1
|
Rapp C, Borg A, Nidetzky B. Interplay of structural preorganization and conformational sampling in UDP-glucuronic acid 4-epimerase catalysis. Nat Commun 2024; 15:3897. [PMID: 38719841 PMCID: PMC11519531 DOI: 10.1038/s41467-024-48281-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/26/2024] [Indexed: 10/30/2024] Open
Abstract
Understanding enzyme catalysis as connected to protein motions is a major challenge. Here, based on temperature kinetic studies combined with isotope effect measurements, we obtain energetic description of C-H activation in NAD-dependent UDP-glucuronic acid C4 epimerase. Approach from the ensemble-averaged ground state (GS) to the transition state-like reactive conformation (TSRC) involves, alongside uptake of heat (Δ H ‡ = 54 kJ mol-1), significant loss in entropy ( - T Δ S ‡ = 20 kJ mol-1; 298 K) and negative activation heat capacity (Δ C p ‡ = -0.64 kJ mol-1 K-1). Thermodynamic changes suggest the requirement for restricting configurational freedom at the GS to populate the TSRC. Enzyme variants affecting the electrostatic GS preorganization reveal active-site interactions important for precise TSRC sampling and H-transfer. Collectively, our study captures thermodynamic effects associated with TSRC sampling and establishes rigid positioning for C-H activation in an enzyme active site that requires conformational flexibility in fulfillment of its natural epimerase function.
Collapse
Affiliation(s)
- Christian Rapp
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010, Graz, Austria
| | - Annika Borg
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010, Graz, Austria.
- Austrian Centre of Industrial Biotechnology (acib), 8010, Graz, Austria.
| |
Collapse
|
2
|
Huang GT, Yu JSK. Catalytic role of the enol ether intermediate in the intramolecular Stetter reaction: a computational perspective. Phys Chem Chem Phys 2024; 26:11833-11853. [PMID: 38567403 DOI: 10.1039/d3cp06051a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The intramolecular Stetter reaction catalyzed by a carbene is investigated by density functional theory (DFT) calculations and kinetic simulations. Catalyst 1 first reacts with aldehyde 2 to give the primary adduct (PA). The PA undergoes the intramolecular oxa-Michael reaction to irreversibly generate enol ether intermediate 9. The conversion of the enol ether to the Breslow intermediate (BI) requires the assistance of a base such as the PA. The next step involves formation of a carbon-carbon bond through the Michael addition, and expulsion of the catalyst generates the Stetter product 7. Calculations show that the catalytic cycle is composed of two irreversible processes: the first one involves the exergonic formation of the enol ether intermediate, while the second one is the conversion of the enol ether to the final product. Kinetic simulations using initial concentrations of [1]0 = 0.005 M and [2]0 = 0.025 M demonstrate that under a steady-state condition, 35% of the catalyst rests on the state of the enol ether (0.0018 M). The catalyst resting state therefore consists of the unbound form (the free catalyst) and its bound form (the enol ether species). According to variable time normalization analysis, the reaction exhibits a second-order dependence (first order in catalyst and first order in substrate), which agrees with experiments. The oxa-Michael reaction to form the enol ether is identified to be turnover limiting in the intramolecular Stetter reaction, which rationalizes the observed electronic effect of the Michael acceptor on the reactivity, as well as the measured isotope effect with respect to the aldehydic proton/deuteron. The base that participates in the BI formation has a significant effect on the build-up of the resting state 9 and the active catalyst concentration. In addition, the thermodynamic stability of the enol ether is found to depend on the tether length between the aromatic aldehyde and the Michael acceptor, as well as the chemical nature of the carbene catalyst. The favorability for the oxa-Michael reaction is therefore suggested to govern the reactivity of the intramolecular Stetter transformation.
Collapse
Affiliation(s)
- Gou-Tao Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu City 300, Taiwan.
| | - Jen-Shiang K Yu
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu City 300, Taiwan.
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu City 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu City 300, Taiwan
| |
Collapse
|
3
|
Zhao LN, Kaldis P. Pairing structural reconstruction with catalytic competence to evaluate the mechanisms of key enzymes in the folate-mediated one-carbon pathway. FEBS J 2022; 290:2279-2291. [PMID: 35303396 DOI: 10.1111/febs.16439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/05/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023]
Abstract
Mammalian metabolism comprises a series of interlinking pathways that include two major cycles: the folate and methionine cycles. The folate-mediated metabolic cycle uses several oxidation states of tetrahydrofolate to carry activated one-carbon units to be readily used and interconverted within the cell. They are required for nucleotide synthesis, methylation and metabolism, and particularly for proliferation of cancer cells. Based on the latest progress in genome-wide CRISPR loss-of-function viability screening of 789 cell lines, we focus on the most cancer-dependent enzymes in this pathway, especially those that are hyperactivated in cancer, to provide new insight into the chemical basis for cancer drug development. Since the complete 3D structure of several of these enzymes of the one-carbon pathway in their active form are not available, we used homology modelling integrated with the interpretation of the reaction mechanism. In addition, have reconstructed the most likely scenario for the reactions taking place paired with their catalytic competence that provides a testable framework for this pathway.
Collapse
Affiliation(s)
- Li Na Zhao
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Philipp Kaldis
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
4
|
Rekik N, Flakus HT, Hachula B, Salman S, Alshoaibi A, Farooq U. How far the vibrational exciton interactions are responsible for the generation of the infrared spectra of oxindole crystals? SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 237:118302. [PMID: 32416514 DOI: 10.1016/j.saa.2020.118302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/01/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Oxindole (indolin-2-one, Ox) is a unique and a crucial molecular system in spectroscopic studies. Indole is the core structure of many substances found in the human body (tryptophan, serotonin) and the indole alkaloids have highly differentiated pharmacological properties such as analgesic, anti-fever and anti-inflammatory. The Ox's structural results given in the Cambridge Structural Database revealed the existence of only one crystalline form of Ox, referred to the α-form. However, we have experimentally noticed the existence of two polymorphic forms during the crystallization of Ox. Furthermore, the significant spectral differences that we have observed in the solid state infrared spectra of these two forms additionally confirm the existence of the polymorphism phenomenon. Of the four polymorphic forms of Ox, two of them - α - and β-forms - were of particular interest. In the crystalline lattices of both polymorphs, we observed a similar pattern of molecular arrangements giving rise to the supramolecular synthon according to the terminology of Etter. Moreover, hydrogen bonds in the dimer of the α-form are found to be non-equivalent (non-centrosymmetric dimers), having a length of 2797 Å and 2979 Å, respectively. Comparatively, in the most densely packed crystalline structure of Ox, the β-form, the dimer is formed by a pair of almost identical intermolecular hydrogen bonds and consequently the crystals of β-form exhibited spectral properties typical to centrosymmetric hydrogen bond dimers. In addition, the spectroscopic studies that we have conducted to polymorphic forms of Ox, isotopically diluted with deuterium, show the dramatic influence of isotopic substitution in the hydrogen bridge on the infrared spectra of hydrogen bonding. Thus, the main goal of this work is the proposition of a theoretical approach that can describe the main features of the crystalline infrared spectra of the Ox polymorphs. The proposed approach is based on the phenomenon of the exciton coupling results directly from intermolecular interactions in the vibrationally excited state which leads to the delocalization of the excitation over the molecules in the lattice and to the Davydov splitting effect in the crystalline spectra.
