1
|
Magliulo D, Simoni M, Caserta C, Fracassi C, Belluschi S, Giannetti K, Pini R, Zapparoli E, Beretta S, Uggè M, Draghi E, Rossari F, Coltella N, Tresoldi C, Morelli MJ, Di Micco R, Gentner B, Vago L, Bernardi R. The transcription factor HIF2α partakes in the differentiation block of acute myeloid leukemia. EMBO Mol Med 2023; 15:e17810. [PMID: 37807875 PMCID: PMC10630882 DOI: 10.15252/emmm.202317810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023] Open
Abstract
One of the defining features of acute myeloid leukemia (AML) is an arrest of myeloid differentiation whose molecular determinants are still poorly defined. Pharmacological removal of the differentiation block contributes to the cure of acute promyelocytic leukemia (APL) in the absence of cytotoxic chemotherapy, but this approach has not yet been translated to non-APL AMLs. Here, by investigating the function of hypoxia-inducible transcription factors HIF1α and HIF2α, we found that both genes exert oncogenic functions in AML and that HIF2α is a novel regulator of the AML differentiation block. Mechanistically, we found that HIF2α promotes the expression of transcriptional repressors that have been implicated in suppressing AML myeloid differentiation programs. Importantly, we positioned HIF2α under direct transcriptional control by the prodifferentiation agent all-trans retinoic acid (ATRA) and demonstrated that HIF2α blockade cooperates with ATRA to trigger AML cell differentiation. In conclusion, we propose that HIF2α inhibition may open new therapeutic avenues for AML treatment by licensing blasts maturation and leukemia debulking.
Collapse
Affiliation(s)
- Daniela Magliulo
- Division of Experimental OncologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Matilde Simoni
- Division of Experimental OncologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Carolina Caserta
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Cristina Fracassi
- Division of Experimental OncologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Serena Belluschi
- Vita Salute San Raffaele University School of MedicineMilanItaly
- Present address:
MogrifyCambridgeUK
| | - Kety Giannetti
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Raffaella Pini
- Center for Omics SciencesIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Ettore Zapparoli
- Center for Omics SciencesIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Martina Uggè
- Division of Experimental OncologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Eleonora Draghi
- Unit of Immunogenetics, Leukemia Genomics and ImmunobiologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Federico Rossari
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
- Vita Salute San Raffaele University School of MedicineMilanItaly
| | - Nadia Coltella
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Cristina Tresoldi
- Unit of Hematology and Bone Marrow TransplantationIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Marco J Morelli
- Center for Omics SciencesIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
- Present address:
Ludwig Institute for Cancer researchLausanne UniversityLausanneSwitzerland
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and ImmunobiologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Rosa Bernardi
- Division of Experimental OncologyIRCCS San Raffaele Scientific InstituteMilanItaly
| |
Collapse
|
2
|
Luo M, Li T, Sang H. The role of hypoxia-inducible factor 1α in hepatic lipid metabolism. J Mol Med (Berl) 2023; 101:487-500. [PMID: 36973503 DOI: 10.1007/s00109-023-02308-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/06/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023]
Abstract
Chronic liver disease is a major public health problem with a high and increasing prevalence worldwide. In the progression of chronic liver disease, steatosis drives the progression of the disease to cirrhosis or even liver cancer. Hypoxia-inducible factor 1α (HIF-1α) is central to the regulation of hepatic lipid metabolism. HIF-1α upregulates the expression of genes related to lipid uptake and synthesis in the liver and downregulates the expression of lipid oxidation genes. Thus, it promotes intrahepatic lipid deposition. In addition, HIF-1α is expressed in white adipose tissue, where lipolysis releases free fatty acids (FFAs) into the blood. These circulating FFAs are taken up by the liver and accumulate in the liver. The expression of HIF-1α in the liver condenses bile and makes it easier to form gallstones. Contrary to the role of hepatic HIF-1α, intestinal HIF-1α expression can maintain a healthy microbiota and intestinal barrier. Thus, it plays a protective role against hepatic steatosis. This article aims to provide an overview of the current understanding of the role of HIF-1α in hepatic steatosis and to encourage the development of therapeutic agents associated with HIF-1α pathways. KEY MESSAGES: • Hepatic HIF-1α expression promotes lipid uptake and synthesis and reduces lipid oxidation leading to hepatic steatosis. • The expression of HIF-1α in the liver condenses bile and makes it easier to form gallstones. • Intestinal HIF-1α expression can maintain a healthy microbiota and intestinal barrier.
