1
|
Terebieniec A, Xu L, Peng M, Mäkelä MR, de Vries RP. L-Rhamnose Dehydrogenase LraA of Aspergillus niger Shows High Substrate Specificity Matching Its Expression Profile. J Fungi (Basel) 2025; 11:301. [PMID: 40278122 PMCID: PMC12028159 DOI: 10.3390/jof11040301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
L-rhamnose is one of the main monomeric sugars of rhamnogalacturonan I and II, which are polysaccharide components of pectin. In the ascomycete fungus Aspergillus niger it is metabolized through the non-phosphorylated L-rhamnose pathway, of which the first step is catalyzed by L-rhamnose dehydrogenase (LraA), converting L-rhamnose into L-rhamnono-γ-lactone. This enzyme belongs to PFAM PF00106, unlike most of other reductases/dehydrogenases involved in fungal sugar catabolism that are typically assigned to PF00248 and PF00107. The enzymes of those families have broad substrate specificity and in some cases have been shown to be involved in multiple pathways. In this study we heterologously produced and biochemically characterized A. niger LraA and studied its expression on a set of monosaccharides. This revealed that, in contrast to other metabolic redox enzymes, LraA is highly specific for L-rhamnose and has no activity on most other substrates tested in this study. This specificity is matched by a highly specific expression profile, which only shows significant expression on L-rhamnose. It therefore can be concluded that LraA has evolved with a highly specific function in fungal sugar catabolism, unlike most other sugar reductases/dehydrogenases described so far. The high specificity of LraA also affects its biotechnological applications, as it may benefit L-rhamnose-based processes, but would be less suitable for applications involving conversion of multiple sugars.
Collapse
Affiliation(s)
- Agata Terebieniec
- Fungal Physiology Group, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (A.T.); (L.X.); (M.P.)
| | - Li Xu
- Fungal Physiology Group, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (A.T.); (L.X.); (M.P.)
| | - Mao Peng
- Fungal Physiology Group, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (A.T.); (L.X.); (M.P.)
| | - Miia R. Mäkelä
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, FI-02150 Espoo, Finland;
| | - Ronald P. de Vries
- Fungal Physiology Group, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (A.T.); (L.X.); (M.P.)
| |
Collapse
|
2
|
Kaushal M, Upton DJ, Gupta JK, Wood AJ, Srivastava S. Reconstruction of a genome-scale metabolic model and in-silico flux analysis of Aspergillus tubingensis: a non-mycotoxinogenic citric acid-producing fungus. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:70. [PMID: 38807234 PMCID: PMC11134751 DOI: 10.1186/s13068-024-02506-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/20/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Aspergillus tubingensis is a citric acid-producing fungus that can utilize sugars in hydrolysate of lignocellulosic biomass such as sugarcane bagasse and, unlike A. niger, does not produce mycotoxins. To date, no attempt has been made to model its metabolism at genome scale. RESULTS Here, we utilized the whole-genome sequence (34.96 Mb length) and the measured biomass composition to reconstruct a genome-scale metabolic model (GSMM) of A. tubingensis DJU120 strain. The model, named iMK1652, consists of 1652 genes, 1657 metabolites and 2039 reactions distributed over four cellular compartments. The model has been extensively curated manually. This included removal of dead-end metabolites and generic reactions, addition of secondary metabolite pathways and several transporters. Several mycotoxin synthesis pathways were either absent or incomplete in the genome, providing a genomic basis for the non-toxinogenic nature of this species. The model was further refined based on the experimental phenotypic microarray (Biolog) data. The model closely captured DJU120 fermentative data on glucose, xylose, and phosphate consumption, as well as citric acid and biomass production, showing its applicability to capture citric acid fermentation of lignocellulosic biomass hydrolysate. CONCLUSIONS The model offers a framework to conduct metabolic systems biology investigations and can act as a scaffold for integrative modelling of A. tubingensis.
Collapse
Affiliation(s)
- Mehak Kaushal
- Systems Biology for Biofuel Group, International Centre for Genetic Engineering and Biotechnology, ICGEB Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Perfect Day India Pvt. Ltd., Bangalore, India
| | - Daniel J Upton
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Jai K Gupta
- Systems Biology for Biofuel Group, International Centre for Genetic Engineering and Biotechnology, ICGEB Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
- JKG: Zero Cow Factory, Surat, India
| | - A Jamie Wood
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
- Department of Mathematics, University of York, York, YO10 5DD, UK
| | - Shireesh Srivastava
- Systems Biology for Biofuel Group, International Centre for Genetic Engineering and Biotechnology, ICGEB Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
3
|
Adamczyk PA, Coradetti ST, Gladden JM. Non-canonical D-xylose and L-arabinose metabolism via D-arabitol in the oleaginous yeast Rhodosporidium toruloides. Microb Cell Fact 2023; 22:145. [PMID: 37537595 PMCID: PMC10398940 DOI: 10.1186/s12934-023-02126-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/17/2023] [Indexed: 08/05/2023] Open
Abstract
R. toruloides is an oleaginous yeast, with diverse metabolic capacities and high tolerance for inhibitory compounds abundant in plant biomass hydrolysates. While R. toruloides grows on several pentose sugars and alcohols, further engineering of the native pathway is required for efficient conversion of biomass-derived sugars to higher value bioproducts. A previous high-throughput study inferred that R. toruloides possesses a non-canonical L-arabinose and D-xylose metabolism proceeding through D-arabitol and D-ribulose. In this study, we present a combination of genetic and metabolite data that refine and extend that model. Chiral separations definitively illustrate that D-arabitol is the enantiomer that accumulates under pentose metabolism. Deletion of putative D-arabitol-2-dehydrogenase (RTO4_9990) results in > 75% conversion of D-xylose to D-arabitol, and is growth-complemented on pentoses by heterologous xylulose kinase expression. Deletion of putative D-ribulose kinase (RTO4_14368) arrests all growth on any pentose tested. Analysis of several pentose dehydrogenase mutants elucidates a complex pathway with multiple enzymes mediating multiple different reactions in differing combinations, from which we also inferred a putative L-ribulose utilization pathway. Our results suggest that we have identified enzymes responsible for the majority of pathway flux, with additional unknown enzymes providing accessory activity at multiple steps. Further biochemical characterization of the enzymes described here will enable a more complete and quantitative understanding of R. toruloides pentose metabolism. These findings add to a growing understanding of the diversity and complexity of microbial pentose metabolism.