Collapse
Affiliation(s)
- Najeh Rekik
- Physics Department, College of Sciences, University of Ha'il, Ha'il, Saudi Arabia; Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| | - Henryk T Flakus
- Institute of Chemistry, University of Silesia, 9 Szkolna Street, Pl-40-006 Katowice, Poland.
| | - Barbara Hachula
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Saed Salman
- Physics Department, Faculty of Science, King Faisal University, Saudi Arabia
| | - Adil Alshoaibi
- Physics Department, Faculty of Science, King Faisal University, Saudi Arabia
| | - Umer Farooq
- Physics Department, College of Sciences, University of Ha'il, Ha'il, Saudi Arabia
| |
Collapse
|
5
|
Shenderovich IG, Denisov GS. Adduct under Field-A Qualitative Approach to Account for Solvent Effect on Hydrogen Bonding. Molecules 2020; 25:molecules25030436. [PMID: 31973045 PMCID: PMC7037398 DOI: 10.3390/molecules25030436] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 02/08/2023] Open
Abstract
The location of a mobile proton in acid-base complexes in aprotic solvents can be predicted using a simplified Adduct under Field (AuF) approach, where solute–solvent effects on the geometry of hydrogen bond are simulated using a fictitious external electric field. The parameters of the field have been estimated using experimental data on acid-base complexes in CDF3/CDClF2. With some limitations, they can be applied to the chemically similar CHCl3 and CH2Cl2. The obtained data indicate that the solute–solvent effects are critically important regardless of the type of complexes. The temperature dependences of the strength and fluctuation rate of the field explain the behavior of experimentally measured parameters.
Collapse
Affiliation(s)
- Ilya G. Shenderovich
- Institute of Organic Chemistry, University of Regensburg, Universitaetstrasse 31, 93053 Regensburg, Germany
- Correspondence: ; Tel.:+49-941-9434027
| | - Gleb S. Denisov
- Department of Physics, Saint-Petersburg State University, 198504 Saint-Petersburg, Russia;
| |
Collapse
|
6
|
Fang W, Zarotiadis RA, Richardson JO. Revisiting nuclear tunnelling in the aqueous ferrous–ferric electron transfer. Phys Chem Chem Phys 2020; 22:10687-10698. [DOI: 10.1039/c9cp06841d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We find that golden-rule quantum transition-state theory predicts nearly an order of magnitude less tunnelling than some of the previous estimates. This may indicate that the spin-boson model of electron transfer is not valid in the quantum regime.
Collapse
Affiliation(s)
- Wei Fang
- Laboratory of Physical Chemistry
- ETH Zürich
- 8093 Zürich
- Switzerland
| | | | | |
Collapse
|
7
|
Zhao Z, Lan D, Tan X, Hollmann F, Bornscheuer UT, Yang B, Wang Y. How To Break the Janus Effect of H2O2 in Biocatalysis? Understanding Inactivation Mechanisms To Generate more Robust Enzymes. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04948] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- ZeXin Zhao
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China
| | - Dongming Lan
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Xiyu Tan
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Uwe T. Bornscheuer
- Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Bo Yang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China
| | - Yonghua Wang
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, PR China
| |
Collapse
|
8
|
Kulkarni Y, Kamerlin SCL. Computational physical organic chemistry using the empirical valence bond approach. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2019. [DOI: 10.1016/bs.apoc.2019.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Tupikina E, Denisov G, Melikova S, Kucherov S, Tolstoy P. New look at the Badger-Bauer rule: Correlations of spectroscopic IR and NMR parameters with hydrogen bond energy and geometry. FHF complexes. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
DeGregorio N, Iyengar SS. Efficient and Adaptive Methods for Computing Accurate Potential Surfaces for Quantum Nuclear Effects: Applications to Hydrogen-Transfer Reactions. J Chem Theory Comput 2017; 14:30-47. [DOI: 10.1021/acs.jctc.7b00927] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Nicole DeGregorio
- Department of Chemistry and
Department of Physics, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Srinivasan S. Iyengar
- Department of Chemistry and
Department of Physics, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
11
|
Karandashev K, Xu ZH, Meuwly M, Vaníček J, Richardson JO. Kinetic isotope effects and how to describe them. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:061501. [PMID: 29282447 PMCID: PMC5729036 DOI: 10.1063/1.4996339] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 08/23/2017] [Indexed: 06/01/2023]
Abstract
We review several methods for computing kinetic isotope effects in chemical reactions including semiclassical and quantum instanton theory. These methods describe both the quantization of vibrational modes as well as tunneling and are applied to the ⋅H + H2 and ⋅H + CH4 reactions. The absolute rate constants computed with the semiclassical instanton method both using on-the-fly electronic structure calculations and fitted potential-energy surfaces are also compared directly with exact quantum dynamics results. The error inherent in the instanton approximation is found to be relatively small and similar in magnitude to that introduced by using fitted surfaces. The kinetic isotope effect computed by the quantum instanton is even more accurate, and although it is computationally more expensive, the efficiency can be improved by path-integral acceleration techniques. We also test a simple approach for designing potential-energy surfaces for the example of proton transfer in malonaldehyde. The tunneling splittings are computed, and although they are found to deviate from experimental results, the ratio of the splitting to that of an isotopically substituted form is in much better agreement. We discuss the strengths and limitations of the potential-energy surface and based on our findings suggest ways in which it can be improved.
Collapse
Affiliation(s)
- Konstantin Karandashev
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Zhen-Hao Xu
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Jiří Vaníček
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jeremy O Richardson
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich (ETHZ), CH-8093 Zürich, Switzerland
| |
Collapse
|
12
|
Lee YV, Choi SB, Wahab HA, Choong YS. Active Site Flexibility of Mycobacterium tuberculosis Isocitrate Lyase in Dimer Form. J Chem Inf Model 2017; 57:2351-2357. [PMID: 28820943 DOI: 10.1021/acs.jcim.7b00265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB) still remains a global threat due to the emergence of a drug-resistant strain. Instead of focusing on the drug target of active stage TB, we are highlighting the isocitrate lyase (ICL) at the dormant stage TB. ICL is one of the persistent factors for Mycobacterium tuberculosis (MTB) to survive during the dormant phase. In addition, the absence of ICL in human has made ICL a potential drug target for TB therapy. However, the dynamic details of ICL which could give insights to the ICL-ligand interaction have yet to be solved. Therefore, a series of ICL dimer dynamics studies through molecular dynamics simulation were performed in this work. The ICL active site entrance gate closure is contributed to by hydrogen bonding and electrostatic interactions with the C-terminal. Analysis suggested that the open-closed behavior of the ICL active site entrance depends on the type of ligand present in the active site. We also observed four residues (Ser91, Asp108, Asp153, and Cys191) which could possibly be the nucleophiles for nucleophilic attack on the cleavage of isocitrate at the C2-C3 bond. We hope that the elucidation of ICL dynamics can benefit future works such as lead identification or antibody design against ICL for TB therapeutics.