Collapse
Affiliation(s)
- Mingxiao Luo
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tingting Li
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Haiquan Sang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
3
|
Pitale PM, Shen G, Sigireddi RR, Polo-Prieto M, Park YH, Gibson SE, Westenskow PD, Channa R, Frankfort BJ. Selective vulnerability of the intermediate retinal capillary plexus precedes retinal ganglion cell loss in ocular hypertension. Front Cell Neurosci 2022; 16:1073786. [PMID: 36545655 PMCID: PMC9760765 DOI: 10.3389/fncel.2022.1073786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/15/2022] [Indexed: 12/08/2022] Open
Abstract
Introduction: Glaucoma, a disease of retinal ganglion cell (RGC) injury and potentially devastating vision loss, is associated with both ocular hypertension (OHT) and reduced ocular blood flow. However, the relationship between OHT and retinal capillary architecture is not well understood. In this project, we studied microvasculature damage in mice exposed to mild levels of induced OHT. Methods: Mild OHT was induced with the microbead model for 2 weeks. At this time point, some retinas were immunostained with CD31 (endothelium), Collagen IV (basement membrane), and RBPMS (RGCs) for z-stack confocal microscopy. We processed these confocal images to distinguish the three retinal capillary plexi (superficial, intermediate, and deep). We manually counted RGC density, analyzed vascular complexity, and identified topographical and spatial vascular features of the retinal capillaries using a combination of novel manual and automated workflows. Other retinas were dissociated and immunopanned to isolate RGCs and amacrine cells (ACs) for hypoxia gene array analysis. Results: RGC counts were normal but there was decreased overall retinal capillary complexity. This reduced complexity could be explained by abnormalities in the intermediate retinal capillary plexus (IRCP) that spared the other plexi. Capillary junction density, vessel length, and vascular area were all significantly reduced, and the number of acellular capillaries was dramatically increased. ACs, which share a neurovascular unit (NVU) with the IRCP, displayed a marked increase in the relative expression of many hypoxia-related genes compared to RGCs from the same preparations. Discussion: We have discovered a rapidly occurring, IRCP-specific, OHT-induced vascular phenotype that precedes RGC loss. AC/IRCP NVU dysfunction may be a mechanistic link for early vascular remodeling in glaucoma.
Collapse
Affiliation(s)
- Priyamvada M. Pitale
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Guofu Shen
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Rohini R. Sigireddi
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Maria Polo-Prieto
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Yong H. Park
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Solomon E. Gibson
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Peter D. Westenskow
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Roomasa Channa
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Benjamin J. Frankfort
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States,*Correspondence: Benjamin J. Frankfort
| |
Collapse
|
4
|
Johnston SN, Madhu V, Shapiro IM, Risbud MV. Conditional Deletion of HIF-2α in Mouse Nucleus Pulposus Reduces Fibrosis and Provides Mild and Transient Protection From Age-Dependent Structural Changes in Intervertebral Disc. J Bone Miner Res 2022; 37:2512-2530. [PMID: 36117450 PMCID: PMC9772060 DOI: 10.1002/jbmr.4707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/05/2022] [Accepted: 07/29/2022] [Indexed: 01/19/2023]
Abstract
Hypoxia-inducible factors (HIFs) are critical to the development and homeostasis of hypoxic tissues. Although HIF-2α, one of the main HIF-α isoforms, is expressed in nucleus pulposus (NP) cells, its functions remain unknown. We deleted HIF-2α in the NP tissue using a notochord-specific FoxA2Cre allele to study HIF-2α function in the adult intervertebral disc. Unlike observations in HIF-1αcKO mice, fate mapping studies using Rosa26-mTmG reporter showed that HIF-2α loss in NP did not negatively impact cell survival or affect compartment development. Rather, loss of HIF-2α resulted in slightly better attributes of NP morphology in 14-month-old HIF-2αcKO mice as evident from lower scores of degeneration. These 14-month-old HIF-2αcKO mice also exhibited significant reduction in NP tissue fibrosis and lower collagen turnover in the annulus fibrosis (AF) compartment. Imaging-Fourier transform-infrared (FTIR) analyses showed decreased collagen and protein content in the NP and maintained chondroitin sulfate levels in 14-month-old HIF-2αcKO . Mechanistically, global transcriptomic analysis showed enrichment of differentially expressed genes with Gene Ontology (GO) terms related to metabolic processes and cell development, molecular functions concerned with histone and protein binding, and associated pathways, including oxidative stress. Noteworthy, these morphological differences were not apparent in 24-month-old HIF-2αcKO , indicating that aging is the dominant factor in governing disc health. Together these data suggest that loss of HIF-2α in the NP compartment is not detrimental to the intervertebral disc development but rather mitigates NP tissue fibrosis and offers mild but transient protection from age-dependent early degenerative changes. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Shira N. Johnston
- Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, PA USA
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA USA
| | - Vedavathi Madhu
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA USA
| | - Irving M. Shapiro
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA USA
| | - Makarand V. Risbud
- Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, PA USA
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA USA
| |
Collapse
|
5
|
Davis L, Recktenwald M, Hutt E, Fuller S, Briggs M, Goel A, Daringer N. Targeting HIF-2α in the Tumor Microenvironment: Redefining the Role of HIF-2α for Solid Cancer Therapy. Cancers (Basel) 2022; 14:1259. [PMID: 35267567 PMCID: PMC8909461 DOI: 10.3390/cancers14051259] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/26/2022] [Accepted: 02/26/2022] [Indexed: 02/06/2023] Open
Abstract
Inadequate oxygen supply, or hypoxia, is characteristic of the tumor microenvironment and correlates with poor prognosis and therapeutic resistance. Hypoxia leads to the activation of the hypoxia-inducible factor (HIF) signaling pathway and stabilization of the HIF-α subunit, driving tumor progression. The homologous alpha subunits, HIF-1α and HIF-2α, are responsible for mediating the transcription of a multitude of critical proteins that control proliferation, angiogenic signaling, metastasis, and other oncogenic factors, both differentially and sequentially regulating the hypoxic response. Post-translational modifications of HIF play a central role in its behavior as a mediator of transcription, as well as the temporal transition from HIF-1α to HIF-2α that occurs in response to chronic hypoxia. While it is evident that HIF-α is highly dynamic, HIF-2α remains vastly under-considered. HIF-2α can intensify the behaviors of the most aggressive tumors by adapting the cell to oxidative stress, thereby promoting metastasis, tissue remodeling, angiogenesis, and upregulating cancer stem cell factors. The structure, function, hypoxic response, spatiotemporal dynamics, and roles in the progression and persistence of cancer of this HIF-2α molecule and its EPAS1 gene are highlighted in this review, alongside a discussion of current therapeutics and future directions.
