel, taking into account the electrophysiological characteristics of the proposed components. In addition, we discuss the characteristics of the other channels sharing localization to both the plasma membrane and mitochondria.
Collapse
Affiliation(s)
| | | | - Ildiko Szabo
- Department of Biology, University of Padova, 35131 Padova, Italy; (Y.K.); (V.C.)
| |
Collapse
|
8
|
Natural Products Targeting the Mitochondria in Cancers. Molecules 2020; 26:molecules26010092. [PMID: 33379233 PMCID: PMC7795732 DOI: 10.3390/molecules26010092] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 12/13/2022] Open
Abstract
There are abundant sources of anticancer drugs in nature that have a broad prospect in anticancer drug discovery. Natural compounds, with biological activities extracted from plants and marine and microbial metabolites, have significant antitumor effects, but their mechanisms are various. In addition to providing energy to cells, mitochondria are involved in processes, such as cell differentiation, cell signaling, and cell apoptosis, and they have the ability to regulate cell growth and cell cycle. Summing up recent data on how natural products regulate mitochondria is valuable for the development of anticancer drugs. This review focuses on natural products that have shown antitumor effects via regulating mitochondria. The search was done in PubMed, Web of Science, and Google Scholar databases, over a 5-year period, between 2015 and 2020, with a keyword search that focused on natural products, natural compounds, phytomedicine, Chinese medicine, antitumor, and mitochondria. Many natural products have been studied to have antitumor effects on different cells and can be further processed into useful drugs to treat cancer. In the process of searching for valuable new drugs, natural products such as terpenoids, flavonoids, saponins, alkaloids, coumarins, and quinones cover the broad space.
Collapse
|
9
|
Interferon-γ and high glucose-induced opening of Cx43 hemichannels causes endothelial cell dysfunction and damage. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118720. [PMID: 32302669 DOI: 10.1016/j.bbamcr.2020.118720] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 12/17/2022]
Abstract
Both IFN-γ or high glucose have been linked to systemic inflammatory imbalance with serious repercussions not only for endothelial function but also for the formation of the atherosclerotic plaque. Although the uncontrolled opening of connexin hemichannels underpins the progression of various diseases, whether they are implicated in endothelial cell dysfunction and damage evoked by IFN-γ plus high glucose remains to be fully elucidated. In this study, by using live cell imaging and biochemical approaches, we demonstrate that IFN-γ plus high glucose augment endothelial connexin43 hemichannel activity, resulting in the increase of ATP release, ATP-mediated Ca2+ dynamics and production of nitric oxide and superoxide anion, as well as impaired insulin-mediated uptake and intercellular diffusion of glucose and cell survival. Based on our results, we propose that connexin 43 hemichannel inhibition could serve as a new approach for tackling the activation of detrimental signaling resulting in endothelial cell dysfunction and death caused by inflammatory mediators during atherosclerosis secondary to diabetes mellitus.
Collapse
|
10
|
Zhang CX. The protective role of DMBT1 in cervical squamous cell carcinoma. Kaohsiung J Med Sci 2019; 35:739-749. [PMID: 31400059 DOI: 10.1002/kjm2.12117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/16/2019] [Indexed: 01/03/2023] Open
Abstract
To explore the possible influence of deleted in malignant brain tumor 1 (DMBT1) in cervical squamous cell carcinoma (CSCC). DMBT1 expression was detected by Real-time reverse transcription PCR (qRT-PCR) and immunohistochemistry in CSCC and adjacent normal tissues from 167 CSCC patients, and its relationship with clinicopathological features and prognosis was analyzed. Besides, the in vitro experiments, including MTT, Cell-Light EdU, Wound-healing, Transwell invasion, Annexin V-FITC/PI staining, qRT-PCR, and Western blot, were performed in SiHa and CaSKi cells, which were both divided into Blank, Vector, and DMBT1 groups. The mRNA level and the positive expression rate of DMBT1 in CSCC tissues were lower than the adjacent normal tissues. Moreover, DMBT1 positive rate was linked to FIGO stage, tumor diameter, lymph node metastasis, and tumor differentiation of CSCC. Besides, patients with positive DMBT1 expression had higher 5-year survival rate than those negative ones. According to the in vitro experiments, SiHa and CaSKi cells with overexpressed DMBT1 showed the inhibition of proliferative ability and the enhancement of apoptosis with the upregulated pro-apoptosis proteins (Bax and Cleaved caspase-3) and down-regulated anti-apoptosis protein Bcl-2. Moreover, compared with Blank group, DMBT1 group presented decrease in the migration and invasion of SiHa and CaSKi cells with the down-expression of interstitial markers (N-cadherin and Vimentin) and the up-expression of epithelial marker E-cadherin. DMBT1 was decreased in CSCC, whereas its overexpression can not only inhibit the proliferation, migration, and invasion, but induce the apoptosis of human CSCC cells, being a novel strategy for CSCC treatment.