Collapse
Affiliation(s)
- Yie-Vern Lee
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia , 11800 Minden, Penang, Malaysia
| | - Sy Bing Choi
- Pharmaceutical Design and Simulation Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia , 11800 Minden, Penang, Malaysia
| | - Habibah A Wahab
- Pharmaceutical Design and Simulation Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia , 11800 Minden, Penang, Malaysia
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia , 11800 Minden, Penang, Malaysia
| |
Collapse
|
13
|
Hansen PE, Spanget-Larsen J. NMR and IR Investigations of Strong Intramolecular Hydrogen Bonds. Molecules 2017; 22:E552. [PMID: 28353675 PMCID: PMC6154318 DOI: 10.3390/molecules22040552] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/20/2017] [Accepted: 03/24/2017] [Indexed: 11/24/2022] Open
Abstract
For the purpose of this review, strong hydrogen bonds have been defined on the basis of experimental data, such as OH stretching wavenumbers, νOH, and OH chemical shifts, δOH (in the latter case, after correction for ring current effects). Limits for O-H···Y systems are taken as 2800 > νOH > 1800 cm-1, and 19 ppm > δOH > 15 ppm. Recent results as well as an account of theoretical advances are presented for a series of important classes of compounds such as β-diketone enols, β-thioxoketone enols, Mannich bases, proton sponges, quinoline N-oxides and diacid anions. The O···O distance has long been used as a parameter for hydrogen bond strength in O-H···O systems. On a broad scale, a correlation between OH stretching wavenumbers and O···O distances is observed, as demonstrated experimentally as well as theoretically, but for substituted β-diketone enols this correlation is relatively weak.
Collapse
Affiliation(s)
- Poul Erik Hansen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, P.O. Box 260, DK-4000 Roskilde, Denmark.
| | - Jens Spanget-Larsen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, P.O. Box 260, DK-4000 Roskilde, Denmark.
| |
Collapse
|
14
|
Warshel A, Bora RP. Perspective: Defining and quantifying the role of dynamics in enzyme catalysis. J Chem Phys 2017; 144:180901. [PMID: 27179464 DOI: 10.1063/1.4947037] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Enzymes control chemical reactions that are key to life processes, and allow them to take place on the time scale needed for synchronization between the relevant reaction cycles. In addition to general interest in their biological roles, these proteins present a fundamental scientific puzzle, since the origin of their tremendous catalytic power is still unclear. While many different hypotheses have been put forward to rationalize this, one of the proposals that has become particularly popular in recent years is the idea that dynamical effects contribute to catalysis. Here, we present a critical review of the dynamical idea, considering all reasonable definitions of what does and does not qualify as a dynamical effect. We demonstrate that no dynamical effect (according to these definitions) has ever been experimentally shown to contribute to catalysis. Furthermore, the existence of non-negligible dynamical contributions to catalysis is not supported by consistent theoretical studies. Our review is aimed, in part, at readers with a background in chemical physics and biophysics, and illustrates that despite a substantial body of experimental effort, there has not yet been any study that consistently established a connection between an enzyme's conformational dynamics and a significant increase in the catalytic contribution of the chemical step. We also make the point that the dynamical proposal is not a semantic issue but a well-defined scientific hypothesis with well-defined conclusions.
Collapse
Affiliation(s)
- Arieh Warshel
- Department of Chemistry, University of Southern California, SGM 418, 3620 McClintock Avenue, Los Angeles, California 90089, USA
| | - Ram Prasad Bora
- Department of Chemistry, University of Southern California, SGM 418, 3620 McClintock Avenue, Los Angeles, California 90089, USA
| |
Collapse
|
15
|
Gług M, Brela MZ, Boczar M, Turek AM, Boda Ł, Wójcik MJ, Nakajima T, Ozaki Y. Infrared Spectroscopy and Born–Oppenheimer Molecular Dynamics Simulation Study on Deuterium Substitution in the Crystalline Benzoic Acid. J Phys Chem B 2017; 121:479-489. [DOI: 10.1021/acs.jpcb.6b10617] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maciej Gług
- Faculty
of Chemistry, Jagiellonian University, 30-060 Kraków, Ingardena 3, Poland
| | - Mateusz Z. Brela
- Faculty
of Chemistry, Jagiellonian University, 30-060 Kraków, Ingardena 3, Poland
- Department
of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Marek Boczar
- Faculty
of Chemistry, Jagiellonian University, 30-060 Kraków, Ingardena 3, Poland
| | - Andrzej M. Turek
- Faculty
of Chemistry, Jagiellonian University, 30-060 Kraków, Ingardena 3, Poland
| | - Łukasz Boda
- Faculty
of Chemistry, Jagiellonian University, 30-060 Kraków, Ingardena 3, Poland
| | - Marek J. Wójcik
- Faculty
of Chemistry, Jagiellonian University, 30-060 Kraków, Ingardena 3, Poland
| | - Takahito Nakajima
- Advanced
Institute for Computational Science, RIKEN, 7-1-26, Minatojima-minami-machi,
Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yukihiro Ozaki
- Department
of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
16
|
Tomin M, Tomić S. Dynamic properties of dipeptidyl peptidase III from Bacteroides thetaiotaomicron and the structural basis for its substrate specificity – a computational study. MOLECULAR BIOSYSTEMS 2017; 13:2407-2417. [PMID: 28971197 DOI: 10.1039/c7mb00310b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Dynamics and enzyme activity of dipeptidyl peptidase III, wild type and mutants, from the human gut symbiont Bacteroides thetaiotaomicron.
Collapse
Affiliation(s)
- M. Tomin
- Division of Organic Chemistry and Biochemistry
- Rudjer Boskovic Institute
- Croatia
| | - S. Tomić
- Division of Organic Chemistry and Biochemistry
- Rudjer Boskovic Institute
- Croatia
| |
Collapse
|
17
|
Stare J. Complete sampling of an enzyme reaction pathway: a lesson from gas phase simulations. RSC Adv 2017. [DOI: 10.1039/c6ra27894a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
With proper sampling strategy, convergence of free energy profiles of biomolecular reactions in the gas phase can be achieved in microseconds of simulation.
Collapse
Affiliation(s)
- Jernej Stare
- Department of Computational Biochemistry and Drug Design
- National Institute of Chemistry
- SI-1000 Ljubljana
- Slovenia
| |
Collapse
|
18
|
Zelleke T, Marx D. Free-Energy Landscape and Proton Transfer Pathways in Oxidative Deamination by Methylamine Dehydrogenase. Chemphyschem 2016; 18:208-222. [DOI: 10.1002/cphc.201601113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Theodros Zelleke
- Lehrstuhl für Theoretische Chemie; Ruhr-Universität Bochum; 44780 Bochum Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie; Ruhr-Universität Bochum; 44780 Bochum Germany
| |
Collapse
|
19
|
Luk LYP, Loveridge EJ, Allemann RK. Protein motions and dynamic effects in enzyme catalysis. Phys Chem Chem Phys 2016; 17:30817-27. [PMID: 25854702 DOI: 10.1039/c5cp00794a] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The role of protein motions in promoting the chemical step of enzyme catalysed reactions remains a subject of considerable debate. Here, a unified view of the role of protein dynamics in dihydrofolate reductase catalysis is described. Recently the role of such motions has been investigated by characterising the biophysical properties of isotopically substituted enzymes through a combination of experimental and computational analyses. Together with previous work, these results suggest that dynamic coupling to the chemical coordinate is detrimental to catalysis and may have been selected against during DHFR evolution. The full catalytic power of Nature's catalysts appears to depend on finely tuning protein motions in each step of the catalytic cycle.