Collapse
Affiliation(s)
- Leah Davis
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Matthias Recktenwald
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Evan Hutt
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Schuyler Fuller
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Madison Briggs
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Arnav Goel
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Nichole Daringer
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| |
Collapse
|
6
|
Leu T, Fandrey J, Schreiber T. (H)IF applicable: promotion of neurogenesis by induced HIF-2 signalling after ischaemia. Pflugers Arch 2021; 473:1287-1299. [PMID: 34251509 PMCID: PMC8302505 DOI: 10.1007/s00424-021-02600-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 11/26/2022]
Abstract
HIF-2 represents a tissue-specific isoform of the hypoxia-inducible factors (HIFs) which regulate oxygen homeostasis in the cell. In acute oxygen deficiency, HIF transcription factors ensure the timely restoration of adequate oxygen supply. Particularly in medical conditions such as stroke, which have a high mortality risk due to ischaemic brain damage, rapid recovery of oxygen supply is of extraordinary importance. Nevertheless, the endogenous mechanisms are often not sufficient to respond to severe hypoxic stress with restoring oxygenation and fail to protect the tissue. Herein, we analysed murine neurospheres without functioning HIF-2α and found that special importance in the differentiation of neurons can be attributed to HIF-2 in the brain. Other processes, such as cell migration and signal transduction of different signalling pathways, appear to be mediated to some extent via HIF-2 and illustrate the function of HIF-2 in brain remodelling. Without hypoxic stress, HIF-2 in the brain presumably focuses on the fine-tuning of the neural network. However, a therapeutically increase of HIF-2 has the potential to regenerate or replace destroyed brain tissue and help minimize the consequences of an ischaemic stroke.
Collapse
Affiliation(s)
- Tristan Leu
- Institute of Physiology, University Duisburg-Essen, 45147, Essen, Germany
| | - Joachim Fandrey
- Institute of Physiology, University Duisburg-Essen, 45147, Essen, Germany.
| | - Timm Schreiber
- Institute of Physiology, University Duisburg-Essen, 45147, Essen, Germany
- Institute of Physiology, Pathophysiology and Toxicology and Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, 58453, Witten, Germany
| |
Collapse
|
7
|
HIF-1α and HIF-2α differently regulate tumour development and inflammation of clear cell renal cell carcinoma in mice. Nat Commun 2020; 11:4111. [PMID: 32807776 PMCID: PMC7431415 DOI: 10.1038/s41467-020-17873-3] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
Mutational inactivation of VHL is the earliest genetic event in the majority of clear cell renal cell carcinomas (ccRCC), leading to accumulation of the HIF-1α and HIF-2α transcription factors. While correlative studies of human ccRCC and functional studies using human ccRCC cell lines have implicated HIF-1α as an inhibitor and HIF-2α as a promoter of aggressive tumour behaviours, their roles in tumour onset have not been functionally addressed. Herein we show using an autochthonous ccRCC model that Hif1a is essential for tumour formation whereas Hif2a deletion has only minor effects on tumour initiation and growth. Both HIF-1α and HIF-2α are required for the clear cell phenotype. Transcriptomic and proteomic analyses reveal that HIF-1α regulates glycolysis while HIF-2α regulates genes associated with lipoprotein metabolism, ribosome biogenesis and E2F and MYC transcriptional activities. HIF-2α-deficient tumours are characterised by increased antigen presentation, interferon signalling and CD8+ T cell infiltration and activation. Single copy loss of HIF1A or high levels of HIF2A mRNA expression correlate with altered immune microenvironments in human ccRCC. These studies reveal an oncogenic role of HIF-1α in ccRCC initiation and suggest that alterations in the balance of HIF-1α and HIF-2α activities can affect different aspects of ccRCC biology and disease aggressiveness.
Collapse
|
8
|
Reglero C, Lafarga V, Rivas V, Albitre Á, Ramos P, Berciano SR, Tapia O, Martínez-Chantar ML, Mayor Jr F, Penela P. GRK2-Dependent HuR Phosphorylation Regulates HIF1α Activation under Hypoxia or Adrenergic Stress. Cancers (Basel) 2020; 12:1216. [PMID: 32413989 PMCID: PMC7281538 DOI: 10.3390/cancers12051216] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022] Open
Abstract
Adaptation to hypoxia is a common feature in solid tumors orchestrated by oxygen-dependent and independent upregulation of the hypoxia-inducible factor-1α (HIF-1α). We unveiled that G protein-coupled receptor kinase (GRK2), known to be overexpressed in certain tumors, fosters this hypoxic pathway via phosphorylation of the mRNA-binding protein HuR, a central HIF-1α modulator. GRK2-mediated HuR phosphorylation increases the total levels and cytoplasmic shuttling of HuR in response to hypoxia, and GRK2-phosphodefective HuR mutants show defective cytosolic accumulation and lower binding to HIF-1α mRNA in hypoxic Hela cells. Interestingly, enhanced GRK2 and HuR expression correlate in luminal breast cancer patients. GRK2 also promotes the HuR/HIF-1α axis and VEGF-C accumulation in normoxic MCF7 breast luminal cancer cells and is required for the induction of HuR/HIF1-α in response to adrenergic stress. Our results point to a relevant role of the GRK2/HuR/HIF-1α module in the adaptation of malignant cells to tumor microenvironment-related stresses.