Collapse
|
11
|
Weber JJ, Clemensson LE, Schiöth HB, Nguyen HP. Olesoxime in neurodegenerative diseases: Scrutinising a promising drug candidate. Biochem Pharmacol 2019; 168:305-318. [PMID: 31283931 DOI: 10.1016/j.bcp.2019.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/03/2019] [Indexed: 12/14/2022]
Abstract
Over the last years, the experimental compound olesoxime, a mitochondria-targeting cholesterol derivative, has emerged as a promising drug candidate for neurodegenerative diseases. Numerous preclinical studies have successfully proved olesoxime's neuroprotective properties in cell and animal models of clinical conditions such as amyotrophic lateral sclerosis, Huntington disease, Parkinson disease, peripheral neuropathy and spinal muscular atrophy. The beneficial effects were attributed to olesoxime's potential impact on oxidative stress, mitochondrial permeability transition or cholesterol homoeostasis. Although no significant benefits have been demonstrated in patients of amyotrophic lateral sclerosis, and only the first 12 months of a phase II/III clinical trial showed an improvement in motor symptoms of spinal muscular atrophy, this orphan drug may still offer undiscovered potential in the treatment of neurological diseases. In our earlier preclinical studies, we demonstrated that administration of olesoxime in mouse and rat models of Huntington disease improved psychiatric and molecular phenotypes. Aside from stabilising mitochondrial function, the drug reduced the overactivation of calpains, a class of calcium-dependent proteases entangled in neurodegenerative conditions. This observation may be credited to olesoxime's action on calcium dyshomeostasis, a further hallmark in neurodegeneration, and linked to its targets TSPO and VDAC, two proteins of the outer mitochondrial membrane associated with mitochondrial calcium handling. Further research into the mode of action of olesoxime under pathological conditions, including its effect on neuronal calcium homeostasis, may strengthen the untapped potential of olesoxime or other similar compounds as a therapeutic for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jonasz Jeremiasz Weber
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.
| | | | - Helgi Birgir Schiöth
- Department of Neuroscience, Uppsala University, Uppsala, Sweden; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia.
| | - Huu Phuc Nguyen
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany; Department of Human Genetics, Ruhr-University Bochum, Bochum, Germany.
| |
Collapse
|
12
|
Xue JJ, Zhang LY, Hou HJ, Li Y, Liang WS, Yang KH. Protective effect of propofol on hydrogen peroxide-induced human esophageal carcinoma via blocking the Wnt/β-catenin signaling pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 21:1297-1304. [PMID: 30627375 PMCID: PMC6312680 DOI: 10.22038/ijbms.2018.29141.7039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objective(s): To analyze the potential influences of propofol on the oxidative stress of H2O2-induced human esophageal squamous cell carcinoma (ESCC) Eca109 cell through mediating the Wnt/β-catenin signaling pathway. Materials and Methods: Eca109 cells were classified into 5 groups: Control group, H2O2 group, Propofol + H2O2 group, Dkk1 (Dickkopf-1, Wnt/β-catenin pathway antagonist) + H2O2 group, and Propofol + LiCl (Lithium chloride, Wnt/β-catenin pathway agonist) + H2O2 group. Western blotting was performed to determine the protein expressions, flow cytometry to measure the content of ROS, immunofluorescence staining to detect the oxidative DNA damage, as well as MTT, AnnexinV-FITC/PI, Wound-healing, and Transwell assays to test the biological characteristics of Eca109 cells. Results: H2O2 resulted in the increased nuclear and cytoplasmatic expression of β-catenin, reduced p-GSK3β expression, up-regulated ROS content, and induced oxidative DNA damage in Eca109 cells. Moreover, Eca109 cells treated with H2O2 alone had enhanced cell proliferation and metastasis but decreased cell apoptosis, as compared with those without any treatment; meanwhile, the declined Cyt C, Bax, and cleaved caspase-3, as well as the elevated Bcl-2 were also observed in Eca109 cells in the H2O2 group, which were reversed by Propofol or Dkk1. Moreover, Propofol could inhibit the effect of LiCl on activating the Wnt/β-catenin signaling pathway in H2O2-induced Eca109 cells. Conclusion: Propofol elicits protective effects to inhibit H2O2-induced proliferation and metastasis and promote apoptosis of Eca109 cells via blocking the Wnt/β-catenin pathway, offering a possible therapeutic modality for ESCC.
Collapse
Affiliation(s)
- Jian-Jun Xue
- Evidence Based Medicine Centre, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou 730000, China.,Gansu Provincial Hospital of TCM, Lanzhou 730050, China
| | | | - Huai-Jing Hou
- Gansu Provincial Hospital of TCM, Lanzhou 730050, China
| | - Yan Li
- Gansu Provincial Hospital of TCM, Lanzhou 730050, China
| | | | - Ke-Hu Yang
- Evidence Based Medicine Centre, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou 730000, China
| |
Collapse
|
13
|
Suppression of lncRNA-ATB prevents amyloid-β-induced neurotoxicity in PC12 cells via regulating miR-200/ZNF217 axis. Biomed Pharmacother 2018; 108:707-715. [DOI: 10.1016/j.biopha.2018.08.155] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/23/2018] [Accepted: 08/28/2018] [Indexed: 11/23/2022] Open
|
14
|
MacDougall G, Anderton RS, Mastaglia FL, Knuckey NW, Meloni BP. Mitochondria and neuroprotection in stroke: Cationic arginine-rich peptides (CARPs) as a novel class of mitochondria-targeted neuroprotective therapeutics. Neurobiol Dis 2018; 121:17-33. [PMID: 30218759 DOI: 10.1016/j.nbd.2018.09.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/26/2018] [Accepted: 09/11/2018] [Indexed: 01/11/2023] Open
Abstract
Stroke is the second leading cause of death globally and represents a major cause of devastating long-term disability. Despite sustained efforts to develop clinically effective neuroprotective therapies, presently there is no clinically available neuroprotective agent for stroke. As a central mediator of neurodamaging events in stroke, mitochondria are recognised as a critical neuroprotective target, and as such, provide a focus for developing mitochondrial-targeted therapeutics. In recent years, cationic arginine-rich peptides (CARPs) have been identified as a novel class of neuroprotective agent with several demonstrated mechanisms of action, including their ability to target mitochondria and exert positive effects on the organelle. This review provides an overview on neuronal mitochondrial dysfunction in ischaemic stroke pathophysiology and highlights the potential beneficial effects of CARPs on mitochondria in the ischaemic brain following stroke.
