1
|
Withana M, Castorina A. Potential Crosstalk between the PACAP/VIP Neuropeptide System and Endoplasmic Reticulum Stress-Relevance to Multiple Sclerosis Pathophysiology. Cells 2023; 12:2633. [PMID: 37998368 PMCID: PMC10670126 DOI: 10.3390/cells12222633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disorder characterized by focal demyelination and chronic inflammation of the central nervous system (CNS). Although the exact etiology is unclear, mounting evidence indicates that endoplasmic reticulum (ER) stress represents a key event in disease pathogenesis. Pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP) are two structurally related neuropeptides that are abundant in the CNS and are known to exert neuroprotective and immune modulatory roles. Activation of this endogenous neuropeptide system may interfere with ER stress processes to promote glial cell survival and myelin self-repair. However, the potential crosstalk between the PACAP/VIP system and ER stress remains elusive. In this review, we aim to discuss how these peptides ameliorate ER stress in the CNS, with a focus on MS pathology. Our goal is to emphasize the importance of this potential interaction to aid in the identification of novel therapeutic targets for the treatment of MS and other demyelinating disorders.
Collapse
Affiliation(s)
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| |
Collapse
|
2
|
Finotti A, Gasparello J, Zuccato C, Cosenza LC, Fabbri E, Bianchi N, Gambari R. Effects of Mithramycin on BCL11A Gene Expression and on the Interaction of the BCL11A Transcriptional Complex to γ-Globin Gene Promoter Sequences. Genes (Basel) 2023; 14:1927. [PMID: 37895276 PMCID: PMC10606601 DOI: 10.3390/genes14101927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
The anticancer drug mithramycin (MTH), has been proposed for drug repurposing after the finding that it is a potent inducer of fetal hemoglobin (HbF) production in erythroid precursor cells (ErPCs) from β-thalassemia patients. In this respect, previously published studies indicate that MTH is very active in inducing increased expression of γ-globin genes in erythroid cells. This is clinically relevant, as it is firmly established that HbF induction is a valuable approach for the therapy of β-thalassemia and for ameliorating the clinical parameters of sickle-cell disease (SCD). Therefore, the identification of MTH biochemical/molecular targets is of great interest. This study is inspired by recent robust evidence indicating that the expression of γ-globin genes is controlled in adult erythroid cells by different transcriptional repressors, including Oct4, MYB, BCL11A, Sp1, KLF3 and others. Among these, BCL11A is very important. In the present paper we report evidence indicating that alterations of BCL11A gene expression and biological functions occur during MTH-mediated erythroid differentiation. Our study demonstrates that one of the mechanisms of action of MTH is a down-regulation of the transcription of the BCL11A gene, while a second mechanism of action is the inhibition of the molecular interactions between the BCL11A complex and specific sequences of the γ-globin gene promoter.
Collapse
Affiliation(s)
- Alessia Finotti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (J.G.); (C.Z.); (L.C.C.); (E.F.); (N.B.)
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (J.G.); (C.Z.); (L.C.C.); (E.F.); (N.B.)
| | - Cristina Zuccato
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (J.G.); (C.Z.); (L.C.C.); (E.F.); (N.B.)
| | - Lucia Carmela Cosenza
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (J.G.); (C.Z.); (L.C.C.); (E.F.); (N.B.)
| | - Enrica Fabbri
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (J.G.); (C.Z.); (L.C.C.); (E.F.); (N.B.)
| | - Nicoletta Bianchi
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (J.G.); (C.Z.); (L.C.C.); (E.F.); (N.B.)