Collapse
Affiliation(s)
- Louis Y P Luk
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
| | - E Joel Loveridge
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
| | - Rudolf K Allemann
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
| |
Collapse
|
20
|
Vianello R, Domene C, Mavri J. The Use of Multiscale Molecular Simulations in Understanding a Relationship between the Structure and Function of Biological Systems of the Brain: The Application to Monoamine Oxidase Enzymes. Front Neurosci 2016; 10:327. [PMID: 27471444 PMCID: PMC4945635 DOI: 10.3389/fnins.2016.00327] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/28/2016] [Indexed: 01/17/2023] Open
Abstract
HIGHLIGHTS Computational techniques provide accurate descriptions of the structure and dynamics of biological systems, contributing to their understanding at an atomic level.Classical MD simulations are a precious computational tool for the processes where no chemical reactions take place.QM calculations provide valuable information about the enzyme activity, being able to distinguish among several mechanistic pathways, provided a carefully selected cluster model of the enzyme is considered.Multiscale QM/MM simulation is the method of choice for the computational treatment of enzyme reactions offering quantitative agreement with experimentally determined reaction parameters.Molecular simulation provide insight into the mechanism of both the catalytic activity and inhibition of monoamine oxidases, thus aiding in the rational design of their inhibitors that are all employed and antidepressants and antiparkinsonian drugs. Aging society and therewith associated neurodegenerative and neuropsychiatric diseases, including depression, Alzheimer's disease, obsessive disorders, and Parkinson's disease, urgently require novel drug candidates. Targets include monoamine oxidases A and B (MAOs), acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and various receptors and transporters. For rational drug design it is particularly important to combine experimental synthetic, kinetic, toxicological, and pharmacological information with structural and computational work. This paper describes the application of various modern computational biochemistry methods in order to improve the understanding of a relationship between the structure and function of large biological systems including ion channels, transporters, receptors, and metabolic enzymes. The methods covered stem from classical molecular dynamics simulations to understand the physical basis and the time evolution of the structures, to combined QM, and QM/MM approaches to probe the chemical mechanisms of enzymatic activities and their inhibition. As an illustrative example, the later will focus on the monoamine oxidase family of enzymes, which catalyze the degradation of amine neurotransmitters in various parts of the brain, the imbalance of which is associated with the development and progression of a range of neurodegenerative disorders. Inhibitors that act mainly on MAO A are used in the treatment of depression, due to their ability to raise serotonin concentrations, while MAO B inhibitors decrease dopamine degradation and improve motor control in patients with Parkinson disease. Our results give strong support that both MAO isoforms, A and B, operate through the hydride transfer mechanism. Relevance of MAO catalyzed reactions and MAO inhibition in the context of neurodegeneration will be discussed.
Collapse
Affiliation(s)
- Robert Vianello
- Computational Organic Chemistry and Biochemistry Group, Ruđer Bošković InstituteZagreb, Croatia
| | - Carmen Domene
- Department of Chemistry, King's College LondonLondon, UK
- Chemistry Research Laboratory, University of OxfordOxford, UK
| | - Janez Mavri
- Department of Computational Biochemistry and Drug Design, National Institute of ChemistryLjubljana, Slovenia
| |
Collapse
|
21
|
Kržan M, Vianello R, Maršavelski A, Repič M, Zakšek M, Kotnik K, Fijan E, Mavri J. The Quantum Nature of Drug-Receptor Interactions: Deuteration Changes Binding Affinities for Histamine Receptor Ligands. PLoS One 2016; 11:e0154002. [PMID: 27159606 PMCID: PMC4861267 DOI: 10.1371/journal.pone.0154002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/21/2016] [Indexed: 11/19/2022] Open
Abstract
In this article we report a combined experimental and computational study concerning the effects of deuteration on the binding of histamine and two other histaminergic agonists to 3H-tiotidine-labeled histamine H2 receptor in neonatal rat astrocytes. Binding affinities were measured by displacing radiolabeled tiotidine from H2 receptor binding sites present on cultured neonatal rat astrocytes. Quantum-chemical calculations were performed by employing the empirical quantization of nuclear motion within a cluster model of the receptor binding site extracted from the homology model of the entire H2 receptor. Structure of H2 receptor built by homology modelling is attached in the supporting information (S1 Table) Experiments clearly demonstrate that deuteration affects the binding by increasing the affinity for histamine and reducing it for 2-methylhistamine, while basically leaving it unchanged for 4-methylhistamine. Ab initio quantum-chemical calculations on the cluster system extracted from the homology H2 model along with the implicit quantization of the acidic N-H and O-H bonds demonstrate that these changes in the binding can be rationalized by the altered strength of the hydrogen bonding upon deuteration known as the Ubbelohde effect. Our computational analysis also reveals a new mechanism of histamine binding, which underlines an important role of Tyr250 residue. The present work is, to our best knowledge, the first study of nuclear quantum effects on ligand receptor binding. The ligand H/D substitution is relevant for therapy in the context of perdeuterated and thus more stable drugs that are expected to enter therapeutic practice in the near future. Moreover, presented approach may contribute towards understanding receptor activation, while a distant goal remains in silico discrimination between agonists and antagonists based on the receptor structure.
Collapse
Affiliation(s)
- Mojca Kržan
- Department of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Vianello
- Computational Organic Chemistry and Biochemistry Group, Ruđer Bošković Institute, Zagreb, Croatia
| | - Aleksandra Maršavelski
- Computational Organic Chemistry and Biochemistry Group, Ruđer Bošković Institute, Zagreb, Croatia
| | - Matej Repič
- Laboratory for Biocomputing and Bioinformatics, National Institute of Chemistry, Ljubljana, Slovenia
| | - Maja Zakšek
- Department of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Kristina Kotnik
- Department of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Estera Fijan
- Department of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Janez Mavri
- Laboratory for Biocomputing and Bioinformatics, National Institute of Chemistry, Ljubljana, Slovenia
| |
Collapse
|
22
|
Tautomeric stability, molecular structure, NBO, electronic and NMR analyses of salicylideneimino-ethylimino-pentan-2-one. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.02.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Brela MZ, Wójcik MJ, Witek ŁJ, Boczar M, Wrona E, Hashim R, Ozaki Y. Born-Oppenheimer Molecular Dynamics Study on Proton Dynamics of Strong Hydrogen Bonds in Aspirin Crystals, with Emphasis on Differences between Two Crystal Forms. J Phys Chem B 2016; 120:3854-62. [PMID: 27045959 DOI: 10.1021/acs.jpcb.6b01601] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, the proton dynamics of hydrogen bonds for two forms of crystalline aspirin was investigated by the Born-Oppenheimer molecular dynamics (BOMD) method. Analysis of the geometrical parameters of hydrogen bonds using BOMD reveals significant differences in hydrogen bonding between the two crystalline forms of aspirin, Form I and Form II. Analysis of the trajectory for Form I shows spontaneous proton transfer in cyclic dimers, which is absent in Form II. Quantization of the O-H stretching modes allows a detailed discussion on the strength of hydrogen-bonding interactions. The focal point of our study is examination of the hydrogen bond characteristics in the crystal structure and clarification of the influence of hydrogen bonding on the presence of the two crystalline forms of aspirin. In the BOMD method, thermal motions were taken into account. Solving the Schrödinger equation for the snapshots of 2D proton potentials, extracted from MD, gives the best agreement with IR spectra. The character of medium-strong hydrogen bonds in Form I of aspirin was compared with that of weaker hydrogen bonds in aspirin Form II. Two proton minima are present in the potential function for the hydrogen bonds in Form I. The band contours, calculated by using one- and two-dimensional O-H quantization, reflect the differences in the hydrogen bond strengths between the two crystalline forms of aspirin, as well as the strong hydrogen bonding in the cyclic dimers of Form I and the medium-strong hydrogen bonding in Form II.