Collapse
Affiliation(s)
- Gabriella MacDougall
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia; Perron Institute for Neurological and Translational Science, Nedlands, Australia; School of Heath Sciences, and Institute for Health Research, The University Notre Dame Australia, Fremantle, Australia.
| | - Ryan S Anderton
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia; Perron Institute for Neurological and Translational Science, Nedlands, Australia; School of Heath Sciences, and Institute for Health Research, The University Notre Dame Australia, Fremantle, Australia
| | - Frank L Mastaglia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia; Perron Institute for Neurological and Translational Science, Nedlands, Australia
| | - Neville W Knuckey
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia; Perron Institute for Neurological and Translational Science, Nedlands, Australia; Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Bruno P Meloni
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia; Perron Institute for Neurological and Translational Science, Nedlands, Australia; Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, Western Australia, Australia
| |
Collapse
|
15
|
Guo CC, Jiao CH, Gao ZM. Silencing of LncRNA BDNF-AS attenuates Aβ 25-35-induced neurotoxicity in PC12 cells by suppressing cell apoptosis and oxidative stress. Neurol Res 2018; 40:795-804. [PMID: 29902125 DOI: 10.1080/01616412.2018.1480921] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To explore the effects of long non-coding RNA (lncRNA) brain-derived neurotrophic factor anti-sense (BDNF-AS) on the Aβ25-35-induced neurotoxicity in PC12 cells. METHODS PC12 cells were induced by Aβ25-35 to construct cell injury models of Alzheimer's disease (AD), and then transfected with siRNA-BDNF-AS. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to detect the expressions of BDNF-AS and BDNF. Besides, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Hoechst33342 staining were utilized to analyze the cell viability and apoptosis, respectively, Western blotting to evaluate the protein expressions, immunofluorescence to assess the Cytochrome C (Cyt C) release, and Rhodamine 123 (Rh123) to measure the mitochondrial membrane potential (MMP).The evaluation of oxidative stress was conducted via the determination of the levels of reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT). RESULTS Aβ25-35 apparently increased BDNF-AS but decreased BDNF in PC12 cells, which also reduced viability and induced apoptosis of PC12 cells. Silencing of BDNF-AS could significantly up-regulate BDNF in Aβ25-35-induced PC12 cells, with the elevated cell viability. Moreover, silencing BDNF-AS inhibited the apoptosis of Aβ25-35-induced PC12 cells, suppressed the release of Cyt C, reduced the expression of cleaved caspase-3 and Bax, and lowered the mean fluorescence intensity (MFI) of Rh123, but it elevated the expression of Bcl-2. Besides, silencing BDNF-AS also reduced ROS intensity and MDA content, but enhanced the activities of SOD and CAT. CONCLUSION Silencing BDNF-AS exerts protective functions to increase the viability, inhibit the apoptosis and oxidative stress of Aβ25-35-induced PC12 cells by negative regulation of BDNF. ABBREVIATIONS Aβ25-35: amyloid beta peptide 25-35; AD: Alzheimer's disease; LncRNA BDNF-AS: long non-coding RNA brain-derived neurotrophic factor anti-sense; OS: Oxidative stress.
Collapse
Affiliation(s)
- Cong-Cong Guo
- a Department of rehabilitation , The People's Hospital of Zhangqiu , Ji'nan , China
| | - Chun-Hong Jiao
- a Department of rehabilitation , The People's Hospital of Zhangqiu , Ji'nan , China
| | - Zhen-Mei Gao
- b Department of rehabilitation , Affiliated Hospital of Shandong University of Traditional Chinese Medicine , Jinan , China
| |
Collapse
|
16
|
Drummond‐Main CD, Rho JM. Electrophysiological characterization of a mitochondrial inner membrane chloride channel in rat brain. FEBS Lett 2018; 592:1545-1553. [DOI: 10.1002/1873-3468.13042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Christopher D. Drummond‐Main
- Developmental Neurosciences Research Program University of Calgary Alberta Canada
- Alberta Children's Hospital Research Institute University of Calgary Alberta Canada
| | - Jong M. Rho
- Developmental Neurosciences Research Program University of Calgary Alberta Canada
- Alberta Children's Hospital Research Institute University of Calgary Alberta Canada
- Departments of Pediatrics Clinical Neurosciences, and Physiology & Pharmacology University of Calgary Alberta Canada
- Hotchkiss Brain Institute Cumming School of Medicine University of Calgary Alberta Canada
| |
Collapse
|
17
|
Krüger V, Becker T, Becker L, Montilla-Martinez M, Ellenrieder L, Vögtle FN, Meyer HE, Ryan MT, Wiedemann N, Warscheid B, Pfanner N, Wagner R, Meisinger C. Identification of new channels by systematic analysis of the mitochondrial outer membrane. J Cell Biol 2017; 216:3485-3495. [PMID: 28916712 PMCID: PMC5674900 DOI: 10.1083/jcb.201706043] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/03/2017] [Accepted: 08/22/2017] [Indexed: 02/08/2023] Open
Abstract
Channels in the mitochondrial outer membrane exchange metabolites, ions, and proteins with the rest of the cell. Kruger et al. identify several new types of channel and suggest that the outer mitochondrial membrane is a more selective molecular sieve with a greater variety of channel-forming proteins than previously appreciated. The mitochondrial outer membrane is essential for communication between mitochondria and the rest of the cell and facilitates the transport of metabolites, ions, and proteins. All mitochondrial outer membrane channels known to date are β-barrel membrane proteins, including the abundant voltage-dependent anion channel and the cation-preferring protein-conducting channels Tom40, Sam50, and Mdm10. We analyzed outer membrane fractions of yeast mitochondria and identified four new channel activities: two anion-preferring channels and two cation-preferring channels. We characterized the cation-preferring channels at the molecular level. The mitochondrial import component Mim1 forms a channel that is predicted to have an α-helical structure for protein import. The short-chain dehydrogenase-related protein Ayr1 forms an NADPH-regulated channel. We conclude that the mitochondrial outer membrane contains a considerably larger variety of channel-forming proteins than assumed thus far. These findings challenge the traditional view of the outer membrane as an unspecific molecular sieve and indicate a higher degree of selectivity and regulation of metabolite fluxes at the mitochondrial boundary.