Collapse
Affiliation(s)
- Clara Reglero
- Department of Molecular Biology and Molecular Biology Centre Severo Ochoa (CMBSO), the Spanish National Research Council, the Autonomous University of Madrid (UAM-CSIC), 28049 Madrid, Spain; (C.R.); (V.L.); (V.R.); (A.A.); (P.R.); (S.R.B.); (F.M.J.)
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032, USA
| | - Vanesa Lafarga
- Department of Molecular Biology and Molecular Biology Centre Severo Ochoa (CMBSO), the Spanish National Research Council, the Autonomous University of Madrid (UAM-CSIC), 28049 Madrid, Spain; (C.R.); (V.L.); (V.R.); (A.A.); (P.R.); (S.R.B.); (F.M.J.)
- Department of Molecular Oncology, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Verónica Rivas
- Department of Molecular Biology and Molecular Biology Centre Severo Ochoa (CMBSO), the Spanish National Research Council, the Autonomous University of Madrid (UAM-CSIC), 28049 Madrid, Spain; (C.R.); (V.L.); (V.R.); (A.A.); (P.R.); (S.R.B.); (F.M.J.)
- Department of Cellular and Molecular Mechanisms in Inflammatory and Autoimmune Diseases, Institute of Health Research La Princesa, 28006 Madrid, Spain
| | - Ángela Albitre
- Department of Molecular Biology and Molecular Biology Centre Severo Ochoa (CMBSO), the Spanish National Research Council, the Autonomous University of Madrid (UAM-CSIC), 28049 Madrid, Spain; (C.R.); (V.L.); (V.R.); (A.A.); (P.R.); (S.R.B.); (F.M.J.)
- Department of Cellular and Molecular Mechanisms in Inflammatory and Autoimmune Diseases, Institute of Health Research La Princesa, 28006 Madrid, Spain
| | - Paula Ramos
- Department of Molecular Biology and Molecular Biology Centre Severo Ochoa (CMBSO), the Spanish National Research Council, the Autonomous University of Madrid (UAM-CSIC), 28049 Madrid, Spain; (C.R.); (V.L.); (V.R.); (A.A.); (P.R.); (S.R.B.); (F.M.J.)
- Department of Cellular and Molecular Mechanisms in Inflammatory and Autoimmune Diseases, Institute of Health Research La Princesa, 28006 Madrid, Spain
| | - Susana R. Berciano
- Department of Molecular Biology and Molecular Biology Centre Severo Ochoa (CMBSO), the Spanish National Research Council, the Autonomous University of Madrid (UAM-CSIC), 28049 Madrid, Spain; (C.R.); (V.L.); (V.R.); (A.A.); (P.R.); (S.R.B.); (F.M.J.)
- Department of Cellular and Molecular Mechanisms in Inflammatory and Autoimmune Diseases, Institute of Health Research La Princesa, 28006 Madrid, Spain
| | - Olga Tapia
- Department of Anatomy and Cell Biology, CIBER of Neurodegenerative Diseases (CIBERNED), University of Cantabria–IDIVAL, 39011 Santander, Spain;
| | - María L. Martínez-Chantar
- CIC bioGUNE, Center for Cooperative Research in Biosciences, Liver Disease and Liver Metabolism Lab, 48160 Derio, Spain;
- Biomedical Research Center Network of Hepatic and Digestive Diseases (CIBERehd), The Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Federico Mayor Jr
- Department of Molecular Biology and Molecular Biology Centre Severo Ochoa (CMBSO), the Spanish National Research Council, the Autonomous University of Madrid (UAM-CSIC), 28049 Madrid, Spain; (C.R.); (V.L.); (V.R.); (A.A.); (P.R.); (S.R.B.); (F.M.J.)
- Department of Cellular and Molecular Mechanisms in Inflammatory and Autoimmune Diseases, Institute of Health Research La Princesa, 28006 Madrid, Spain
- CIBER of Cardiovascular Diseases (CIBERCV), The Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Petronila Penela
- Department of Molecular Biology and Molecular Biology Centre Severo Ochoa (CMBSO), the Spanish National Research Council, the Autonomous University of Madrid (UAM-CSIC), 28049 Madrid, Spain; (C.R.); (V.L.); (V.R.); (A.A.); (P.R.); (S.R.B.); (F.M.J.)