- Department of Translational Medicine and for Romagna, Ferrara University, 44121 Ferrara, Italy
| | - Roberto Gambari
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Ferrara University, 44121 Ferrara, Italy
| |
Collapse
|
3
|
Yang J, Wang J, Zhang H, Li C, Chen C, Zhu T. Transcription factor Sp1 is upregulated by PKCι to drive the expression of YAP1 during pancreatic carcinogenesis. Carcinogenesis 2021; 42:344-356. [PMID: 33146712 DOI: 10.1093/carcin/bgaa113] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022] Open
Abstract
Recently, we identified that the atypical protein kinase C isoform ι (PKCι) enhances the expression of Yes-associated protein 1 (YAP1) to promote the tumorigenesis of pancreatic adenocarcinoma harboring mutant KRAS (mu-KRAS). To advance our understanding about underlying mechanisms, we analyze the transcription of YAP1 in pancreatic cancer cells and reveal that transcription factor specificity protein 1 (Sp1) is upregulated by PKCι and subsequently binds to multiple sites in YAP1 promoter to drive the transactivation of YAP1 in pancreatic cancer cells carrying mu-KRAS. The bioinformatics analysis further substantiates that the expression of PKCι, Sp1 and YAP1 is correlated and associated with the stages and prognosis of pancreatic tumors. Moreover, our apoptotic detection data demonstrate that combination of PKCι and Sp1 inhibitors at subtoxic doses displays synergistic effects on inducing apoptosis and reversing the immunosuppression of pancreatic cancer cells, establishing the combination of PKCι and Sp1 inhibitors as a promising novel therapeutic approach, or an adjuvant strategy to potentiate the antitumor effects of other immunotherapeutic agents in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Jinhe Yang
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Junli Wang
- Department of Biochemistry, West China School of Basic Medical Sciences & Forensic Medicine, Sichan University, Chengdu, Sichuan, PR China
| | - Hongmei Zhang
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Changlong Li
- Department of Biochemistry, West China School of Basic Medical Sciences & Forensic Medicine, Sichan University, Chengdu, Sichuan, PR China
| | - Changyan Chen
- The Center of Drug Discovery, Northeastern University, Boston, MA, USA
| | - Tongbo Zhu
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| |
Collapse
|
4
|
Yokai M, Kurihara T, Miyata A. Spinal astrocytic activation contributes to both induction and maintenance of pituitary adenylate cyclase-activating polypeptide type 1 receptor-induced long-lasting mechanical allodynia in mice. Mol Pain 2016; 12:12/0/1744806916646383. [PMID: 27175011 PMCID: PMC4956379 DOI: 10.1177/1744806916646383] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/29/2016] [Indexed: 12/05/2022] Open
Abstract
Background Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors are present in the spinal dorsal horn and dorsal root ganglia, suggesting an important role of PACAP–PACAP receptors signaling system in the modulation of spinal nociceptive transmission. We have previously reported that a single intrathecal injection of PACAP or a PACAP specific (PAC1) receptor selective agonist, maxadilan, in mice induced dose-dependent aversive behaviors, which lasted more than 30 min, and suggested that the maintenance of the nociceptive behaviors was associated with the spinal astrocytic activation. Results We found that a single intrathecal administration of PACAP or maxadilan also produced long-lasting hind paw mechanical allodynia, which persisted at least 84 days without affecting thermal nociceptive threshold. In contrast, intrathecal application of vasoactive intestinal polypeptide did not change mechanical threshold, and substance P, calcitonin gene-related peptide, or N-methyl-D-aspartate induced only transient mechanical allodynia, which disappeared within 21 days. Western blot and immunohistochemical analyses with an astrocytic marker, glial fibrillary acidic protein, revealed that the spinal PAC1 receptor stimulation caused sustained astrocytic activation, which also lasted more than 84 days. Intrathecal co-administration of L-α-aminoadipate, an astroglial toxin, with PACAP or maxadilan almost completely prevented the induction of the mechanical allodynia. Furthermore, intrathecal treatment of L-α-aminoadipate at 84 days after the PAC1 stimulation transiently reversed the mechanical allodynia accompanied by the reduction of glial fibrillary acidic protein expression level. Conclusion Our data suggest that spinal astrocytic activation triggered by the PAC1 receptor stimulation contributes to both induction and maintenance of the long-term mechanical allodynia.
Collapse
Affiliation(s)
- Masafumi Yokai
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Japan
| | - Takashi Kurihara
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Japan
| | - Atsuro Miyata
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Japan
| |
Collapse
|
5
|
Choi ES, Nam JS, Jung JY, Cho NP, Cho SD. Modulation of specificity protein 1 by mithramycin A as a novel therapeutic strategy for cervical cancer. Sci Rep 2014; 4:7162. [PMID: 25418289 PMCID: PMC4241519 DOI: 10.1038/srep07162] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 11/03/2014] [Indexed: 11/09/2022] Open
Abstract
Cervical cancer is the third most common cancer and the third leading cause of death among women. However, the standard treatment for cervical cancer includes cisplatin, which can cause side effects such as hematological damage or renal toxicity. New innovations in cervical cancer treatment focus on developing more effective and better-tolerated therapies such as Sp1-targeting drugs. Previous studies suggested that mithramycin A (Mith) inhibits the growth of various cancers by decreasing Sp1 protein. However, how Sp1 protein is decreased by Mith is not clear. Few studies have investigated the regulation of Sp1 protein by proteasome-dependent degradation as a possible control mechanism for the regulation of Sp1 in cancer cells. Here, we show that Mith decreased Sp1 protein by inducing proteasome-dependent degradation, thereby suppressing cervical cancer growth through a DR5/caspase-8/Bid signaling pathway. We found that prolonged Mith treatment was well tolerated after systemic administration to mice carrying cervical cancer cells. Reduction of body weight was minimal, indicating that Mith was a good therapeutic candidate for treatment of cancers in which Sp1 is involved in promoting and developing disease.