Collapse
Affiliation(s)
- Vivien Krüger
- Division of Biophysics, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany.,Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Lars Becker
- Division of Biophysics, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | | | - Lars Ellenrieder
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - F-Nora Vögtle
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Helmut E Meyer
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Bettina Warscheid
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,Institute of Biology II, Biochemistry - Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany .,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Richard Wagner
- Division of Biophysics, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany .,Biophysics, Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Chris Meisinger
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
18
|
Abstract
Cardiac arrhythmias can follow disruption of the normal cellular electrophysiological processes underlying excitable activity and their tissue propagation as coherent wavefronts from the primary sinoatrial node pacemaker, through the atria, conducting structures and ventricular myocardium. These physiological events are driven by interacting, voltage-dependent, processes of activation, inactivation, and recovery in the ion channels present in cardiomyocyte membranes. Generation and conduction of these events are further modulated by intracellular Ca2+ homeostasis, and metabolic and structural change. This review describes experimental studies on murine models for known clinical arrhythmic conditions in which these mechanisms were modified by genetic, physiological, or pharmacological manipulation. These exemplars yielded molecular, physiological, and structural phenotypes often directly translatable to their corresponding clinical conditions, which could be investigated at the molecular, cellular, tissue, organ, and whole animal levels. Arrhythmogenesis could be explored during normal pacing activity, regular stimulation, following imposed extra-stimuli, or during progressively incremented steady pacing frequencies. Arrhythmic substrate was identified with temporal and spatial functional heterogeneities predisposing to reentrant excitation phenomena. These could arise from abnormalities in cardiac pacing function, tissue electrical connectivity, and cellular excitation and recovery. Triggering events during or following recovery from action potential excitation could thereby lead to sustained arrhythmia. These surface membrane processes were modified by alterations in cellular Ca2+ homeostasis and energetics, as well as cellular and tissue structural change. Study of murine systems thus offers major insights into both our understanding of normal cardiac activity and its propagation, and their relationship to mechanisms generating clinical arrhythmias.
Collapse
Affiliation(s)
- Christopher L-H Huang
- Physiological Laboratory and the Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
19
|
Divalent cation chelators citrate and EDTA unmask an intrinsic uncoupling pathway in isolated mitochondria. J Bioenerg Biomembr 2016; 49:3-11. [PMID: 26971498 DOI: 10.1007/s10863-016-9656-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/07/2016] [Indexed: 10/22/2022]
Abstract
We demonstrate a suppression of ROS production and uncoupling of mitochondria by exogenous citrate in Mg2+ free medium. Exogenous citrate suppressed H2O2 emission and depolarized mitochondria. The depolarization was paralleled by the stimulation of respiration of mitochondria. The uncoupling action of citrate was independent of the presence of sodium, potassium, or chlorine ions, and it was not mediated by the changes in permeability of the inner mitochondrial membrane to solutes. The citrate transporter was not involved in the citrate effect. Inhibitory analysis data indicated that several well described mitochondria carriers and channels (ATPase, IMAC, ADP/ATP translocase, mPTP, mKATP) were not involved in citrate's effect. Exogenous MgCl2 strongly inhibited citrate-induced depolarization. The uncoupling effect of citrate was demonstrated in rat brain, mouse brain, mouse liver, and human melanoma cells mitochondria. We interpreted the data as an evidence to the existence of a hitherto undescribed putative inner mitochondrial membrane channel that is regulated by extramitochondrial Mg2+ or other divalent cations.
Collapse
|
20
|
Ion Channels and Oxidative Stress as a Potential Link for the Diagnosis or Treatment of Liver Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3928714. [PMID: 26881024 PMCID: PMC4736365 DOI: 10.1155/2016/3928714] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/22/2015] [Accepted: 10/27/2015] [Indexed: 02/06/2023]
Abstract
Oxidative stress results from a disturbed balance between oxidation and antioxidant systems. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) may be either harmful or beneficial to the cells. Ion channels are transmembrane proteins that participate in a large variety of cellular functions and have been implicated in the development of a variety of diseases. A significant amount of the available drugs in the market targets ion channels. These proteins have sulfhydryl groups of cysteine and methionine residues in their structure that can be targeted by ROS and RNS altering channel function including gating and conducting properties, as well as the corresponding signaling pathways associated. The regulation of ion channels by ROS has been suggested to be associated with some pathological conditions including liver diseases. This review focuses on understanding the role and the potential association of ion channels and oxidative stress in liver diseases including fibrosis, alcoholic liver disease, and cancer. The potential association between ion channels and oxidative stress conditions could be used to develop new treatments for major liver diseases.
Collapse
|
21
|
Abstract
Mitochondrial dynamics, fission and fusion, were first identified in yeast with investigation in heart cells beginning only in the last 5 to 7 years. In the ensuing time, it has become evident that these processes are not only required for healthy mitochondria, but also, that derangement of these processes contributes to disease. The fission and fusion proteins have a number of functions beyond the mitochondrial dynamics. Many of these functions are related to their membrane activities, such as apoptosis. However, other functions involve other areas of the mitochondria, such as OPA1's role in maintaining cristae structure and preventing cytochrome c leak, and its essential (at least a 10 kDa fragment of OPA1) role in mtDNA replication. In heart disease, changes in expression of these important proteins can have detrimental effects on mitochondrial and cellular function.