Collapse
Affiliation(s)
- Paul A Adamczyk
- Agile Biofoundry, Emeryville, CA, USA
- Sandia National Laboratories, Livermore, CA, USA
| | - Samuel T Coradetti
- Agile Biofoundry, Emeryville, CA, USA
- Sandia National Laboratories, Livermore, CA, USA
- United States Department of Agriculture, Agricultural Research Service, Ithaca, NY, USA
| | - John M Gladden
- Agile Biofoundry, Emeryville, CA, USA.
- Sandia National Laboratories, Livermore, CA, USA.
- Joint BioEnergy Institute, Emeryville, CA, USA.
- Sandia National Laboratories, DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA, 94608, USA.
| |
Collapse
|
4
|
Li J, Chroumpi T, Garrigues S, Kun RS, Meng J, Salazar-Cerezo S, Aguilar-Pontes MV, Zhang Y, Tejomurthula S, Lipzen A, Ng V, Clendinen CS, Tolić N, Grigoriev IV, Tsang A, Mäkelä MR, Snel B, Peng M, de Vries RP. The Sugar Metabolic Model of Aspergillus niger Can Only Be Reliably Transferred to Fungi of Its Phylum. J Fungi (Basel) 2022; 8:jof8121315. [PMID: 36547648 PMCID: PMC9781776 DOI: 10.3390/jof8121315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Fungi play a critical role in the global carbon cycle by degrading plant polysaccharides to small sugars and metabolizing them as carbon and energy sources. We mapped the well-established sugar metabolic network of Aspergillus niger to five taxonomically distant species (Aspergillus nidulans, Penicillium subrubescens, Trichoderma reesei, Phanerochaete chrysosporium and Dichomitus squalens) using an orthology-based approach. The diversity of sugar metabolism correlates well with the taxonomic distance of the fungi. The pathways are highly conserved between the three studied Eurotiomycetes (A. niger, A. nidulans, P. subrubescens). A higher level of diversity was observed between the T. reesei and A. niger, and even more so for the two Basidiomycetes. These results were confirmed by integrative analysis of transcriptome, proteome and metabolome, as well as growth profiles of the fungi growing on the corresponding sugars. In conclusion, the establishment of sugar pathway models in different fungi revealed the diversity of fungal sugar conversion and provided a valuable resource for the community, which would facilitate rational metabolic engineering of these fungi as microbial cell factories.
Collapse
Affiliation(s)
- Jiajia Li
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Tania Chroumpi
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Sandra Garrigues
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Roland S. Kun
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Jiali Meng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Sonia Salazar-Cerezo
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | | - Yu Zhang
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - Sravanthi Tejomurthula
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - Anna Lipzen
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - Vivian Ng
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - Chaevien S. Clendinen
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Nikola Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Igor V. Grigoriev
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94598, USA
| | - Adrian Tsang
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6, Canada
| | - Miia R. Mäkelä
- Department of Microbiology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Mao Peng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Correspondence:
| |
Collapse
|
5
|
Chroumpi T, Peng M, Aguilar‐Pontes MV, Müller A, Wang M, Yan J, Lipzen A, Ng V, Grigoriev IV, Mäkelä MR, de Vries RP. Revisiting a 'simple' fungal metabolic pathway reveals redundancy, complexity and diversity. Microb Biotechnol 2021; 14:2525-2537. [PMID: 33666344 PMCID: PMC8601170 DOI: 10.1111/1751-7915.13790] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 01/29/2023] Open
Abstract
Next to d-glucose, the pentoses l-arabinose and d-xylose are the main monosaccharide components of plant cell wall polysaccharides and are therefore of major importance in biotechnological applications that use plant biomass as a substrate. Pentose catabolism is one of the best-studied pathways of primary metabolism of Aspergillus niger, and an initial outline of this pathway with individual enzymes covering each step of the pathway has been previously established. However, although growth on l-arabinose and/or d-xylose of most pentose catabolic pathway (PCP) single deletion mutants of A. niger has been shown to be negatively affected, it was not abolished, suggesting the involvement of additional enzymes. Detailed analysis of the single deletion mutants of the known A. niger PCP genes led to the identification of additional genes involved in the pathway. These results reveal a high level of complexity and redundancy in this pathway, emphasizing the need for a comprehensive understanding of metabolic pathways before entering metabolic engineering of such pathways for the generation of more efficient fungal cell factories.