Collapse
Affiliation(s)
- Mateusz Z Brela
- Faculty of Chemistry, Jagiellonian University , Ingardena 3, 30-060 Krakow, Poland
| | - Marek J Wójcik
- Faculty of Chemistry, Jagiellonian University , Ingardena 3, 30-060 Krakow, Poland
| | - Łukasz J Witek
- Faculty of Chemistry, Jagiellonian University , Ingardena 3, 30-060 Krakow, Poland
| | - Marek Boczar
- Faculty of Chemistry, Jagiellonian University , Ingardena 3, 30-060 Krakow, Poland
| | - Ewa Wrona
- Faculty of Chemistry, Jagiellonian University , Ingardena 3, 30-060 Krakow, Poland
| | - Rauzah Hashim
- Department of Chemistry, University of Malaya , 50603 Kuala Lumpur, Malaysia
| | - Yukihiro Ozaki
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University , Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
24
|
Meisner J, Kästner J. Atom Tunneling in Chemistry. Angew Chem Int Ed Engl 2016; 55:5400-13. [DOI: 10.1002/anie.201511028] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/08/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Jan Meisner
- Institut für Theoretische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Johannes Kästner
- Institut für Theoretische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| |
Collapse
|
25
|
Affiliation(s)
- Jan Meisner
- Institut für Theoretische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Deutschland
| | - Johannes Kästner
- Institut für Theoretische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Deutschland
| |
Collapse
|
26
|
Varga MJ, Schwartz SD. Enzymatic Kinetic Isotope Effects from First-Principles Path Sampling Calculations. J Chem Theory Comput 2016; 12:2047-54. [PMID: 26949835 DOI: 10.1021/acs.jctc.5b01169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, we develop and test a method to determine the rate of particle transfer and kinetic isotope effects in enzymatic reactions, specifically yeast alcohol dehydrogenase (YADH), from first-principles. Transition path sampling (TPS) and normal mode centroid dynamics (CMD) are used to simulate these enzymatic reactions without knowledge of their reaction coordinates and with the inclusion of quantum effects, such as zero-point energy and tunneling, on the transferring particle. Though previous studies have used TPS to calculate reaction rate constants in various model and real systems, it has not been applied to a system as large as YADH. The calculated primary H/D kinetic isotope effect agrees with previously reported experimental results, within experimental error. The kinetic isotope effects calculated with this method correspond to the kinetic isotope effect of the transfer event itself. The results reported here show that the kinetic isotope effects calculated from first-principles, purely for barrier passage, can be used to predict experimental kinetic isotope effects in enzymatic systems.
Collapse
Affiliation(s)
- Matthew J Varga
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| | - Steven D Schwartz
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| |
Collapse
|
27
|
Głębocka A, Raczyńska ED, Chylewska A, Makowski M. Experimental (FT-IR) and theoretical (DFT) studies on prototropy and H-bond formation for pyrazine-2-amidoxime. J PHYS ORG CHEM 2016. [DOI: 10.1002/poc.3538] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Angelika Głębocka
- Laboratory of Intermolecular Interactions, Faculty of Chemistry; University of Gdańsk; Wita Stwosza 63 80-308 Gdańsk Poland
| | - Ewa D. Raczyńska
- Department of Chemistry; Warsaw University of Life Sciences; Nowoursynowska 159c 02-776 Warszawa Poland
| | - Agnieszka Chylewska
- Laboratory of Intermolecular Interactions, Faculty of Chemistry; University of Gdańsk; Wita Stwosza 63 80-308 Gdańsk Poland
| | - Mariusz Makowski
- Laboratory of Intermolecular Interactions, Faculty of Chemistry; University of Gdańsk; Wita Stwosza 63 80-308 Gdańsk Poland
| |
Collapse
|
28
|
Kamachi T, Yoshizawa K. Low-Mode Conformational Search Method with Semiempirical Quantum Mechanical Calculations: Application to Enantioselective Organocatalysis. J Chem Inf Model 2016; 56:347-53. [DOI: 10.1021/acs.jcim.5b00671] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Takashi Kamachi
- Institute
for Materials Chemistry
and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute
for Materials Chemistry
and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
29
|
Klopčič I, Poberžnik M, Mavri J, Dolenc MS. A quantum chemical study of the reactivity of acetaminophen (paracetamol) toxic metabolite N-acetyl-p-benzoquinone imine with deoxyguanosine and glutathione. Chem Biol Interact 2015; 242:407-14. [DOI: 10.1016/j.cbi.2015.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/16/2015] [Accepted: 11/03/2015] [Indexed: 12/17/2022]
|
30
|
Sarsa A, Alcaraz-Pelegrina JM, Le Sech C. Isotopic Effects on Covalent Bond Confined in a Penetrable Sphere. J Phys Chem B 2015; 119:14364-72. [PMID: 26484576 DOI: 10.1021/acs.jpcb.5b06758] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A model of confinement of the covalent bond by a finite potential beyond the Born-Oppenheimer approximation is presented. A two-electron molecule is located at the center of a penetrable spherical cavity. The Schrödinger equation has been solved by using the diffusion Monte Carlo method. Total energies, internuclear distances, and vibrational frequencies of the confined molecular system have been obtained. Even for confining potentials of a few electronvolts, a noticeable increase in the bond energy and the nuclear vibrational frequency is observed, and the internuclear distance is lowered. The gap between the zero point energy of different molecular isotopes increases with confinement. The confinement of the electron pair might play a role in chemical reactivity, providing an alternative explanation for the tunnel effect, when large values of primary kinetic isotopic effect are observed. The Swain-Schaad relation is still verified when confinement changes the zero point energy. A semiquantitative illustration is proposed using the data relative to an hydrogen transfer involving a C-H cleavage catalyzed by the bovine serum amine oxidase. Changes on the confining conditions, corresponding to a confinement/deconfinement process, result in a significant decrease in the activation energy of the chemical transformation. It is proposed that confinement/deconfinement of the electron-pair bonding by external electrostatic forces inside the active pocket of an enzyme could be one of the basic mechanisms of the enzyme catalysis.
Collapse
Affiliation(s)
- Antonio Sarsa
- Departamento de Física, Facultad de Ciencias, Universidad de Córdoba , Campus de Rabanales, Edif. C2, E-14071 Córdoba, Spain
| | - José M Alcaraz-Pelegrina
- Departamento de Física, Facultad de Ciencias, Universidad de Córdoba , Campus de Rabanales, Edif. C2, E-14071 Córdoba, Spain
| | - Claude Le Sech
- Université Paris Sud 11, CNRS, Institut des Sciences Moleculaires d'Orsay-ISMO (UMR 8214), 91405 Orsay Cedex, France
| |
Collapse
|
31
|
Hoeven R, Heyes DJ, Hay S, Scrutton NS. Does the pressure dependence of kinetic isotope effects report usefully on dynamics in enzyme H-transfer reactions? FEBS J 2015; 282:3243-55. [PMID: 25581554 PMCID: PMC4949571 DOI: 10.1111/febs.13193] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/15/2014] [Accepted: 01/08/2015] [Indexed: 11/30/2022]
Abstract
The temperature dependence of kinetic isotope effects (KIEs) has emerged as the main experimental probe of enzymatic H-transfer by quantum tunnelling. Implicit in the interpretation is a presumed role for dynamic coupling of H-transfer chemistry to the protein environment, the so-called 'promoting motions/vibrations hypothesis'. This idea remains contentious, and others have questioned the importance and/or existence of promoting motions/vibrations. New experimental methods of addressing this problem are emerging, including use of mass-modulated enzymes and time-resolved spectroscopy. The pressure dependence of KIEs has been considered as a potential probe of quantum tunnelling reactions, because semi-classical KIEs, which are defined by differences in zero-point vibrational energy, are relatively insensitive to kbar changes in pressure. Reported combined pressure and temperature (p-T) dependence studies of H-transfer reactions are, however, limited. Here, we extend and review the available p-T studies that have utilized well-defined experimental systems in which quantum mechanical tunnelling is established. These include flavoproteins, quinoproteins, light-activated enzymes and chemical model systems. We show that there is no clear general trend between the p-T dependencies of the KIEs in these systems. Given the complex nature of p-T studies, we conclude that computational simulations using determined (e.g. X-ray) structures are also needed alongside experimental measurements of reaction rates/KIEs to guide the interpretation of p-T effects. In providing new insight into H-transfer/environmental coupling, combined approaches that unite both atomistic understanding with experimental rate measurements will require careful evaluation on a case-by-case basis. Although individually informative, we conclude that p-T studies do not provide the more generalized insight that has come from studies of the temperature dependence of KIEs.