- Department of Cellular and Molecular Mechanisms in Inflammatory and Autoimmune Diseases, Institute of Health Research La Princesa, 28006 Madrid, Spain
- CIBER of Cardiovascular Diseases (CIBERCV), The Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
9
|
Baumeister J, Chatain N, Hubrich A, Maié T, Costa IG, Denecke B, Han L, Küstermann C, Sontag S, Seré K, Strathmann K, Zenke M, Schuppert A, Brümmendorf TH, Kranc KR, Koschmieder S, Gezer D. Hypoxia-inducible factor 1 (HIF-1) is a new therapeutic target in JAK2V617F-positive myeloproliferative neoplasms. Leukemia 2020; 34:1062-1074. [PMID: 31728053 DOI: 10.1038/s41375-019-0629-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/17/2019] [Accepted: 11/03/2019] [Indexed: 12/18/2022]
Abstract
Classical Philadelphia chromosome-negative myeloproliferative neoplasms (MPN) are a heterogeneous group of hematopoietic malignancies including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). The JAK2V617F mutation plays a central role in these disorders and can be found in 90% of PV and ~50-60% of ET and PMF. Hypoxia-inducible factor 1 (HIF-1) is a master transcriptional regulator of the response to decreased oxygen levels. We demonstrate the impact of pharmacological inhibition and shRNA-mediated knockdown (KD) of HIF-1α in JAK2V617F-positive cells. Inhibition of HIF-1 binding to hypoxia response elements (HREs) with echinomycin, verified by ChIP, impaired growth and survival by inducing apoptosis and cell cycle arrest in Jak2V617F-positive 32D cells, but not Jak2WT controls. Echinomycin selectively abrogated clonogenic growth of JAK2V617F cells and decreased growth, survival, and colony formation of bone marrow and peripheral blood mononuclear cells and iPS cell-derived progenitor cells from JAK2V617F-positive patients, while cells from healthy donors were unaffected. We identified HIF-1 target genes involved in the Warburg effect as a possible underlying mechanism, with increased expression of Pdk1, Glut1, and others. That was underlined by transcriptome analysis of primary patient samples. Collectively, our data show that HIF-1 is a new potential therapeutic target in JAK2V617F-positive MPN.
Collapse
Affiliation(s)
- Julian Baumeister
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Annika Hubrich
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Tiago Maié
- Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany
| | - Ivan G Costa
- Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany
| | - Bernd Denecke
- Interdisciplinary Center for Clinical Research Aachen, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Lijuan Han
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Caroline Küstermann
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Institute of Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany; Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Stephanie Sontag
- Institute of Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany; Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Kristin Seré
- Institute of Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany; Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Klaus Strathmann
- Institute for Transfusion Medicine, RWTH Aachen University Medical School, Aachen, Germany
| | - Martin Zenke
- Institute of Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany; Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Andreas Schuppert
- Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Kamil R Kranc
- Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Deniz Gezer
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
10
|
Saint-Martin A, Martínez-Ríos J, Castañeda-Patlán MC, Sarabia-Sánchez MA, Tejeda-Muñoz N, Chinney-Herrera A, Soldevila G, Benelli R, Santoyo-Ramos P, Poggi A, Robles-Flores M. Functional Interaction of Hypoxia-Inducible Factor 2-Alpha and Autophagy Mediates Drug Resistance in Colon Cancer Cells. Cancers (Basel) 2019; 11:755. [PMID: 31151160 PMCID: PMC6627604 DOI: 10.3390/cancers11060755] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 02/07/2023] Open
Abstract
Hypoxia and the accumulation of hypoxia-inducible factors (HIFs) in tumors have been associated with therapeutic resistance and with autophagy establishment. We examined the effects of stable knockdown of HIF-1α or HIF-2α expression on autophagy and drug resistance in colon cancer cells. We found that under normoxic conditions, malignant cells exhibit increased basal levels of autophagy, compared with non-malignant cells, in addition to the previously reported coexpression of HIF-1α and HIF-2α. Knockdown of HIF-1α or HIF-2α expression resulted in increased autophagic and apoptotic cell death, indicating that the survival of cells is HIF-dependent. Cytotoxic-induced cell death was significantly increased by knockdown of HIFs but not by autophagy inhibition. Strikingly, although malignancy-resistant cells were sensitized to death by nutrient stress, the combination with HIF-2α depletion, but not with HIF-1α depletion, induced severe cell death. Oxidative stress levels were significantly increased as a result of HIF-2α specific inhibition or silencing suggesting that this may contribute to sensitize cells to death. The in vitro results were confirmed in vivo using a xenograft mouse model. We found that coordinated autophagy and mTOR inhibition enhanced cell death and induced tumor remission only in HIF-2α-silenced cells. Finally, using a specific HIF-2α inhibitor alone or in combination with drugs in patient-derived primary colon cancer cells, overcame their resistance to 5-FU or CCI-779, thus emphasizing the crucial role played by HIF-2α in promoting resistance and cell survival.
Collapse
Affiliation(s)
- Abril Saint-Martin
- Department of Biochemistry, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico.
| | - Jacobo Martínez-Ríos
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico.
| | - M Cristina Castañeda-Patlán
- Department of Biochemistry, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico.
| | - Miguel Angel Sarabia-Sánchez
- Department of Biochemistry, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico.
| | - Nydia Tejeda-Muñoz
- Department of Biochemistry, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico.
| | - Alberto Chinney-Herrera
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico.
| | - Gloria Soldevila
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico.
| | - Roberto Benelli
- Immunology unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy.
| | - Paula Santoyo-Ramos
- Department of Biochemistry, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico.
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy.