Collapse
Affiliation(s)
- Tania Chroumpi
- Fungal PhysiologyWesterdijk Fungal Biodiversity Institute & Fungal Molecular PhysiologyUtrecht UniversityUppsalalaan 8Utrecht3584 CTThe Netherlands
| | - Mao Peng
- Fungal PhysiologyWesterdijk Fungal Biodiversity Institute & Fungal Molecular PhysiologyUtrecht UniversityUppsalalaan 8Utrecht3584 CTThe Netherlands
| | - Maria Victoria Aguilar‐Pontes
- Fungal PhysiologyWesterdijk Fungal Biodiversity Institute & Fungal Molecular PhysiologyUtrecht UniversityUppsalalaan 8Utrecht3584 CTThe Netherlands
- Present address:
Centre for Structural and Functional GenomicsConcordia University7141 Sherbrooke Street WestMontrealQCH4B1R6Canada
| | - Astrid Müller
- Fungal PhysiologyWesterdijk Fungal Biodiversity Institute & Fungal Molecular PhysiologyUtrecht UniversityUppsalalaan 8Utrecht3584 CTThe Netherlands
| | - Mei Wang
- US Department of Energy Joint Genome InstituteLawrence Berkeley National Laboratory1 Cyclotron RoadBerkeleyCA94720USA
| | - Juying Yan
- US Department of Energy Joint Genome InstituteLawrence Berkeley National Laboratory1 Cyclotron RoadBerkeleyCA94720USA
| | - Anna Lipzen
- US Department of Energy Joint Genome InstituteLawrence Berkeley National Laboratory1 Cyclotron RoadBerkeleyCA94720USA
| | - Vivian Ng
- US Department of Energy Joint Genome InstituteLawrence Berkeley National Laboratory1 Cyclotron RoadBerkeleyCA94720USA
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome InstituteLawrence Berkeley National Laboratory1 Cyclotron RoadBerkeleyCA94720USA
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCA94720USA
| | - Miia R. Mäkelä
- Department of MicrobiologyUniversity of HelsinkiP.O. Box 56Viikinkaari 9HelsinkiFinland
| | - Ronald P. de Vries
- Fungal PhysiologyWesterdijk Fungal Biodiversity Institute & Fungal Molecular PhysiologyUtrecht UniversityUppsalalaan 8Utrecht3584 CTThe Netherlands
| |
Collapse
|
6
|
Chroumpi T, Mäkelä MR, de Vries RP. Engineering of primary carbon metabolism in filamentous fungi. Biotechnol Adv 2020; 43:107551. [DOI: 10.1016/j.biotechadv.2020.107551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 10/24/2022]
|
7
|
Francois JM, Alkim C, Morin N. Engineering microbial pathways for production of bio-based chemicals from lignocellulosic sugars: current status and perspectives. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:118. [PMID: 32670405 PMCID: PMC7341569 DOI: 10.1186/s13068-020-01744-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/01/2020] [Indexed: 05/08/2023]
Abstract
Lignocellulose is the most abundant biomass on earth with an annual production of about 2 × 1011 tons. It is an inedible renewable carbonaceous resource that is very rich in pentose and hexose sugars. The ability of microorganisms to use lignocellulosic sugars can be exploited for the production of biofuels and chemicals, and their concurrent biotechnological processes could advantageously replace petrochemicals' processes in a medium to long term, sustaining the emerging of a new economy based on bio-based products from renewable carbon sources. One of the major issues to reach this objective is to rewire the microbial metabolism to optimally configure conversion of these lignocellulosic-derived sugars into bio-based products in a sustainable and competitive manner. Systems' metabolic engineering encompassing synthetic biology and evolutionary engineering appears to be the most promising scientific and technological approaches to meet this challenge. In this review, we examine the most recent advances and strategies to redesign natural and to implement non-natural pathways in microbial metabolic framework for the assimilation and conversion of pentose and hexose sugars derived from lignocellulosic material into industrial relevant chemical compounds leading to maximal yield, titer and productivity. These include glycolic, glutaric, mesaconic and 3,4-dihydroxybutyric acid as organic acids, monoethylene glycol, 1,4-butanediol and 1,2,4-butanetriol, as alcohols. We also discuss the big challenges that still remain to enable microbial processes to become industrially attractive and economically profitable.
Collapse
Affiliation(s)
- Jean Marie Francois
- Toulouse Biotechnology Institute, CNRS, INRA, LISBP INSA, 135 Avenue de Rangueil, Toulouse Cedex 04, 31077 France
- Toulouse White Biotechnology (TWB, UMS INRA/INSA/CNRS), NAPA CENTER Bât B, 3 Rue Ariane 31520, Ramonville Saint-Agnes, France
| | - Ceren Alkim
- Toulouse Biotechnology Institute, CNRS, INRA, LISBP INSA, 135 Avenue de Rangueil, Toulouse Cedex 04, 31077 France
- Toulouse White Biotechnology (TWB, UMS INRA/INSA/CNRS), NAPA CENTER Bât B, 3 Rue Ariane 31520, Ramonville Saint-Agnes, France
| | - Nicolas Morin
- Toulouse Biotechnology Institute, CNRS, INRA, LISBP INSA, 135 Avenue de Rangueil, Toulouse Cedex 04, 31077 France
- Toulouse White Biotechnology (TWB, UMS INRA/INSA/CNRS), NAPA CENTER Bât B, 3 Rue Ariane 31520, Ramonville Saint-Agnes, France
| |
Collapse
|
8
|
Murugan A, Prathiviraj R, Mothay D, Chellapandi P. Substrate-imprinted docking of Agrobacterium tumefaciens uronate dehydrogenase for increased substrate selectivity. Int J Biol Macromol 2019; 140:1214-1225. [PMID: 31472210 DOI: 10.1016/j.ijbiomac.2019.08.194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/15/2019] [Accepted: 08/22/2019] [Indexed: 11/18/2022]
Abstract
Agrobacterium tumefaciens uronate dehydrogenase (AtuUdh) belongs to the short-chain dehydrogenase superfamily, specifically those acting on the CH-OH group of donor with NAD+ or NADP+ as acceptor. It is apparently required for the production of D-glucaric acid. AtuUdh-catalyzed reaction is reversible with dual substrate-specific activity (D-galacturonic acid and D-glucuronic acid) in nature. In our study, 34 mutants were pre-screened from 155 mutants generated from AtuUdh (wild-type) and selected 10 structurally stable mutants with increased substrate selectivity. The specificity, efficiency, and selectivity of these mutants for different substrates and cofactors were predicted from 121 docked models using a substrate-imprinted docking approach. Q14F, S36L, and S75T mutants have shown a high binding affinity to D-glucuronic acid and its substrate intermediates such as D-glucaro-1,4-lactone and D-glucaro-1,5-lactone. These mutants exhibited a low binding affinity to the substrate and cofactor required for D-galactaric acid. D34S, N112E and S165E mutants found to show a high selectivity of D-galacturonic acid and its substrate intermediates for D-galactaric acid production. Ser75, Ser165, and Arg174 are active residues playing an imperative role in the substrate selectivity and also contributed in the conjecture the mechanism of transition state stabilization catalyzed by AtuUdh mutants. The present approach was used to reveal the substrate binding mechanism of AtuUdh mutants for a better understanding of the structural basis for selectivity and function.