Collapse
Affiliation(s)
- A A Knowlton
- Molecular & Cellular Cardiology, Division of Cardiovascular Medicine and Pharmacology Department, University of California, Davis, and The Department of Veteran's Affairs, Northern California VA, Sacramento, California, USA
| | - T T Liu
- Molecular & Cellular Cardiology, Division of Cardiovascular Medicine and Pharmacology Department, University of California, Davis, and The Department of Veteran's Affairs, Northern California VA, Sacramento, California, USA
| |
Collapse
|
22
|
Wang Q, Sun Y, Zhang Z, Duan Y. Targeted polymeric therapeutic nanoparticles: Design and interactions with hepatocellular carcinoma. Biomaterials 2015; 56:229-40. [DOI: 10.1016/j.biomaterials.2015.03.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 01/28/2023]
|
23
|
Madamba SM, Damri KN, Dejean LM, Peixoto PM. Mitochondrial Ion Channels in Cancer Transformation. Front Oncol 2015; 5:120. [PMID: 26090338 PMCID: PMC4455240 DOI: 10.3389/fonc.2015.00120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 05/15/2015] [Indexed: 11/13/2022] Open
Abstract
Cancer transformation involves reprograming of mitochondrial function to avert cell death mechanisms, monopolize energy metabolism, accelerate mitotic proliferation, and promote metastasis. Mitochondrial ion channels have emerged as promising therapeutic targets because of their connection to metabolic and apoptotic functions. This mini review discusses how mitochondrial channels may be associated with cancer transformation and expands on the possible involvement of mitochondrial protein import complexes in pathophysiological process.
Collapse
Affiliation(s)
- Stephen M. Madamba
- Department of Natural Sciences, Baruch College, City University of New York, New York, NY, USA
- City University of New York Graduate Center, New York, NY, USA
| | - Kevin N. Damri
- Department of Natural Sciences, Baruch College, City University of New York, New York, NY, USA
| | - Laurent M. Dejean
- Department of Chemistry, College of Science and Mathematics, California State University Fresno, Fresno, CA, USA
| | - Pablo M. Peixoto
- Department of Natural Sciences, Baruch College, City University of New York, New York, NY, USA
- City University of New York Graduate Center, New York, NY, USA
- Department of Basic Sciences, New York University College of Dentistry, New York, NY, USA
| |
Collapse
|
24
|
Khodaee N, Ghasemi M, Saghiri R, Eliassi A. Endoplasmic reticulum membrane potassium channel dysfunction in high fat diet induced stress in rat hepatocytes. EXCLI JOURNAL 2014; 13:1075-87. [PMID: 26417322 PMCID: PMC4464507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 08/20/2014] [Indexed: 11/02/2022]
Abstract
In a previous study we reported the presence of a large conductance K(+) channel in the membrane of endoplasmic reticulum (ER) from rat hepatocytes. The channel open probability (Po) appeared voltage dependent and reached to a minimum 0.2 at +50 mV. Channel activity in this case was found to be totally inhibited at ATP concentration 2.5 mM, glibenclamide 100 µM and tolbutamide 400 µM. Existing evidence indicates an impairment of endoplasmic reticulum functions in ER stress condition. Because ER potassium channels have been involved in several ER functions including cytoprotection, apoptosis and calcium homeostasis, a study was carried out to consider whether the ER potassium channel function is altered in a high fat diet model of ER stress. Male Wistar rats were made ER stress for 2 weeks with a high fat diet. Ion channel incorporation of ER stress model into the bilayer lipid membrane allowed the characterization of K(+) channel. Our results indicate that the channel Po was significantly increased at voltages above +30 mV. Interestingly, addition of ATP 7.5 mM, glibenclamide 400 µM and tolbutamide 2400 µM totally inhibited the channel activities, 3-fold, 4-fold and 6-fold higher than that in the control groups, respectively. Our results thus demonstrate a modification in the ER K(+) channel gating properties and decreased sensitivity to drugs in membrane preparations coming from ER high fat model of ER stress, an effect potentially linked to a change in ER K(+) channel subunits in ER stress condition. Our results may provide new insights into the cellular mechanisms underlying ER dysfunctions in ER stress.
Collapse
Affiliation(s)
- Naser Khodaee
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Evin, Tehran 19857, Iran,Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Evin, Tehran 19857, Iran
| | - Maedeh Ghasemi
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Evin, Tehran 19857, Iran,Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Evin, Tehran 19857, Iran
| | - Reza Saghiri
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Afsaneh Eliassi
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Evin, Tehran 19857, Iran,Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Evin, Tehran 19857, Iran,*To whom correspondence should be addressed: Afsaneh Eliassi, Neurophysiology Research Center and Department of Physiology, Shahid Beheshti University of Medical Sciences, Evin, Tehran 19857, Iran. Tel-Fax: 9821-22439971, E-mail: ;
| |
Collapse
|
25
|
O-Uchi J, Ryu SY, Jhun BS, Hurst S, Sheu SS. Mitochondrial ion channels/transporters as sensors and regulators of cellular redox signaling. Antioxid Redox Signal 2014; 21:987-1006. [PMID: 24180309 PMCID: PMC4116125 DOI: 10.1089/ars.2013.5681] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Mitochondrial ion channels/transporters and the electron transport chain (ETC) serve as key sensors and regulators for cellular redox signaling, the production of reactive oxygen species (ROS) and nitrogen species (RNS) in mitochondria, and balancing cell survival and death. Although the functional and pharmacological characteristics of mitochondrial ion transport mechanisms have been extensively studied for several decades, the majority of the molecular identities that are responsible for these channels/transporters have remained a mystery until very recently. RECENT ADVANCES Recent breakthrough studies uncovered the molecular identities of the diverse array of major mitochondrial ion channels/transporters, including the mitochondrial Ca2+ uniporter pore, mitochondrial permeability transition pore, and mitochondrial ATP-sensitive K+ channel. This new information enables us to form detailed molecular and functional characterizations of mitochondrial ion channels/transporters and their roles in mitochondrial redox signaling. CRITICAL ISSUES Redox-mediated post-translational modifications of mitochondrial ion channels/transporters and ETC serve as key mechanisms for the spatiotemporal control of mitochondrial ROS/RNS generation. FUTURE DIRECTIONS Identification of detailed molecular mechanisms for redox-mediated regulation of mitochondrial ion channels will enable us to find novel therapeutic targets for many diseases that are associated with cellular redox signaling and mitochondrial ion channels/transporters.