Collapse
Affiliation(s)
- Robin Hoeven
- Manchester Institute of Biotechnology and Faculty of Life Sciences, The University of Manchester, UK
| | - Derren J Heyes
- Manchester Institute of Biotechnology and Faculty of Life Sciences, The University of Manchester, UK
| | - Sam Hay
- Manchester Institute of Biotechnology and Faculty of Life Sciences, The University of Manchester, UK
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology and Faculty of Life Sciences, The University of Manchester, UK
| |
Collapse
|
32
|
Phatak P, Venderley J, Debrota J, Li J, Iyengar SS. Active Site Dynamical Effects in the Hydrogen Transfer Rate-limiting Step in the Catalysis of Linoleic Acid by Soybean Lipoxygenase-1 (SLO-1): Primary and Secondary Isotope Contributions. J Phys Chem B 2015; 119:9532-46. [PMID: 26079999 DOI: 10.1021/acs.jpcb.5b02385] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using ab initio molecular dynamics (AIMD) simulations that facilitate the treatment of rare events, we probe the active site participation in the rate-determining hydrogen transfer step in the catalytic oxidation of linoleic acid by soybean lipoxygenase-1 (SLO-1). The role of two different active site components is probed. (a) On the hydrogen atom acceptor side of the active site, the hydrogen bonding propensity between the acceptor side hydroxyl group, which is bound to the iron cofactor, and the backbone carboxyl group of isoleucine (residue number 839) is studied toward its role in promoting the hydrogen transfer event. Primary and secondary (H/D) isotope effects are also probed and a definite correlation with subtle secondary H/D isotope effects is found. With increasing average nuclear kinetic energy, the increase in transfer probability is enhanced due to the presence of the hydrogen bond between the backbone carbonyl of I839 and the acceptor oxygen. Further increase in average nuclear kinetic energy reduces the strength of this secondary hydrogen bond which leads to a deterioration in hydrogen transfer rates and finally embrances an Arrhenius-like behavior. (b) On the hydrogen atom donor side, the coupling between vibrational modes predominantly localized on the donor-side linoleic acid group and the reactive mode is probed. There appears to be a qualitative difference in the coupling between modes that belong to linoleic acid and the hydrogen transfer mode, for hydrogen and deuterium transfer. For example, the donor side secondary hydrogen atom is much more labile (by nearly a factor of 5) during deuterium transfer as compared to the case for hydrogen transfer. This appears to indicate a greater coupling between the modes belonging to the linoleic acid scaffold and the deuterium transfer mode and also provides a new rationalization for the abnormal (nonclassical) secondary isotope effect results obtained by Knapp, Rickert, and Klinman in J. Am. Chem. Soc. , 2002 , 124 , 3865 . To substantiate our findings noted in point a above, we have suggested an I839 → A839 or I839 → V839 mutation. This will modify the bulkiness of hydrogen the bonding residue, allowing greater flexibility in the secondary hydrogen bond formation highlighted above and adversely affecting the reaction rate.
Collapse
Affiliation(s)
- Prasad Phatak
- Department of Chemistry and Department of Physics, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Jordan Venderley
- Department of Chemistry and Department of Physics, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - John Debrota
- Department of Chemistry and Department of Physics, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Junjie Li
- Department of Chemistry and Department of Physics, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Srinivasan S Iyengar
- Department of Chemistry and Department of Physics, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
33
|
The entropic contributions in vitamin B12 enzymes still reflect the electrostatic paradigm. Proc Natl Acad Sci U S A 2015; 112:4328-33. [PMID: 25805820 DOI: 10.1073/pnas.1503828112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The catalytic power of enzymes containing coenzyme B12 has been, in some respects, the "last bastion" for the strain hypothesis. Our previous study of this system established by a careful sampling that the major part of the catalytic effect is due to the electrostatic interaction between the ribose of the ado group and the protein and that the strain contribution is very small. This finding has not been sufficiently appreciated due to misunderstandings of the power of the empirical valence bond (EVB) calculations and the need of sufficient sampling. Furthermore, some interesting new experiments point toward entropic effects as the source of the catalytic power, casting doubt on the validity of the electrostatic idea, at least, in the case of B12 enzymes. Here, we focus on the observation of the entropic effects and on analyzing their origin. We clarify that our EVB approach evaluates free energies rather than enthalpies and demonstrate by using the restraint release (RR) approach that the observed entropic contribution to the activation barrier is of electrostatic origin. Our study illustrates the power of the RR approach by evaluating the entropic contributions to catalysis and provides further support to our paradigm for the origin of the catalytic power of B12 enzymes. Overall, our study provides major support to our electrostatic preorganization idea and also highlights the basic requirements from ab initio quantum mechanics/molecular mechanics calculations of activation free energies of enzymatic reactions.
Collapse
|
34
|
Lameira J, Ram Prasad B, Chu ZT, Warshel A. Methyltransferases do not work by compression, cratic, or desolvation effects, but by electrostatic preorganization. Proteins 2015; 83:318-30. [PMID: 25388538 PMCID: PMC4300294 DOI: 10.1002/prot.24717] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 11/05/2022]
Abstract
The enzyme catechol O-methyltransferase (COMT) catalyzes the transfer of a methyl group from S-adenosylmethionine to dopamine and related catechols. The search for the origin of COMT catalysis has led to different proposals and hypothesis, including the entropic, the NAC, and the compression proposals as well as the more reasonable electrostatic idea. Thus, it is important to understand the catalytic power of this enzyme and to examine the validity of different proposals and in particular the repeated recent implication of the compression idea. The corresponding analysis should be done by well-defined physically-based considerations that involve computations rather than circular interpretations of experimental results. Thus, we explore here the origin of the catalytic efficiency of COMT by using the empirical valence bond and the linear response approximation approaches. The results demonstrate that the catalytic effect of COMT is mainly due to electrostatic preorganization effects. It is also shown that the compression, NAC and entropic proposals do not account for the catalytic effect.