Collapse
Affiliation(s)
- A Murugan
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - R Prathiviraj
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Dipti Mothay
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - P Chellapandi
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India.
| |
Collapse
|
9
|
Aguilar-Pontes MV, Brandl J, McDonnell E, Strasser K, Nguyen TTM, Riley R, Mondo S, Salamov A, Nybo JL, Vesth TC, Grigoriev IV, Andersen MR, Tsang A, de Vries RP. The gold-standard genome of Aspergillus niger NRRL 3 enables a detailed view of the diversity of sugar catabolism in fungi. Stud Mycol 2018; 91:61-78. [PMID: 30425417 PMCID: PMC6231085 DOI: 10.1016/j.simyco.2018.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The fungal kingdom is too large to be discovered exclusively by classical genetics. The access to omics data opens a new opportunity to study the diversity within the fungal kingdom and how adaptation to new environments shapes fungal metabolism. Genomes are the foundation of modern science but their quality is crucial when analysing omics data. In this study, we demonstrate how one gold-standard genome can improve functional prediction across closely related species to be able to identify key enzymes, reactions and pathways with the focus on primary carbon metabolism. Based on this approach we identified alternative genes encoding various steps of the different sugar catabolic pathways, and as such provided leads for functional studies into this topic. We also revealed significant diversity with respect to genome content, although this did not always correlate to the ability of the species to use the corresponding sugar as a carbon source.
Collapse
Affiliation(s)
- M V Aguilar-Pontes
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - J Brandl
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, DK-2800, Kongens Lyngby, Denmark
| | - E McDonnell
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | - K Strasser
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | - T T M Nguyen
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | - R Riley
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - S Mondo
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - A Salamov
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - J L Nybo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, DK-2800, Kongens Lyngby, Denmark
| | - T C Vesth
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, DK-2800, Kongens Lyngby, Denmark
| | - I V Grigoriev
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - M R Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, DK-2800, Kongens Lyngby, Denmark
| | - A Tsang
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | - R P de Vries
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
10
|
Comparison of the paralogous transcription factors AraR and XlnR in Aspergillus oryzae. Curr Genet 2018; 64:1245-1260. [PMID: 29654355 DOI: 10.1007/s00294-018-0837-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/08/2018] [Accepted: 04/11/2018] [Indexed: 10/17/2022]
Abstract
The paralogous transcription factors AraR and XlnR in Aspergillus regulate genes that are involved in degradation of cellulose and hemicellulose and catabolism of pentose. AraR and XlnR target the same genes for pentose catabolism but target different genes encoding enzymes for polysaccharide degradation. To uncover the relationship between these paralogous transcription factors, we examined their contribution to regulation of the PCP genes and compared their preferred recognition sequences. Both AraR and XlnR are involved in induction of all the pentose catabolic genes in A. oryzae except larA encoding L-arabinose reductase, which was regulated by AraR but not by XlnR. DNA-binding studies revealed that the recognition sequences of AraR and XlnR also differ only slightly; AraR prefers CGGDTAAW, while XlnR prefers CGGNTAAW. All the pentose catabolic genes possess at least one recognition site to which both AraR and XlnR can bind. Cooperative binding by the factors was not observed. Instead, they competed to bind to the shared sites. XlnR bound to the recognition sites mentioned above as a monomer, but bound to the sequence TTAGSCTAA on the xylanase promoters as a dimer. Consequently, AraR and XlnR have significantly similar, but not the same, DNA-binding properties. Such a slight difference in these paralogous transcription factors may lead to complex outputs in enzyme production depending on the concentrations of coexisting inducer molecules in the natural environment.
Collapse
|
11
|
Understanding Functional Roles of Native Pentose-Specific Transporters for Activating Dormant Pentose Metabolism in Yarrowia lipolytica. Appl Environ Microbiol 2018; 84:AEM.02146-17. [PMID: 29150499 DOI: 10.1128/aem.02146-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/02/2017] [Indexed: 01/08/2023] Open
Abstract
Pentoses, including xylose and arabinose, are the second most prevalent sugars in lignocellulosic biomass that can be harnessed for biological conversion. Although Yarrowia lipolytica has emerged as a promising industrial microorganism for production of high-value chemicals and biofuels, its native pentose metabolism is poorly understood. Our previous study demonstrated that Y. lipolytica (ATCC MYA-2613) has endogenous enzymes for d-xylose assimilation, but inefficient xylitol dehydrogenase causes Y. lipolytica to assimilate xylose poorly. In this study, we investigated the functional roles of native sugar-specific transporters for activating the dormant pentose metabolism in Y. lipolytica By screening a comprehensive set of 16 putative pentose-specific transporters, we identified two candidates, YALI0C04730p and YALI0B00396p, that enhanced xylose assimilation. The engineered mutants YlSR207 and YlSR223, overexpressing YALI0C04730p and YALI0B00396p, respectively, improved xylose assimilation approximately 23% and 50% in comparison to YlSR102, a parental engineered strain overexpressing solely the native xylitol dehydrogenase gene. Further, we activated and elucidated a widely unknown native l-arabinose assimilation pathway in Y. lipolytica through transcriptomic and metabolic analyses. We discovered that Y. lipolytica can coconsume xylose and arabinose, where arabinose utilization shares transporters and metabolic enzymes of some intermediate steps of the xylose assimilation pathway. Arabinose assimilation is synergistically enhanced in the presence of xylose, while xylose assimilation is competitively inhibited by arabinose. l-Arabitol dehydrogenase is the rate-limiting step responsible for poor arabinose utilization in Y. lipolytica Overall, this study sheds light on the cryptic pentose metabolism of Y. lipolytica and, further, helps guide strain engineering of Y. lipolytica for enhanced assimilation of pentose sugars.IMPORTANCE The oleaginous yeast Yarrowia lipolytica is a promising industrial-platform microorganism for production of high-value chemicals and fuels. For decades since its isolation, Y. lipolytica has been known to be incapable of assimilating pentose sugars, xylose and arabinose, that are dominantly present in lignocellulosic biomass. Through bioinformatic, transcriptomic, and enzymatic studies, we have uncovered the dormant pentose metabolism of Y. lipolytica Remarkably, unlike most yeast strains, which share the same transporters for importing hexose and pentose sugars, we discovered that Y. lipolytica possesses the native pentose-specific transporters. By overexpressing these transporters together with the rate-limiting d-xylitol and l-arabitol dehydrogenases, we activated the dormant pentose metabolism of Y. lipolytica Overall, this study provides a fundamental understanding of the dormant pentose metabolism of Y. lipolytica and guides future metabolic engineering of Y. lipolytica for enhanced conversion of pentose sugars to high-value chemicals and fuels.