Collapse
Affiliation(s)
- Jin O-Uchi
- 1 Department of Medicine, Center for Translational Medicine, Jefferson Medical College, Thomas Jefferson University , Philadelphia, Pennsylvania
| | | | | | | | | |
Collapse
|
26
|
Wang YZ, Zeng WZ, Xiao X, Huang Y, Song XL, Yu Z, Tang D, Dong XP, Zhu MX, Xu TL. Intracellular ASIC1a regulates mitochondrial permeability transition-dependent neuronal death. Cell Death Differ 2013; 20:1359-69. [PMID: 23852371 DOI: 10.1038/cdd.2013.90] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 05/12/2013] [Accepted: 06/10/2013] [Indexed: 01/08/2023] Open
Abstract
Acid-sensing ion channel 1a (ASIC1a) is the key proton receptor in nervous systems, mediating acidosis-induced neuronal injury in many neurological disorders, such as ischemic stroke. Up to now, functional ASIC1a has been found exclusively on the plasma membrane. Here, we show that ASIC1a proteins are also present in mitochondria of mouse cortical neurons where they are physically associated with adenine nucleotide translocase. Moreover, purified mitochondria from ASIC1a(-/-) mice exhibit significantly enhanced Ca(2+) retention capacity and accelerated Ca(2+) uptake rate. When challenged with hydrogen peroxide (H2O2), ASIC1a(-/-) neurons are resistant to cytochrome c release and inner mitochondrial membrane depolarization, suggesting an impairment of mitochondrial permeability transition (MPT) due to ASIC1a deletion. Consistently, H2O2-induced neuronal death, which is MPT dependent, is reduced in ASIC1a(-/-) neurons. Additionally, significant increases in mitochondrial size and oxidative stress levels are detected in ASIC1a(-/-) mouse brain, which also displays marked changes (>2-fold) in the expression of mitochondrial proteins closely related to reactive oxygen species signal pathways, as revealed by two-dimensional difference gel electrophoresis followed by mass spectrometry analysis. Our data suggest that mitochondrial ASIC1a may serve as an important regulator of MPT pores, which contributes to oxidative neuronal cell death.
Collapse
Affiliation(s)
- Y-Z Wang
- Departments of Anatomy and Embryology, Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Mitochondrial targets for arrhythmia suppression: is there a role for pharmacological intervention? J Interv Card Electrophysiol 2013; 37:249-58. [PMID: 23824789 DOI: 10.1007/s10840-013-9809-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/03/2013] [Indexed: 12/19/2022]
Abstract
Mitochondrial dysfunction is a hallmark of common cardiovascular disorders, including ischemia-reperfusion injury, hypertrophy, heart failure, and diabetes mellitus. While the role of the mitochondrial network in regulating energy production and cell death pathways is well established, its active control of other critical cellular functions, including excitation-contraction coupling and excitability, is less understood. The purpose of this focused review article is to highlight the growing mechanistic link between mitochondrial dysfunction and arrhythmogenesis. The goal is not to provide a comprehensive listing of all factors by which mitochondrial bioenergetics and altered cellular redox status affect ion channel function but rather to focus on one central mechanism of arrhythmogenesis which arises from a mitochondrial origin. In doing so, we discuss the role of mitochondrial targets for suppressing arrhythmias through this mechanism.