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy.
| | - Martha Robles-Flores
- Department of Biochemistry, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico.
| |
Collapse
|
11
|
Moreno Roig E, Groot AJ, Yaromina A, Hendrickx TC, Barbeau LMO, Giuranno L, Dams G, Ient J, Olivo Pimentel V, van Gisbergen MW, Dubois LJ, Vooijs MA. HIF-1α and HIF-2α Differently Regulate the Radiation Sensitivity of NSCLC Cells. Cells 2019; 8:cells8010045. [PMID: 30642030 PMCID: PMC6356534 DOI: 10.3390/cells8010045] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 12/17/2022] Open
Abstract
The hypoxia-inducible transcription factors (HIF)-1/2α are the main oxygen sensors which regulate the adaptation to intratumoral hypoxia. The aim of this study was to assess the role of the HIF proteins in regulating the radiation response of a non-small cell lung cancer (NSCLC) in vitro model. To directly assess the unique and overlapping functions of HIF-1α and HIF-2α, we use CRISPR gene-editing to generate isogenic H1299 non-small cell lung carcinoma cells lacking HIF-1α, HIF-2α or both. We found that in HIF1 knockout cells, HIF-2α was strongly induced by hypoxia compared to wild type but the reverse was not seen in HIF2 knockout cells. Cells lacking HIF-1α were more radiation resistant than HIF2 knockout and wildtype cells upon hypoxia, which was associated with a reduced recruitment of γH2AX foci directly after irradiation and not due to differences in proliferation. Conversely, double-HIF1/2 knockout cells were most radiation sensitive and had increased γH2AX recruitment and cell cycle delay. Compensatory HIF-2α activity in HIF1 knockout cells is the main cause of this radioprotective effect. Under hypoxia, HIF1 knockout cells uniquely had a strong increase in lactate production and decrease in extracellular pH. Using genetically identical HIF-α isoform-deficient cells we identified a strong radiosensitizing of HIF1, but not of HIF2, which was associated with a reduced extracellular pH and reduced glycolysis.
Collapse
Affiliation(s)
- Eloy Moreno Roig
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, 6229 ET Maastricht, The Netherlands.
| | - Arjan J Groot
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, 6229 ET Maastricht, The Netherlands.
| | - Ala Yaromina
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, 6229 ET Maastricht, The Netherlands.
| | - Tessa C Hendrickx
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, 6229 ET Maastricht, The Netherlands.
| | - Lydie M O Barbeau
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, 6229 ET Maastricht, The Netherlands.
| | - Lorena Giuranno
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, 6229 ET Maastricht, The Netherlands.
| | - Glenn Dams
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, 6229 ET Maastricht, The Netherlands.
| | - Jonathan Ient
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, 6229 ET Maastricht, The Netherlands.
| | - Veronica Olivo Pimentel
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, 6229 ET Maastricht, The Netherlands.
| | - Marike W van Gisbergen
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, 6229 ET Maastricht, The Netherlands.
| | - Ludwig J Dubois
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, 6229 ET Maastricht, The Netherlands.
| | - Marc A Vooijs
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, 6229 ET Maastricht, The Netherlands.
| |
Collapse
|
12
|
Abstract
INTRODUCTION Hypoxia-inducible transcription factors have been identified as regulators of adaptive responses to hypoxia. Over the past 20 years, more than 8000 papers have described their increasingly complex role and regulation in cancer. Presently, it is recognized that hypoxia-inducible factors (HIFs) are regulated by oxygen-dependent and oxygen-independent mechanisms in cancer development; the list of their targets has increased to include more than 500 genes involved in most hallmarks of cancer. Areas covered: Most literature describes the function of HIF factors in solid tumors; however, in the past 10 years, evidence has steadily accumulated to indicate that HIFs are implicated in hematological malignancies. This review summarizes our current understanding of the function and regulation of HIF factors in hematopoiesis and leukemia. Moreover, we provide an update on pharmacological inhibitors of this pathway that have shown promising therapeutic effects in clinical trials or leukemia pre-clinical models. Expert opinion: The inhibition of the function of HIF factors may provide an interesting approach for treating leukemia. We posit that before moving into the clinic, we should (i) fully characterize the outcome of HIF inhibition in specific leukemia contexts (ii) test the possibility of combining HIF-targeting strategies with cytotoxic compounds and (iii) consider patient selection to increase therapeutic efficacy.
Collapse
Affiliation(s)
- Daniela Magliulo
- a Vita-Salute San Raffaele University , Milan , Italy.,b Preclinical Models of Cancer Laboratory, Division of Experimental Oncology , San Raffaele Scientific Institute , Milan , Italy
| | - Rosa Bernardi
- b Preclinical Models of Cancer Laboratory, Division of Experimental Oncology , San Raffaele Scientific Institute , Milan , Italy
| |
Collapse
|
13
|
Lymphotoxin α, a novel target of posttranscriptional gene regulation by HuR in HepG2 cells. FEBS Lett 2015; 589:1943-50. [PMID: 25980610 DOI: 10.1016/j.febslet.2015.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/24/2015] [Accepted: 05/06/2015] [Indexed: 12/31/2022]
Abstract
The role of the RNA-binding protein human antigen R (HuR) in hepatocarcinogenesis is still elusive. By employing short hairpin (sh)RNA-dependent knockdown approach, we demonstrate that lymphotoxin α (LTα) is a target of posttranscriptional gene regulation by HuR in hepatocellular carcinoma (HepG2) cells. Consequently, the increased mRNA decay upon HuR depletion significantly affects lymphotoxin expression at both, the mRNA and protein level. Biotin-pulldown assay showed that HuR specifically interacts with the 3'-untranslated region (3'-UTR) of the LTα mRNA. Furthermore, electrophoretic mobility shift assay (EMSA) implicates that the RNA-binding critically depends on the RNA recognition motif 2 (RRM2) and the hinge region of HuR.