Collapse
|
12
|
Yamasaki-Yashiki S, Komeda H, Hoshino K, Asano Y. Characterization and gene cloning of l-xylulose reductase involved in l-arabinose catabolism from the pentose-fermenting fungus Rhizomucor pusillus. Biosci Biotechnol Biochem 2017; 81:1612-1618. [PMID: 28471330 DOI: 10.1080/09168451.2017.1320518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
l-Xylulose reductase (LXR) catalyzes the reduction of l-xylulose to xylitol in the fungal l-arabinose catabolic pathway. LXR (RpLXR) was purified from the pentose-fermenting zygomycetous fungus Rhizomucor pusillus NBRC 4578. The native RpLXR is a homotetramer composed of 29 kDa subunits and preferred NADPH as a coenzyme. The Km values were 8.71 mM for l-xylulose and 3.89 mM for dihydroxyacetone. The lxr3 (Rplxr3) gene encoding RpLXR consists of 792 bp and encodes a putative 263 amino acid protein (Mr = 28,341). The amino acid sequence of RpLXR showed high similarity to 3-oxoacyl-(acyl-carrier-protein) reductase. The Rplxr3 gene was expressed in Escherichia coli and the recombinant RpLXR exhibited properties similar to those of native RpLXR. Transcription of the Rplxr3 gene in R. pusillus NBRC 4578 was induced in the presence of l-arabinose and inhibited in the presence of d-glucose, d-xylose, and d-mannitol, indicating that RpLXR is involved in the l-arabinose catabolic pathway.
Collapse
Affiliation(s)
- Shino Yamasaki-Yashiki
- a Biotechnology Research Center and Department of Biotechnology , Toyama Prefectural University , Imizu , Japan
| | - Hidenobu Komeda
- a Biotechnology Research Center and Department of Biotechnology , Toyama Prefectural University , Imizu , Japan
| | - Kazuhiro Hoshino
- b Graduate school of Science and Engineering , University of Toyama , Toyama , Japan
| | - Yasuhisa Asano
- a Biotechnology Research Center and Department of Biotechnology , Toyama Prefectural University , Imizu , Japan
| |
Collapse
|
13
|
Lee SM, Jellison T, Alper HS. Bioprospecting and evolving alternative xylose and arabinose pathway enzymes for use in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2015; 100:2487-98. [DOI: 10.1007/s00253-015-7211-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 11/05/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022]
|
14
|
Kowalczyk JE, Gruben BS, Battaglia E, Wiebenga A, Majoor E, de Vries RP. Genetic Interaction of Aspergillus nidulans galR, xlnR and araR in Regulating D-Galactose and L-Arabinose Release and Catabolism Gene Expression. PLoS One 2015; 10:e0143200. [PMID: 26580075 PMCID: PMC4651341 DOI: 10.1371/journal.pone.0143200] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/02/2015] [Indexed: 11/29/2022] Open
Abstract
In Aspergillus nidulans, the xylanolytic regulator XlnR and the arabinanolytic regulator AraR co-regulate pentose catabolism. In nature, the pentose sugars D-xylose and L-arabinose are both main building blocks of the polysaccharide arabinoxylan. In pectin and arabinogalactan, these two monosaccharides are found in combination with D-galactose. GalR, the regulator that responds to the presence of D-galactose, regulates the D-galactose catabolic pathway. In this study we investigated the possible interaction between XlnR, AraR and GalR in pentose and/or D-galactose catabolism in A. nidulans. Growth phenotypes and metabolic gene expression profiles were studied in single, double and triple disruptant A. nidulans strains of the genes encoding these paralogous transcription factors. Our results demonstrate that AraR and XlnR not only control pentose catabolic pathway genes, but also genes of the oxido-reductive D-galactose catabolic pathway. This suggests an interaction between three transcriptional regulators in D-galactose catabolism. Conversely, GalR is not involved in regulation of pentose catabolism, but controls only genes of the oxido-reductive D-galactose catabolic pathway.
Collapse
Affiliation(s)
- Joanna E. Kowalczyk
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| | - Birgit S. Gruben
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
- Microbiology, Utrecht University, Utrecht, the Netherlands
| | - Evy Battaglia
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
- Microbiology, Utrecht University, Utrecht, the Netherlands
| | - Ad Wiebenga
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| | - Eline Majoor
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
| | - Ronald P. de Vries
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Utrecht, the Netherlands
- * E-mail:
| |
Collapse
|
15
|
Khosravi C, Benocci T, Battaglia E, Benoit I, de Vries RP. Sugar catabolism in Aspergillus and other fungi related to the utilization of plant biomass. ADVANCES IN APPLIED MICROBIOLOGY 2015; 90:1-28. [PMID: 25596028 DOI: 10.1016/bs.aambs.2014.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Fungi are found in all natural and artificial biotopes and can use highly diverse carbon sources. They play a major role in the global carbon cycle by decomposing plant biomass and this biomass is the main carbon source for many fungi. Plant biomass is composed of cell wall polysaccharides (cellulose, hemicellulose, pectin) and lignin. To degrade cell wall polysaccharides to different monosaccharides, fungi produce a broad range of enzymes with a large variety in activities. Through a series of enzymatic reactions, sugar-specific and central metabolic pathways convert these monosaccharides into energy or metabolic precursors needed for the biosynthesis of biomolecules. This chapter describes the carbon catabolic pathways that are required to efficiently use plant biomass as a carbon source. It will give an overview of the known metabolic pathways in fungi, their interconnections, and the differences between fungal species.