Collapse
Affiliation(s)
- Jeronimo Lameira
- University of Southern California, Department of Chemistry, SGM 418, 3620 McClintosk Avenue, Los Angeles, California 90089, United States
- Faculdade de Biotecnologia e Laboratório de Planejamento e Desenvolvimento de Fármacos; Universidade Federal do Pará, 66075-110, Belém, PA, Brazil
| | - B Ram Prasad
- University of Southern California, Department of Chemistry, SGM 418, 3620 McClintosk Avenue, Los Angeles, California 90089, United States
| | - Zhen T. Chu
- University of Southern California, Department of Chemistry, SGM 418, 3620 McClintosk Avenue, Los Angeles, California 90089, United States
| | - Arieh Warshel
- University of Southern California, Department of Chemistry, SGM 418, 3620 McClintosk Avenue, Los Angeles, California 90089, United States
| |
Collapse
|
35
|
Rajabi K. Microsecond pulsed hydrogen/deuterium exchange of electrosprayed ubiquitin ions stored in a linear ion trap. Phys Chem Chem Phys 2015; 17:3607-16. [DOI: 10.1039/c4cp04716h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The pulsed HDX MS method is sampling a population of ubiquitin ions with a similar backbone fold as solution.
Collapse
Affiliation(s)
- Khadijeh Rajabi
- Department of Chemistry
- University of British Columbia (UBC)
- Vancouver
- Canada
| |
Collapse
|
36
|
Johannissen LO, Hay S, Scrutton NS. Nuclear quantum tunnelling in enzymatic reactions – an enzymologist's perspective. Phys Chem Chem Phys 2015; 17:30775-82. [DOI: 10.1039/c5cp00614g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The roles of nuclear quantum tunnelling and dynamics in enzyme reactions are discussed in this perspective on H-transfer reactions.
Collapse
Affiliation(s)
- Linus O. Johannissen
- SYNBIOCHEM
- Manchester Institute of Biotechnology
- Faculty of Life Sciences
- The University of Manchester
- Manchester M1 7DN
| | - Sam Hay
- SYNBIOCHEM
- Manchester Institute of Biotechnology
- Faculty of Life Sciences
- The University of Manchester
- Manchester M1 7DN
| | - Nigel S. Scrutton
- SYNBIOCHEM
- Manchester Institute of Biotechnology
- Faculty of Life Sciences
- The University of Manchester
- Manchester M1 7DN
| |
Collapse
|
37
|
Zhou J, Xie H, Liu Z, Luo HB, Wu R. Structure–Function Analysis of the Conserved Tyrosine and Diverse π-Stacking among Class I Histone Deacetylases: A QM (DFT)/MM MD Study. J Chem Inf Model 2014; 54:3162-71. [DOI: 10.1021/ci500513n] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jingwei Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 Guangdong, P.R. China
| | - Hujun Xie
- School
of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310035 Zhejiang, P.R. China
| | - Zhihong Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 Guangdong, P.R. China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 Guangdong, P.R. China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 Guangdong, P.R. China
| |
Collapse
|
38
|
Gurinov AA, Lesnichin SB, Limbach HH, Shenderovich IG. How short is the strongest hydrogen bond in the proton-bound homodimers of pyridine derivatives? J Phys Chem A 2014; 118:10804-12. [PMID: 25327551 DOI: 10.1021/jp5082033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydrogen bond geometries in the proton-bound homodimers of ortho-unsubstituted and ortho-methylsubstituted pyridine derivatives in aprotic polar solution were estimated using experimental NMR data. Within the series of homodimers studied the hydrogen bond lengths depend on the proton affinity of pyridines and--at least for the ortho-methylsubstituted pyridines--on the pKa of the conjugate acids in an approximately quadratic manner. The shortest possible hydrogen bond in the homodimers of ortho-unsubstituted pyridines is characterized by the N···N distance of 2.613 Å. Steric repulsion between the methyl groups of the ortho-methylsubstituted pyridines becomes operative at an N···N distance of ∼2.7 Å and limits the closest approach to 2.665 Å.
Collapse
Affiliation(s)
- Andrey A Gurinov
- Institute of Chemistry and Biochemistry, Free University Berlin , Takustrasse 3, 14195 Berlin, Germany
| | | | | | | |
Collapse
|
39
|
Tao X, Zheng L, Qi Y, Xu Y, Xu L, Yin L, Han X, Liu K, Peng J. Inhibitory effects of dioscin on cytochrome P450 enzymes. RSC Adv 2014; 4:54026-54031. [DOI: 10.1039/c4ra09160d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025] Open
|
40
|
Carvalho ATP, Barrozo A, Doron D, Kilshtain AV, Major DT, Kamerlin SCL. Challenges in computational studies of enzyme structure, function and dynamics. J Mol Graph Model 2014; 54:62-79. [PMID: 25306098 DOI: 10.1016/j.jmgm.2014.09.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 09/13/2014] [Accepted: 09/16/2014] [Indexed: 01/23/2023]
Abstract
In this review we give an overview of the field of Computational enzymology. We start by describing the birth of the field, with emphasis on the work of the 2013 chemistry Nobel Laureates. We then present key features of the state-of-the-art in the field, showing what theory, accompanied by experiments, has taught us so far about enzymes. We also briefly describe computational methods, such as quantum mechanics-molecular mechanics approaches, reaction coordinate treatment, and free energy simulation approaches. We finalize by discussing open questions and challenges.
Collapse
Affiliation(s)
- Alexandra T P Carvalho
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, S-751 24 Uppsala, Sweden
| | - Alexandre Barrozo
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, S-751 24 Uppsala, Sweden
| | - Dvir Doron
- Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Alexandra Vardi Kilshtain
- Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Dan Thomas Major
- Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry Bar-Ilan University, Ramat-Gan 52900, Israel.
| | - Shina Caroline Lynn Kamerlin
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, S-751 24 Uppsala, Sweden.
| |
Collapse
|
41
|
Hydrogen bonded pyridine N-oxide/trichloroacetic acid complex in polar media: 2D potential energy surface and O–H⋯O vibration analysis using exact vibrational Hamiltonian. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.02.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Doshi U, Hamelberg D. The dilemma of conformational dynamics in enzyme catalysis: perspectives from theory and experiment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 805:221-43. [PMID: 24446364 DOI: 10.1007/978-3-319-02970-2_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The role of protein dynamics in catalysis is a contemporary issue that has stirred intense debate in the field. This chapter provides a brief overview of the approaches and findings of a wide range of experimental, computational and theoretical studies that have addressed this issue. We summarize the results of our recent atomistic molecular dynamic studies on cis-trans isomerase. Our results help to reconcile the disparate perspectives regarding the complex role of enzyme dynamics in the catalytic step and emphasize the major contribution of transition state stabilization in rate enhancement.