Collapse
|
14
|
Frew IJ, Moch H. A clearer view of the molecular complexity of clear cell renal cell carcinoma. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2014; 10:263-89. [PMID: 25387056 DOI: 10.1146/annurev-pathol-012414-040306] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The von Hippel-Lindau (VHL) tumor suppressor gene is mutated as an early event in almost all cases of clear cell renal cell carcinoma (ccRCC), the most frequent form of kidney cancer. In this review we discuss recent advances in understanding how dysregulation of the many hypoxia-inducible factor α-dependent and -independent functions of the VHL tumor suppressor protein (pVHL) can contribute to tumor initiation and progression. Recent evidence showing extensive inter- and intratumoral genetic diversity has given rise to the idea that ccRCC should actually be considered as a series of molecularly related, yet distinct, diseases defined by the pattern of combinatorial genetic alterations present within the cells of the tumor. We highlight the range of genetic and epigenetic alterations that recur in ccRCC and discuss the mechanisms through which these events appear to function cooperatively with a loss of pVHL function in tumorigenesis.
Collapse
Affiliation(s)
- Ian J Frew
- Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich CH-8057, Switzerland;
| | | |
Collapse
|
15
|
Doller A, Badawi A, Schmid T, Brauss T, Pleli T, zu Heringdorf DM, Piiper A, Pfeilschifter J, Eberhardt W. The cytoskeletal inhibitors latrunculin A and blebbistatin exert antitumorigenic properties in human hepatocellular carcinoma cells by interfering with intracellular HuR trafficking. Exp Cell Res 2014; 330:66-80. [PMID: 25240929 DOI: 10.1016/j.yexcr.2014.09.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 09/01/2014] [Accepted: 09/07/2014] [Indexed: 10/24/2022]
Abstract
The impact of the RNA-binding protein HuR for the post-transcriptional deregulation of tumor-relevant genes is well established. Despite of elevations in HuR expression levels, an increase in cytoplasmic HuR abundance in many cases correlates with a high grade of malignancy. Here, we demonstrated that administration of the actin-depolymerizing macrolide latrunculin A, or blebbistatin, an inhibitor of myosin II ATPase activity, caused a dose- and time-dependent reduction in the high cytoplasmic HuR content of HepG2 and Huh7 hepatocellular carcinoma (HCC) cells. Subcellular fractionation revealed that in addition, both inhibitors strongly attenuated cytoskeletal and membrane-bound HuR abundance and conversely increased the HuR amount in nuclear cell fractions. Concomitant with changes in intracellular HuR localization, both cytoskeletal inhibitors markedly decreased the half-lives of cyclooxygenase-2 (COX-2), cyclin A and cyclin D1 encoding mRNAs resulting in a significant reduction in their expression levels in HepG2 cells. Importantly, a similar reduction in the expression of these HuR targets was achieved by a RNA interference (RNAi)-mediated knockdown of either HuR or nonmuscle myoin IIA. Using polysomal fractionation, we further demonstrate that the decrease in cytoplasmic HuR by latrunculin A or blebbistatin is accompanied by a marked change in the allocation of HuR and its mRNA cargo from polysomes to ribonucleoprotein (RNP) particles. Functionally, the basal migration and prostaglandin E2 synthesis are similarly impaired in inhibitor-treated and stable HuR-knockdown HepG2 cells. Our data demonstrate that interfering with the actomyosin-dependent HuR trafficking may comprise a valid therapeutic option for antagonizing pathologic posttranscriptional gene expression by HuR and furthermore emphasize the potential benefit of HuR inhibitory strategies for treatment of HCC.
Collapse
Affiliation(s)
- Anke Doller
- Pharmazentrum Frankfurt/ZAFES, Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main, Germany
| | - Amel Badawi
- Pharmazentrum Frankfurt/ZAFES, Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main, Germany
| | - Tobias Schmid
- Institut für Biochemie I (Pathobiochemie), Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main, Germany
| | - Thilo Brauss
- Institut für Biochemie I (Pathobiochemie), Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main, Germany
| | - Thomas Pleli
- Medizinische Klinik 1, Schwerpunkt Gastroenterologie und Hepatologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main, Germany
| | | | - Albrecht Piiper
- Medizinische Klinik 1, Schwerpunkt Gastroenterologie und Hepatologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main, Germany
| | - Josef Pfeilschifter
- Pharmazentrum Frankfurt/ZAFES, Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main, Germany
| | - Wolfgang Eberhardt
- Pharmazentrum Frankfurt/ZAFES, Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main, Germany.