Collapse
|
16
|
Komeda H, Yamasaki-Yashiki S, Hoshino K, Asano Y. Identification and characterization of D-xylulokinase from the D-xylose-fermenting fungus, Mucor circinelloides. FEMS Microbiol Lett 2014; 360:51-61. [PMID: 25163569 DOI: 10.1111/1574-6968.12589] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 11/29/2022] Open
Abstract
D-Xylulokinase catalyzes the phosphorylation of D-xylulose in the final step of the pentose catabolic pathway to form d-xylulose-5-phosphate. The D-xylulokinase activity was found to be induced by both D-xylose and L-arabinose, as well as some of the other enzymes involved in the pentose catabolism, in the D-xylose-fermenting zygomycetous fungus, Mucor circinelloides NBRC 4572. The putative gene, xyl3, which may encode D-xylulokinase, was detected in the genome sequence of this strain. The amino acid sequence deduced from the gene was more similar to D-xylulokinases from an animal origin than from other fungi. The recombinant enzyme was purified from the E. coli transformant expressing xyl3 and then characterized. The ATP-dependent phosphorylative activity of the enzyme was the highest toward D-xylulose. Its kinetic parameters were determined as Km (D-xylulose) = 0.29 mM and Km (ATP) = 0.51 mM, indicating that the xyl3 gene encoded D-xylulokinase (McXK). Western blot analysis revealed that McXK was induced by L-arabinose as well as D-xylose and the induction was repressed in the presence of D-glucose, suggesting that the enzyme may be involved in the catabolism of D-xylose and L-arabinose and is subject to carbon catabolite repression in this fungus. This is the first study on D-xylulokinase from zygomycetous fungi.
Collapse
Affiliation(s)
- Hidenobu Komeda
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan
| | | | | | | |
Collapse
|
17
|
Andersen MR. Elucidation of primary metabolic pathways in Aspergillus species: orphaned research in characterizing orphan genes. Brief Funct Genomics 2014; 13:451-5. [PMID: 25114096 PMCID: PMC4239788 DOI: 10.1093/bfgp/elu029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Primary metabolism affects all phenotypical traits of filamentous fungi. Particular examples include reacting to extracellular stimuli, producing precursor molecules required for cell division and morphological changes as well as providing monomer building blocks for production of secondary metabolites and extracellular enzymes. In this review, all annotated genes from four Aspergillus species have been examined. In this process, it becomes evident that 80–96% of the genes (depending on the species) are still without verified function. A significant proportion of the genes with verified metabolic functions are assigned to secondary or extracellular metabolism, leaving only 2–4% of the annotated genes within primary metabolism. It is clear that primary metabolism has not received the same attention in the post-genomic area as many other research areas—despite its role at the very centre of cellular function. However, several methods can be employed to use the metabolic networks in tandem with comparative genomics to accelerate functional assignment of genes in primary metabolism. In particular, gaps in metabolic pathways can be used to assign functions to orphan genes. In this review, applications of this from the Aspergillus genes will be examined, and it is proposed that, where feasible, this should be a standard part of functional annotation of fungal genomes.
Collapse
|
18
|
Battaglia E, Zhou M, de Vries RP. The transcriptional activators AraR and XlnR from Aspergillus niger regulate expression of pentose catabolic and pentose phosphate pathway genes. Res Microbiol 2014; 165:531-40. [PMID: 25086261 DOI: 10.1016/j.resmic.2014.07.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 07/08/2014] [Accepted: 07/21/2014] [Indexed: 11/26/2022]
Abstract
The pentose catabolic pathway (PCP) and the pentose phosphate pathway (PPP) are required for the conversion of pentose sugars in fungi and are linked via d-xylulose-5-phosphate. Previously, it was shown that the PCP is regulated by the transcriptional activators XlnR and AraR in Aspergillus niger. Here we assessed whether XlnR and AraR also regulate the PPP. Expression of two genes, rpiA and talB, was reduced in the ΔaraR/ΔxlnR strain and increased in the xylulokinase negative strain (xkiA1) on d-xylose and/or l-arabinose. Bioinformatic analysis of the 1 kb promoter regions of rpiA and talB showed the presence of putative XlnR binding sites. Combining all results in this study, it strongly suggests that these two PPP genes are under regulation of XlnR in A. niger.
Collapse
Affiliation(s)
- Evy Battaglia
- Microbiology & Kluyver Centre for Genomics of Industrial Fermentation, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands; CBS Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CY, Utrecht, The Netherlands.
| | - Miaomiao Zhou
- CBS Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CY, Utrecht, The Netherlands.
| | - Ronald P de Vries
- Microbiology & Kluyver Centre for Genomics of Industrial Fermentation, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands; CBS Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CY, Utrecht, The Netherlands.
| |
Collapse
|
19
|
Komeda H, Yamasaki-Yashiki S, Hoshino K, Asano Y. Identification and characterization of D-xylose reductase involved in pentose catabolism of the zygomycetous fungus Rhizomucor pusillus. J Biosci Bioeng 2014; 119:57-64. [PMID: 25041710 DOI: 10.1016/j.jbiosc.2014.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/15/2014] [Accepted: 06/19/2014] [Indexed: 12/01/2022]
Abstract
Rhizomucor pusillus NBRC 4578 efficiently produces ethanol from lignocellulosic biomass because of its ability to ferment not only d-glucose, but also d-xylose. When the strain was cultivated on d-xylose, ethanol was gradually formed in the culture medium with a decrease in d-xylose and the simultaneous accumulation of xylitol, which suggested that the strain catabolized d-xylose with d-xylose reductase (XR) and xylitol dehydrogenase (XDH). XR (RpXR) was purified to homogeneity from the crude extract prepared from the mycelia of the strain grown on d-xylose. The purified enzyme was found to be NADPH-dependent and prefer pentoses such as d-xylose, d-ribose, and l-arabinose as substrates. Isolation of the genomic DNA and cDNA of the xyl1 gene encoding RpXR revealed that the gene was interrupted by two introns and the exon of the gene encoded a protein composed of 322 amino acids with a Mr of 36,724. Phylogenetic analysis showed that RpXR is more related to 4-dihydromethyltrisporate dehydrogenases from Mucoraseae fungi rather than the previously reported fungal XRs. Quantitative real-time PCR indicated that transcription of the xyl1 gene was marked in the presence of d-xylose and l-arabinose, but was week in the presence of d-glucose. These biochemical and expression analyses suggest that RpXR is involved in the catabolism of l-arabinose as well as d-xylose. This is the first report of the purification, characterization, and gene cloning of XR from zygomycetous fungi.