Collapse
Affiliation(s)
- Urmi Doshi
- Department of Chemistry and the Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, 30302-3965, USA,
| | | |
Collapse
|
43
|
Kawashima Y, Tachikawa M. Ab Initio Path Integral Molecular Dynamics Study of the Nuclear Quantum Effect on Out-of-Plane Ring Deformation of Hydrogen Maleate Anion. J Chem Theory Comput 2013; 10:153-63. [DOI: 10.1021/ct4007986] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yukio Kawashima
- Quantum Chemistry Division, Graduate School of Science, Graduate
School of Nanobioscience, Yokohama City University, Yokohama 236-0027, Japan
| | - Masanori Tachikawa
- Quantum Chemistry Division, Graduate School of Science, Graduate
School of Nanobioscience, Yokohama City University, Yokohama 236-0027, Japan
| |
Collapse
|
44
|
Pitsevich G, Malevich A, Doroshenko I, Kozlovskaya E, Pogorelov V, Sablinskas V, Balevicius V. Pyridine N-oxide/trichloroacetic acid complex in acetonitrile: FTIR spectra, anharmonic calculations and computations of 1-3D potential surfaces of O-H vibrations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 120:585-594. [PMID: 24373980 DOI: 10.1016/j.saa.2013.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/30/2013] [Accepted: 12/04/2013] [Indexed: 06/03/2023]
Abstract
FTIR spectra of pyridine N-oxide and trichloroacetic acid H-bonded complex in acetonitrile were studied at 20 and 50°C. The calculations of equilibrium configurations of the complex and their IR spectra in harmonic- and anharmonic approximations were carried out at the level of B3LYP/cc-pVTZ/PCM. However both approximations turned out to be incompetent determining the frequency of the O-Н stretching vibration. In order to reveal the causes of essential discrepancies between calculated and experimental data one-, two- and three-dimensional potential energy surfaces (PES) of the O-H…O bridge proton motion in the frame of fixed other atoms in the complex were calculated. The frequencies of O-H…O stretching and bending vibrations were calculated by numerical solution of the Schrödinger equation. It is shown that only the approach of proton motion on the 3D PES allows obtaining a good agreement between the calculated and the experimental values of the frequencies of the О-Н stretching vibrations.
Collapse
Affiliation(s)
- G Pitsevich
- Belarusian State University, Minsk, Belarus.
| | - A Malevich
- Belarusian State University, Minsk, Belarus
| | - I Doroshenko
- National Taras Shevchenko University, Kyiv, Ukraine
| | | | - V Pogorelov
- National Taras Shevchenko University, Kyiv, Ukraine
| | | | | |
Collapse
|
45
|
Wang K, Hou Q, Liu Y. Insight into the mechanism of aminomutase reaction: A case study of phenylalanine aminomutase by computational approach. J Mol Graph Model 2013; 46:65-73. [DOI: 10.1016/j.jmgm.2013.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/28/2013] [Accepted: 09/25/2013] [Indexed: 11/24/2022]
|
46
|
Kästner J. Theory and simulation of atom tunneling in chemical reactions. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2013. [DOI: 10.1002/wcms.1165] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Johannes Kästner
- Institute of Theoretical ChemistryUniversity of StuttgartStuttgartGermany
| |
Collapse
|
47
|
Duarte F, Amrein BA, Kamerlin SCL. Modeling catalytic promiscuity in the alkaline phosphatase superfamily. Phys Chem Chem Phys 2013; 15:11160-77. [PMID: 23728154 PMCID: PMC3693508 DOI: 10.1039/c3cp51179k] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/02/2013] [Indexed: 12/19/2022]
Abstract
In recent years, it has become increasingly clear that promiscuity plays a key role in the evolution of new enzyme function. This finding has helped to elucidate fundamental aspects of molecular evolution. While there has been extensive experimental work on enzyme promiscuity, computational modeling of the chemical details of such promiscuity has traditionally fallen behind the advances in experimental studies, not least due to the nearly prohibitive computational cost involved in examining multiple substrates with multiple potential mechanisms and binding modes in atomic detail with a reasonable degree of accuracy. However, recent advances in both computational methodologies and power have allowed us to reach a stage in the field where we can start to overcome this problem, and molecular simulations can now provide accurate and efficient descriptions of complex biological systems with substantially less computational cost. This has led to significant advances in our understanding of enzyme function and evolution in a broader sense. Here, we will discuss currently available computational approaches that can allow us to probe the underlying molecular basis for enzyme specificity and selectivity, discussing the inherent strengths and weaknesses of each approach. As a case study, we will discuss recent computational work on different members of the alkaline phosphatase superfamily (AP) using a range of different approaches, showing the complementary insights they have provided. We have selected this particular superfamily, as it poses a number of significant challenges for theory, ranging from the complexity of the actual reaction mechanisms involved to the reliable modeling of the catalytic metal centers, as well as the very large system sizes. We will demonstrate that, through current advances in methodologies, computational tools can provide significant insight into the molecular basis for catalytic promiscuity, and, therefore, in turn, the mechanisms of protein functional evolution.
Collapse
Affiliation(s)
- Fernanda Duarte
- Uppsala University, Science for Life Laboratory (SciLifeLab), Cell and Molecular Biology, Uppsala, Sweden. ; ;
| | - Beat Anton Amrein
- Uppsala University, Science for Life Laboratory (SciLifeLab), Cell and Molecular Biology, Uppsala, Sweden. ; ;
| | | |
Collapse
|
48
|
Borissova AO, Lyssenko KA, Gurinov AA, Shenderovich IG. Energy Analysis of Competing Non-Covalent Interaction in 1:1 and 1:2 Adducts of Collidine with Benzoic Acids by Means of X-Ray Diffraction. ACTA ACUST UNITED AC 2013. [DOI: 10.1524/zpch.2013.0400] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
The hydrogen bond pattern and the types of non-covalent interactions in the crystals of the 1:1 and 1:2 adducts of 2,4,6-trimethylpyridine and benzoic acids are studied using high-resolution X-ray diffraction. The geometries of the hydrogen bonds are estimated using a combined XRD/DFT approach that provides the geometrical parameters within the margin of error of neutron diffraction studies. The energies of the non-covalent interactions are estimated on the base of the experimental electron density distribution function. It is shown that the structures of the adducts are governed by the NOH and OHO hydrogen bonds. In turn, C-H...O contacts and stacking interactions define the packing of the adducts in the crystal. On the other hand, it is important to note that the latter interactions affect the competition of the former hydrogen bonds in some 1:2 adducts.
Collapse
Affiliation(s)
| | - Konstantin A. Lyssenko
- Russian Academy of Sciences, A.N. Nesmeyanov Institute of Organoelement Compoun, Moscow, Russische Föderation
| | - Andrey A. Gurinov
- St. Petersburg State University, Department of Physics, St. Petersburg, Russische Föderation
| | | |
Collapse
|
49
|
van der Kamp MW, Mulholland AJ. Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology. Biochemistry 2013; 52:2708-28. [PMID: 23557014 DOI: 10.1021/bi400215w] [Citation(s) in RCA: 420] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Computational enzymology is a rapidly maturing field that is increasingly integral to understanding mechanisms of enzyme-catalyzed reactions and their practical applications. Combined quantum mechanics/molecular mechanics (QM/MM) methods are important in this field. By treating the reacting species with a quantum mechanical method (i.e., a method that calculates the electronic structure of the active site) and including the enzyme environment with simpler molecular mechanical methods, enzyme reactions can be modeled. Here, we review QM/MM methods and their application to enzyme-catalyzed reactions to investigate fundamental and practical problems in enzymology. A range of QM/MM methods is available, from cheaper and more approximate methods, which can be used for molecular dynamics simulations, to highly accurate electronic structure methods. We discuss how modeling of reactions using such methods can provide detailed insight into enzyme mechanisms and illustrate this by reviewing some recent applications. We outline some practical considerations for such simulations. Further, we highlight applications that show how QM/MM methods can contribute to the practical development and application of enzymology, e.g., in the interpretation and prediction of the effects of mutagenesis and in drug and catalyst design.
Collapse
Affiliation(s)
- Marc W van der Kamp
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK.
| | | |
Collapse
|
50
|
Ram Prasad B, Kamerlin SCL, Florián J, Warshel A. Prechemistry barriers and checkpoints do not contribute to fidelity and catalysis as long as they are not rate limiting. Theor Chem Acc 2012. [DOI: 10.1007/s00214-012-1288-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|