| |
Collapse
|
16
|
Gezer D, Vukovic M, Soga T, Pollard PJ, Kranc KR. Concise review: genetic dissection of hypoxia signaling pathways in normal and leukemic stem cells. Stem Cells 2014; 32:1390-7. [PMID: 24496882 DOI: 10.1002/stem.1657] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 12/21/2013] [Indexed: 02/11/2024]
Abstract
Adult hematopoiesis depends on rare multipotent hematopoietic stem cells (HSCs) that self-renew and give rise to progenitor cells, which differentiate to all blood lineages. The strict regulation of the fine balance between self-renewal and differentiation is essential for normal hematopoiesis and suppression of leukemia development. HSCs and progenitor cells are commonly assumed to reside within the hypoxic BM microenvironment, however, there is no direct evidence supporting this notion. Nevertheless, HSCs and progenitors do exhibit a hypoxic profile and strongly express Hif-1α. Although hypoxia signaling pathways are thought to play important roles in adult HSC maintenance and leukemogenesis, the precise function of Hif-dependent signaling in HSCs remains to be uncovered. Here we discuss recent gain-of-function and loss-of-function studies that shed light on the complex roles of hypoxia-signaling pathways in HSCs and their niches in normal and malignant hematopoiesis. Importantly, we comment on the current and often contrasting interpretations of the role of Hif-dependent signaling in stem cell functions.
Collapse
Affiliation(s)
- Deniz Gezer
- MRC Centre for Regenerative Medicine. University of Edinburgh, Edinburgh, United Kingdom; Paul O'Gorman Leukaemia Research Centre, University of Glasgow, Glasgow, United Kingdom; 3Klinik fuer Haematologie, Onkologie und Stammzelltransplantation, Universitaetsklinikum Aachen, Aachen, Germany
| | | | | | | | | |
Collapse
|
17
|
Matsunaga T, Li S, Adachi T, Joo E, Gu N, Yamazaki H, Yasuda K, Kondoh T, Tsuda K. Hyperoxia reverses glucotoxicity-induced inhibition of insulin secretion in rat INS-1 β cells. Biosci Biotechnol Biochem 2014; 78:843-50. [PMID: 25035988 DOI: 10.1080/09168451.2014.905175] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chronic hyperglycemia has deleterious effects on pancreatic β-cell function, a process known as glucotoxicity. This study examined whether chronic high glucose (CHG) induces cellular hypoxia in rat INS-1 β cells, and whether hyperoxia (35% O2) can reverse glucotoxicity-induced inhibition of insulin secretion. CHG (33.3 mm, 96 h) reduced insulin secretion, and down-regulated insulin and pancreatic duodenal homeobox factor 1 gene expression. CHG also increased intracellular pimonidazole-protein adducts, a marker for hypoxia. CHG also enhanced hypoxia-inducible factor 1α (HIF-1α) protein expression and its DNA-binding activity, which was accompanied by a decrease in mRNA expression of glucose transporter 2 (GLUT2), glucokinase and uncoupling protein-2 and an increase in mRNA expression of GLUT1 and pyruvate dehydrogenase kinase 1. Hyperoxia restored the decrease in insulin secretion and the gene expression except for GLUT2, and suppressed intracellular hypoxia and HIF-1α activation. These results suggest that glucotoxicity may cause β-cell hypoxia. Hyperoxia might prevent glucotoxicity-induced β-cell dysfunction and improve insulin secretion.
Collapse
Affiliation(s)
- Tetsuro Matsunaga
- a Faculty of Health and Living Sciences Education , Naruto University of Education , Naruto , Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Nakajima T, Nakajima E, Shearer TR, Azuma M. Concerted inhibition of HIF-1α and -2α expression markedly suppresses angiogenesis in cultured RPE cells. Mol Cell Biochem 2013; 383:113-22. [PMID: 23873332 DOI: 10.1007/s11010-013-1760-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 07/10/2013] [Indexed: 12/25/2022]
Abstract
HIF-1α is known to play an important role in the induction of VEGF by hypoxia in retinal pigment epithelial (RPE) cells. However, the involvement of the other isoform, HIF-2α, in RPE cells remains unclear. Thus, the purpose of present study was to clarify the role of HIF-2α during induction of angiogenic genes in hypoxic RPE cells. When human RPE cells (ARPE-19) were cultured under hypoxic conditions, HIF-1α and HIF-2α proteins increased. This induced an increase in mRNA for VEGF, causing secretion of VEGF protein into the medium. This conditioned medium induced tube formation in human vascular endothelial cells (HUVEC). The increased expression of mRNA for VEGF in hypoxic RPE cells was partially inhibited by HIF-1α siRNA, but not by HIF-2α siRNA. However, co-transfection of HIF-1α siRNA and HIF-2α siRNA augmented downregulation of VEGF mRNA and protein in hypoxic RPE cells and inhibited formation of tube-like structures in HUVEC. GeneChip and PCR array analyses revealed that not only VEGF, but also expression of other angiogenic genes were synergistically downregulated by co-transfection of hypoxic RPE cells with HIF-1α and HIF-2α siRNAs. These findings suggest an important compensatory role for the HIF-2α isoform in the regulation of angiogenic gene expression. Thus, suppression of angiogenic genes for HIF-1α and HIF-2α may be a possible therapeutic strategy against retinal angiogenesis in Age-related macular degeneration (ARMD).
Collapse
Affiliation(s)
- Takeshi Nakajima
- Senju Laboratory of Ocular Sciences, Senju Pharmaceutical Co., Ltd., Kobe, Japan
| | | | | | | |
Collapse
|