Collapse
Affiliation(s)
- Hidenobu Komeda
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| | - Shino Yamasaki-Yashiki
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Kazuhiro Hoshino
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Yasuhisa Asano
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
20
|
The influence of Aspergillus niger transcription factors AraR and XlnR in the gene expression during growth in D-xylose, L-arabinose and steam-exploded sugarcane bagasse. Fungal Genet Biol 2013; 60:29-45. [PMID: 23892063 DOI: 10.1016/j.fgb.2013.07.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 07/03/2013] [Accepted: 07/17/2013] [Indexed: 12/29/2022]
Abstract
The interest in the conversion of plant biomass to renewable fuels such as bioethanol has led to an increased investigation into the processes regulating biomass saccharification. The filamentous fungus Aspergillus niger is an important microorganism capable of producing a wide variety of plant biomass degrading enzymes. In A. niger the transcriptional activator XlnR and its close homolog, AraR, controls the main (hemi-)cellulolytic system responsible for plant polysaccharide degradation. Sugarcane is used worldwide as a feedstock for sugar and ethanol production, while the lignocellulosic residual bagasse can be used in different industrial applications, including ethanol production. The use of pentose sugars from hemicelluloses represents an opportunity to further increase production efficiencies. In the present study, we describe a global gene expression analysis of A. niger XlnR- and AraR-deficient mutant strains, grown on a D-xylose/L-arabinose monosaccharide mixture and steam-exploded sugarcane bagasse. Different gene sets of CAZy enzymes and sugar transporters were shown to be individually or dually regulated by XlnR and AraR, with XlnR appearing to be the major regulator on complex polysaccharides. Our study contributes to understanding of the complex regulatory mechanisms responsible for plant polysaccharide-degrading gene expression, and opens new possibilities for the engineering of fungi able to produce more efficient enzymatic cocktails to be used in biofuel production.
Collapse
|
21
|
Malapi-Wight M, Smith J, Campbell J, Bluhm BH, Shim WB. Sda1, a Cys2-His2 zinc finger transcription factor, is involved in polyol metabolism and fumonisin B1 production in Fusarium verticillioides. PLoS One 2013; 8:e67656. [PMID: 23844049 PMCID: PMC3700993 DOI: 10.1371/journal.pone.0067656] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/22/2013] [Indexed: 12/20/2022] Open
Abstract
The ubiquitous ascomycete Fusarium verticillioides causes ear rot and stalk rot of maize, both of which reduce grain quality and yield. Additionally, F. verticillioides produces the mycotoxin fumonisin B1 (FB1) during infection of maize kernels, and thus potentially compromises human and animal health. The current knowledge is fragmentary regarding the regulation of FB1 biosynthesis, particularly when considering interplay with environmental factors such as nutrient availability. In this study, SDA1 of F. verticillioides, predicted to encode a Cys-2 His-2 zinc finger transcription factor, was shown to play a key role in catabolizing select carbon sources. Growth of the SDA1 knock-out mutant (Δsda1) was completely inhibited when sorbitol was the sole carbon source and was severely impaired when exclusively provided mannitol or glycerol. Deletion of SDA1 unexpectedly increased FB1 biosynthesis, but reduced arabitol and mannitol biosynthesis, as compared to the wild-type progenitor. Trichoderma reesei ACE1, a regulator of cellulase and xylanase expression, complemented the F. verticillioides Δsda1 mutant, which indicates that Ace1 and Sda1 are functional orthologs. Taken together, the data indicate that Sda1 is a transcriptional regulator of carbon metabolism and toxin production in F. verticillioides.
Collapse
Affiliation(s)
- Martha Malapi-Wight
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, United States of America
| | - Jonathon Smith
- Department of Plant Pathology, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Jacquelyn Campbell
- Bioenvironmental Sciences Program, Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, United States of America
| | - Burton H. Bluhm
- Department of Plant Pathology, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Won-Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, United States of America
- Bioenvironmental Sciences Program, Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
22
|
Metz B, Mojzita D, Herold S, Kubicek CP, Richard P, Seiboth B. A novel L-xylulose reductase essential for L-arabinose catabolism in Trichoderma reesei. Biochemistry 2013; 52:2453-60. [PMID: 23506391 PMCID: PMC3623455 DOI: 10.1021/bi301583u] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
l-Xylulose reductases belong
to the superfamily of short
chain dehydrogenases and reductases (SDRs) and catalyze the NAD(P)H-dependent
reduction of l-xylulose to xylitol in l-arabinose
and glucuronic acid catabolism. Here we report the identification
of a novel l-xylulose reductase LXR3 in the fungus Trichoderma reesei by a bioinformatic approach in combination
with a functional analysis. LXR3, a 31 kDa protein, catalyzes the
reduction of l-xylulose to xylitol via NADPH and is also
able to convert d-xylulose, d-ribulose, l-sorbose, and d-fructose to their corresponding polyols.
Transcription of lxr3 is specifically induced by l-arabinose and l-arabitol. Deletion of lxr3 affects growth on l-arabinose and l-arabitol and
reduces total NADPH-dependent LXR activity in cell free extracts.
A phylogenetic analysis of known l-xylulose reductases shows
that LXR3 is phylogenetically different from the Aspergillus
nigerl-xylulose reductase LxrA and, moreover, that
all identified true l-xylulose reductases belong to different
clades within the superfamily of SDRs. This indicates that the enzymes
responsible for the reduction of l-xylulose in l-arabinose and glucuronic acid catabolic pathways have evolved independently
and that even the fungal LXRs of the l-arabinose catabolic
pathway have evolved in different clades of the superfamily of SDRs.
Collapse
Affiliation(s)
- Benjamin Metz
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
23
|
Gruben BS, Zhou M, de Vries RP. GalX regulates the D-galactose oxido-reductive pathway in Aspergillus niger. FEBS Lett 2012; 586:3980-5. [PMID: 23063944 DOI: 10.1016/j.febslet.2012.09.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/13/2012] [Accepted: 09/19/2012] [Indexed: 11/30/2022]
Abstract
Galactose catabolism in Aspergillus nidulans is regulated by at least two regulators, GalR and GalX. In Aspergillus niger only GalX is present, and its role in d-galactose catabolism in this fungus was investigated. Phenotypic and gene expression analysis of a wild type and a galX disruptant revealed that GalX regulates the d-galactose oxido-reductive pathway, but not the Leloir pathway in A. niger.