Collapse
|
28
|
Dolga AM, Netter MF, Perocchi F, Doti N, Meissner L, Tobaben S, Grohm J, Zischka H, Plesnila N, Decher N, Culmsee C. Mitochondrial small conductance SK2 channels prevent glutamate-induced oxytosis and mitochondrial dysfunction. J Biol Chem 2013; 288:10792-804. [PMID: 23430260 PMCID: PMC3624460 DOI: 10.1074/jbc.m113.453522] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/08/2013] [Indexed: 11/06/2022] Open
Abstract
Small conductance calcium-activated potassium (SK2/K(Ca)2.2) channels are known to be located in the neuronal plasma membrane where they provide feedback control of NMDA receptor activity. Here, we provide evidence that SK2 channels are also located in the inner mitochondrial membrane of neuronal mitochondria. Patch clamp recordings in isolated mitoplasts suggest insertion into the inner mitochondrial membrane with the C and N termini facing the intermembrane space. Activation of SK channels increased mitochondrial K(+) currents, whereas channel inhibition attenuated these currents. In a model of glutamate toxicity, activation of SK2 channels attenuated the loss of the mitochondrial transmembrane potential, blocked mitochondrial fission, prevented the release of proapoptotic mitochondrial proteins, and reduced cell death. Neuroprotection was blocked by specific SK2 inhibitory peptides and siRNA targeting SK2 channels. Activation of mitochondrial SK2 channels may therefore represent promising targets for neuroprotective strategies in conditions of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Amalia M. Dolga
- From the Institut für Pharmakologie und Klinische Pharmazie, Fachbereich Pharmazie, Philipps-Universität Marburg, D-35032 Marburg, Germany
| | - Michael F. Netter
- Institut für Physiologie und Pathophysiologie, Vegetative Physiologie, Fachbereich Medizin, Philipps-Universität Marburg, D-35037 Marburg, Germany
| | - Fabiana Perocchi
- Department of Systems Biology and Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114
- Gene Center, Ludwig Maximilians University, Feodor-Lynen Strasse 25, 81377 Munich, Germany
| | - Nunzianna Doti
- From the Institut für Pharmakologie und Klinische Pharmazie, Fachbereich Pharmazie, Philipps-Universität Marburg, D-35032 Marburg, Germany
- Department of Neurodegeneration, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Institute of Biostructures and Bioimaging, National Research Council (CNR), 16-80131 Naples, Italy
| | - Lilja Meissner
- Institute of Stroke and Dementia Research, University of Munich Medical School, D-81377 Munich, Germany, and
| | - Svenja Tobaben
- From the Institut für Pharmakologie und Klinische Pharmazie, Fachbereich Pharmazie, Philipps-Universität Marburg, D-35032 Marburg, Germany
| | - Julia Grohm
- From the Institut für Pharmakologie und Klinische Pharmazie, Fachbereich Pharmazie, Philipps-Universität Marburg, D-35032 Marburg, Germany
| | - Hans Zischka
- Institute of Toxicology, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), D-85764 Neuherberg, Germany
| | - Nikolaus Plesnila
- Department of Neurodegeneration, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Institute of Stroke and Dementia Research, University of Munich Medical School, D-81377 Munich, Germany, and
| | - Niels Decher
- Institut für Physiologie und Pathophysiologie, Vegetative Physiologie, Fachbereich Medizin, Philipps-Universität Marburg, D-35037 Marburg, Germany
| | - Carsten Culmsee
- From the Institut für Pharmakologie und Klinische Pharmazie, Fachbereich Pharmazie, Philipps-Universität Marburg, D-35032 Marburg, Germany
| |
Collapse
|
29
|
Regidor-Cerrillo J, Álvarez-García G, Pastor-Fernández I, Marugán-Hernández V, Gómez-Bautista M, Ortega-Mora LM. Proteome expression changes among virulent and attenuated Neospora caninum isolates. J Proteomics 2012; 75:2306-18. [PMID: 22343075 DOI: 10.1016/j.jprot.2012.01.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 01/25/2012] [Accepted: 01/30/2012] [Indexed: 11/30/2022]
Abstract
Neospora caninum is a cyst-forming parasite that has been recognised worldwide as a cause of cattle abortion and neuromuscular disease in dogs. Variations in genetic profiles, behaviour in vitro, and pathogenicity have been established among N. caninum isolates. However, it is unclear which parasite factors are implicated in this intra-specific diversity. Comparative analysis of protein expression patterns may define the determinants of biological diversity in N. caninum. Using DIGE and MALDI-TOF MS techniques, we quantified and identified differentially expressed proteins in the tachyzoite stage across three N. caninum isolates: the virulent Nc-Liv and Nc-Spain 7 isolates, and the attenuated Nc-Spain 1H isolate. Comparison between Nc-Spain 7 and Nc-Spain 1H extracts revealed 39 protein spots that were more abundant in Nc-Spain 7 and 21 in Nc-Spain 1H. Twenty-four spots were also increased in Nc-Spain 7 and 12 in Nc-Liv. Three protein spots were more abundant in the Nc-Liv extracts than in the Nc-Spain 1H extracts. MS analysis identified 11 proteins differentially expressed that are potentially involved in gliding motility and the lytic cycle of the parasite, and oxidative stress. These differences could help to explain variations in behaviour between isolates and provide a better knowledge of mechanisms associated with virulence.
Collapse
Affiliation(s)
- Javier Regidor-Cerrillo
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
30
|
Adiele RC, Stevens D, Kamunde C. Features of cadmium and calcium uptake and toxicity in rainbow trout (Oncorhynchus mykiss) mitochondria. Toxicol In Vitro 2012; 26:164-73. [DOI: 10.1016/j.tiv.2011.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 09/25/2011] [Accepted: 10/28/2011] [Indexed: 12/14/2022]
|
31
|
How many types of large conductance Ca+2-activated potassium channels exist in brain mitochondrial inner membrane: evidence for a new mitochondrial large conductance Ca2+-activated potassium channel in brain mitochondria. Neuroscience 2011; 199:125-32. [DOI: 10.1016/j.neuroscience.2011.09.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 09/25/2011] [Accepted: 09/27/2011] [Indexed: 11/24/2022]
|
32
|
Miura T, Tanno M. The mPTP and its regulatory proteins: final common targets of signalling pathways for protection against necrosis. Cardiovasc Res 2011; 94:181-9. [PMID: 22072634 DOI: 10.1093/cvr/cvr302] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The mitochondrial permeability transition pore (mPTP) is a non-selective, large-conductance channel that is closed under physiological conditions. Opening of the mPTP, leading to abolition of mitochondrial functions, is a major mechanism of myocyte necrosis by ischaemia/reperfusion, and direct inhibition of mPTP opening by use of pharmacological or genetic manipulations limits infarct size in vivo. Multiple pro-survival signal pathways commonly target the mPTP and inhibit its opening. Although the molecular structure of the mPTP has not been established, recent studies have characterized roles of each mPTP subunit and functions of several proteins directly interacting with the mPTP. This article briefly describes the understanding of mPTP regulation and interaction of the mPTP with four proteins (hexokinase II, glycogen synthase kinase-3β, signal transducer and activator of transcription 3, and sirtuin 3) that are downstream of signal pathways relevant to protection from ischaemia/reperfusion injury.