Collapse
Affiliation(s)
- Eun-Sun Choi
- Division of High-risk Pathogen Research, Korea Centers for Disease Control and Prevention, Osong, Republic of Korea
| | - Jeong-Seok Nam
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Graduate School of Medicine, Incheon 406-840, Korea
| | - Ji-Youn Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 314-701, Republic of Korea
| | - Nam-Pyo Cho
- Department of Oral Pathology, School of Dentistry and Institute of Biodegradable Material, Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeon-ju 561-756, Republic of Korea
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry and Institute of Biodegradable Material, Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeon-ju 561-756, Republic of Korea
| |
Collapse
|
6
|
PPARG Modulated Lipid Accumulation in Dairy GMEC via Regulation of ADRP Gene. J Cell Biochem 2014; 116:192-201. [DOI: 10.1002/jcb.24958] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 08/22/2014] [Indexed: 11/07/2022]
|
7
|
Miura A, Kambe Y, Inoue K, Tatsukawa H, Kurihara T, Griffin M, Kojima S, Miyata A. Pituitary adenylate cyclase-activating polypeptide type 1 receptor (PAC1) gene is suppressed by transglutaminase 2 activation. J Biol Chem 2013; 288:32720-32730. [PMID: 24045949 DOI: 10.1074/jbc.m113.452706] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) functions as a neuroprotective factor through the PACAP type 1 receptor, PAC1. In a previous work, we demonstrated that nerve growth factor augmented PAC1 gene expression through the activation of Sp1 via the Ras/MAPK pathway. We also observed that PAC1 expression in Neuro2a cells was transiently suppressed during in vitro ischemic conditions, oxygen-glucose deprivation (OGD). Because endoplasmic reticulum (ER) stress is induced by ischemia, we attempted to clarify how ER stress affects the expression of PAC1. Tunicamycin, which induces ER stress, significantly suppressed PAC1 gene expression, and salubrinal, a selective inhibitor of the protein kinase RNA-like endoplasmic reticulum kinase signaling pathway of ER stress, blocked the suppression. In luciferase reporter assay, we found that two Sp1 sites were involved in suppression of PAC1 gene expression due to tunicamycin or OGD. Immunocytochemical staining demonstrated that OGD-induced transglutaminase 2 (TG2) expression was suppressed by salubrinal or cystamine, a TG activity inhibitor. Further, the OGD-induced accumulation of cross-linked Sp1 in nuclei was suppressed by cystamine or salubrinal. Together with cystamine, R283, TG2-specific inhibitor, and siRNA specific for TG2 also ameliorated OGD-induced attenuation of PAC1 gene expression. These results suggest that Sp1 cross-linking might be crucial in negative regulation of PAC1 gene expression due to TG2 in OGD-induced ER stress.
Collapse
Affiliation(s)
- Ayako Miura
- From the Department of Pharmacology, Graduate School of Medical and Dental Sciences, University of Kagoshima, Kagoshima 890-8544, Japan
| | - Yuki Kambe
- From the Department of Pharmacology, Graduate School of Medical and Dental Sciences, University of Kagoshima, Kagoshima 890-8544, Japan
| | - Kazuhiko Inoue
- From the Department of Pharmacology, Graduate School of Medical and Dental Sciences, University of Kagoshima, Kagoshima 890-8544, Japan
| | - Hideki Tatsukawa
- the Molecular Ligand Biology Research Team, Chemical Genomics Research Group, Chemical Biology Department, RIKEN Advanced Science Institute, Wako 351-0198, Japan
| | - Takashi Kurihara
- From the Department of Pharmacology, Graduate School of Medical and Dental Sciences, University of Kagoshima, Kagoshima 890-8544, Japan
| | - Martin Griffin
- the School of Life and Health Sciences, Aston University, Birmingham B4 7ET, United Kingdom
| | - Soichi Kojima
- the Molecular Ligand Biology Research Team, Chemical Genomics Research Group, Chemical Biology Department, RIKEN Advanced Science Institute, Wako 351-0198, Japan
| | - Atsuro Miyata
- From the Department of Pharmacology, Graduate School of Medical and Dental Sciences, University of Kagoshima, Kagoshima 890-8544, Japan,.
| |
Collapse
|