Collapse
Affiliation(s)
- Birgit S Gruben
- Microbiology & Kluyver Centre for Genomics of Industrial Fermentation, Utrecht University, Utrecht, The Netherlands
| | | | | |
Collapse
|
24
|
Mojzita D, Herold S, Metz B, Seiboth B, Richard P. L-xylo-3-hexulose reductase is the missing link in the oxidoreductive pathway for D-galactose catabolism in filamentous fungi. J Biol Chem 2012; 287:26010-8. [PMID: 22654107 DOI: 10.1074/jbc.m112.372755] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In addition to the well established Leloir pathway for the catabolism of d-galactose in fungi, the oxidoreductive pathway has been recently identified. In this oxidoreductive pathway, D-galactose is converted via a series of NADPH-dependent reductions and NAD(+)-dependent oxidations into D-fructose. The pathway intermediates include galactitol, L-xylo-3-hexulose, and d-sorbitol. This study identified the missing link in the pathway, the L-xylo-3-hexulose reductase that catalyzes the conversion of L-xylo-3-hexulose to D-sorbitol. In Trichoderma reesei (Hypocrea jecorina) and Aspergillus niger, we identified the genes lxr4 and xhrA, respectively, that encode the l-xylo-3-hexulose reductases. The deletion of these genes resulted in no growth on galactitol and in reduced growth on D-galactose. The LXR4 was heterologously expressed, and the purified protein showed high specificity for L-xylo-3-hexulose with a K(m) = 2.0 ± 0.5 mm and a V(max) = 5.5 ± 1.0 units/mg. We also confirmed that the product of the LXR4 reaction is D-sorbitol.
Collapse
Affiliation(s)
- Dominik Mojzita
- VTT Technical Research Centre of Finland, Espoo, 02044 VTT, Finland
| | | | | | | | | |
Collapse
|
25
|
Battaglia E, Hansen SF, Leendertse A, Madrid S, Mulder H, Nikolaev I, de Vries RP. Regulation of pentose utilisation by AraR, but not XlnR, differs in Aspergillus nidulans and Aspergillus niger. Appl Microbiol Biotechnol 2011; 91:387-97. [PMID: 21484208 PMCID: PMC3125510 DOI: 10.1007/s00253-011-3242-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/15/2011] [Accepted: 03/15/2011] [Indexed: 12/01/2022]
Abstract
Filamentous fungi are important producers of plant polysaccharide degrading enzymes that are used in many industrial applications. These enzymes are produced by the fungus to liberate monomeric sugars that are used as carbon source. Two of the main components of plant polysaccharides are l-arabinose and d-xylose, which are metabolized through the pentose catabolic pathway (PCP) in these fungi. In Aspergillus niger, the regulation of pentose release from polysaccharides and the PCP involves the transcriptional activators AraR and XlnR, which are also present in other Aspergilli such as Aspergillus nidulans. The comparative analysis revealed that the regulation of the PCP by AraR differs in A. nidulans and A. niger, whereas the regulation of the PCP by XlnR was similar in both species. This was demonstrated by the growth differences on l-arabinose between disruptant strains for araR and xlnR in A. nidulans and A. niger. In addition, the expression profiles of genes encoding l-arabinose reductase (larA), l-arabitol dehydrogenase (ladA) and xylitol dehydrogenase (xdhA) differed in these strains. This data suggests evolutionary changes in these two species that affect pentose utilisation. This study also implies that manipulating regulatory systems to improve the production of polysaccharide degrading enzymes, may give different results in different industrial fungi.
Collapse
Affiliation(s)
- Evy Battaglia
- Department of Microbiology and Kluyver Centre for Genomics of Industrial Fermentation, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
26
|
Cloning of two genes (LAT1,2) encoding specific L: -arabinose transporters of the L: -arabinose fermenting yeast Ambrosiozyma monospora. Appl Biochem Biotechnol 2011; 164:604-11. [PMID: 21253888 DOI: 10.1007/s12010-011-9161-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 01/09/2011] [Indexed: 10/18/2022]
Abstract
We identified and characterized two genes, LAT1 and LAT2, which encode specific L: -arabinose transporters. The genes were identified in the L: -arabinose fermenting yeast Ambrosiozyma monospora. The yeast Saccharomyces cerevisiae had only very low L: -arabinose transport activity; however, when LAT1 or LAT2 was expressed, L: -arabinose transport was facilitated. When the LAT1 or LAT2 were expressed in an S. cerevisiae mutant where the main hexose transporters were deleted, the L: -arabinose transporters could not restore growth on D: -glucose, D: -fructose, D: -mannose or D: -galactose. This indicates that these sugars are not transported and suggests that the transporters are specific for L: -arabinose.
Collapse
|
27
|
Seiboth B, Metz B. Fungal arabinan and L-arabinose metabolism. Appl Microbiol Biotechnol 2011; 89:1665-73. [PMID: 21212945 PMCID: PMC3044236 DOI: 10.1007/s00253-010-3071-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 12/08/2010] [Accepted: 12/08/2010] [Indexed: 12/04/2022]
Abstract
l-Arabinose is the second most abundant pentose beside d-xylose and is found in the plant polysaccharides, hemicellulose and pectin. The need to find renewable carbon and energy sources has accelerated research to investigate the potential of l-arabinose for the development and production of biofuels and other bioproducts. Fungi produce a number of extracellular arabinanases, including α-l-arabinofuranosidases and endo-arabinanases, to specifically release l-arabinose from the plant polymers. Following uptake of l-arabinose, its intracellular catabolism follows a four-step alternating reduction and oxidation path, which is concluded by a phosphorylation, resulting in d-xylulose 5-phosphate, an intermediate of the pentose phosphate pathway. The genes and encoding enzymes l-arabinose reductase, l-arabinitol dehydrogenase, l-xylulose reductase, xylitol dehydrogenase, and xylulokinase of this pathway were mainly characterized in the two biotechnological important fungi Aspergillus niger and Trichoderma reesei. Analysis of the components of the l-arabinose pathway revealed a number of specific adaptations in the enzymatic and regulatory machinery towards the utilization of l-arabinose. Further genetic and biochemical analysis provided evidence that l-arabinose and the interconnected d-xylose pathway are also involved in the oxidoreductive degradation of the hexose d-galactose.
Collapse
Affiliation(s)
- Bernhard Seiboth
- Research Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Vienna University of Technology, Wien, Austria.
| | | |
Collapse
|