Collapse
Affiliation(s)
- Tetsuji Miura
- Second Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | | |
Collapse
|
33
|
Akar FG, O'Rourke B. Mitochondria are sources of metabolic sink and arrhythmias. Pharmacol Ther 2011; 131:287-94. [PMID: 21513732 DOI: 10.1016/j.pharmthera.2011.04.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 03/29/2011] [Indexed: 12/14/2022]
Abstract
Mitochondria have long been recognized for their central role in energy transduction and apoptosis. More recently, extensive work in multiple laboratories around the world has significantly extended the role of cardiac mitochondria from relatively static arbitrators of cell death and survival pathways to highly dynamic organelles that form interactive functional networks across cardiomyocytes. These coupled networks were shown to strongly affect cardiomyocyte responses to oxidative stress by modulating cell signaling pathways that strongly impact physiological properties. Of particular importance is the role of mitochondria in modulating key electrophysiological and calcium cycling properties in cardiomyocytes, either directly through activation of a myriad of mitochondrial ion channels or indirectly by affecting cell signaling cascades, ATP levels, and the over-all redox state of the cardiomyocyte. This important recognition has ushered a renewed interest in understanding, at a more fundamental level, the exact role that cardiac metabolism, in general and mitochondria, in particular, play in both health and disease. In this article, we provide an overview of recent advances in our growing understanding of the fundamental role that cardiac mitochondria play in the genesis of lethal arrhythmias.
Collapse
Affiliation(s)
- Fadi G Akar
- Cardiovascular Institute, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | |
Collapse
|
34
|
Peixoto PM, Dejean LM, Kinnally KW. The therapeutic potential of mitochondrial channels in cancer, ischemia-reperfusion injury, and neurodegeneration. Mitochondrion 2011; 12:14-23. [PMID: 21406252 DOI: 10.1016/j.mito.2011.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/23/2011] [Accepted: 03/03/2011] [Indexed: 10/18/2022]
Abstract
Mitochondria communicate with the rest of the cell through channels located in their inner and outer membranes. Most of the time, the message is encoded by the flow of anions and cations e.g., through VDAC and PTP, respectively. However, proteins are also both imported and exported across the mitochondrial membranes e.g., through TOM and MAC, respectively. Transport through mitochondrial channels is exquisitely regulated and controls a myriad of processes; from energy production to cell death. Here, we examine the role of some of the mitochondrial channels involved in neurodegeneration, ischemia-reperfusion injury and cancer in the context of their potential as therapeutic targets.
Collapse
Affiliation(s)
- Pablo M Peixoto
- New York University, College of Dentistry, 345 East 24th Street, New York, NY 10010, United States
| | | | | |
Collapse
|
35
|
Matkovic K, Koszela-Piotrowska I, Jarmuszkiewicz W, Szewczyk A. Ion conductance pathways in potato tuber (Solanum tuberosum) inner mitochondrial membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:275-85. [DOI: 10.1016/j.bbabio.2010.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/24/2010] [Accepted: 12/04/2010] [Indexed: 11/28/2022]
|
36
|
Kinnally KW, Peixoto PM, Ryu SY, Dejean LM. Is mPTP the gatekeeper for necrosis, apoptosis, or both? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:616-22. [PMID: 20888866 DOI: 10.1016/j.bbamcr.2010.09.013] [Citation(s) in RCA: 253] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 09/22/2010] [Accepted: 09/23/2010] [Indexed: 02/01/2023]
Abstract
Permeabilization of the mitochondrial membranes is a crucial step in apoptosis and necrosis. This phenomenon allows the release of mitochondrial death factors, which trigger or facilitate different signaling cascades ultimately causing the execution of the cell. The mitochondrial permeability transition pore (mPTP) has long been known as one of the main regulators of mitochondria during cell death. mPTP opening can lead to matrix swelling, subsequent rupture of the outer membrane, and a nonspecific release of intermembrane space proteins into the cytosol. While mPTP was purportedly associated with early apoptosis, recent observations suggest that mitochondrial permeabilization mediated by mPTP is generally more closely linked to events of late apoptosis and necrosis. Mechanisms of mitochondrial membrane permeabilization during cell death, involving three different mitochondrial channels, have been postulated. These include the mPTP in the inner membrane, and the mitochondrial apoptosis-induced channel (MAC) and voltage-dependent anion-selective channel (VDAC) in the outer membrane. New developments on mPTP structure and function, and the involvement of mPTP, MAC, and VDAC in permeabilization of mitochondrial membranes during cell death are explored. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.
Collapse
Affiliation(s)
- Kathleen W Kinnally
- New York University College of Dentistry, Department Basic Sciences 345 East 24th Street, New York, NY 10010, USA
| | | | | | | |
Collapse
|
37
|
Abstract
Ion channels located in the outer and inner mitochondrial membranes are key regulators of cellular signaling for life and death. Permeabilization of mitochondrial membranes is one of the most critical steps in the progression of several cell death pathways. The mitochondrial apoptosis-induced channel (MAC) and the mitochondrial permeability transition pore (mPTP) play major roles in these processes. Here, the most recent progress and current perspectives about the roles of MAC and mPTP in mitochondrial membrane permeabilization during cell death are presented. The crosstalk signaling of MAC and mPTP formation/activation mediated by cytosolic Ca(2+) signaling, Bcl-2 family proteins, and other mitochondrial ion channels is also discussed. Understanding the mechanisms that regulate opening and closing of MAC and mPTP has revealed new therapeutic targets that potentially could control cell death in pathologies such as cancer, ischemia/reperfusion injuries, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Shin-Young Ryu
- Department of Basic Sciences, New York University College of Dentistry, New York, USA
| | | | | | | | | |
Collapse
|