1
|
Genome-wide identification of Argonautes in Solanaceae with emphasis on potato. Sci Rep 2020; 10:20577. [PMID: 33239724 PMCID: PMC7689493 DOI: 10.1038/s41598-020-77593-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
Regulatory small RNAs (sRNAs) play important roles in many fundamental processes in plant biology such as development, fertilization and stress responses. The AGO protein family has here a central importance in gene regulation based on their capacity to associate with sRNAs followed by mRNA targeting in a sequence-complementary manner. The present study explored Argonautes (AGOs) in the Solanaceae family, with emphasis on potato, Solanum tuberosum (St). A genome-wide monitoring was performed to provide a deeper insight into gene families, genomic localization, gene structure and expression profile against the potato late blight pathogen Phytophthora infestans. Among 15 species in the Solanaceae family we found a variation from ten AGOs in Nicotiana obtusifolia to 17 in N. tabacum. Comprehensive analyses of AGO phylogeny revealed duplication of AGO1, AGO10 and AGO4 paralogs during early radiation of Solanaceae. Fourteen AGOs were identified in potato. Orthologs of AGO8 and AGO9 were missing in the potato genome. However, AGO15 earlier annotated in tomato was identified. StAGO15 differs from the other paralogs having residues of different physico-chemical properties at functionally important amino acid positions. Upon pathogen challenge StAGO15 was significantly activated and hence may play a prominent role in sRNA-based regulation of potato defense.
Collapse
|
2
|
Genome-Wide Identification of RNA Silencing-Related Genes and Their Expressional Analysis in Response to Heat Stress in Barley ( Hordeum vulgare L.). Biomolecules 2020; 10:biom10060929. [PMID: 32570964 PMCID: PMC7356095 DOI: 10.3390/biom10060929] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
Barley (Hordeum vulgare L.) is an economically important crop cultivated in temperate climates all over the world. Adverse environmental factors negatively affect its survival and productivity. RNA silencing is a conserved pathway involved in the regulation of growth, development and stress responses. The key components of RNA silencing are the Dicer-like proteins (DCLs), Argonautes (AGOs) and RNA-dependent RNA polymerases (RDRs). Despite its economic importance, there is no available comprehensive report on barley RNA silencing machinery and its regulation. In this study, we in silico identified five DCL (HvDCL), eleven AGO (HvAGO) and seven RDR (HvRDR) genes in the barley genome. Genomic localization, phylogenetic analysis, domain organization and functional/catalytic motif identification were also performed. To understand the regulation of RNA silencing, we experimentally analysed the transcriptional changes in response to moderate, persistent or gradient heat stress treatments: transcriptional accumulation of siRNA- but not miRNA-based silencing factor was consistently detected. These results suggest that RNA silencing is dynamically regulated and may be involved in the coordination of development and environmental adaptation in barley. In summary, our work provides information about barley RNA silencing components and will be a ground for the selection of candidate factors and in-depth functional/mechanistic analyses.
Collapse
|
3
|
Leclercq J, Wu S, Farinas B, Pointet S, Favreau B, Vignes H, Kuswanhadi K, Ortega-Abboud E, Dufayard JF, Gao S, Droc G, Hu S, Tang C, Montoro P. Post-transcriptional regulation of several biological processes involved in latex production in Hevea brasiliensis. PeerJ 2020; 8:e8932. [PMID: 32391199 PMCID: PMC7195832 DOI: 10.7717/peerj.8932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/17/2020] [Indexed: 11/20/2022] Open
Abstract
Background Small RNAs modulate plant gene expression at both the transcriptional and post-transcriptional level, mostly through the induction of either targeted DNA methylation or transcript cleavage, respectively. Small RNA networks are involved in specific plant developmental processes, in signaling pathways triggered by various abiotic stresses and in interactions between the plant and viral and non-viral pathogens. They are also involved in silencing maintenance of transposable elements and endogenous viral elements. Alteration in small RNA production in response to various environmental stresses can affect all the above-mentioned processes. In rubber trees, changes observed in small RNA populations in response to trees affected by tapping panel dryness, in comparison to healthy ones, suggest a shift from a transcriptional to a post-transcriptional regulatory pathway. This is the first attempt to characterise small RNAs involved in post-transcriptional silencing and their target transcripts in Hevea. Methods Genes producing microRNAs (MIR genes) and loci producing trans-activated small interfering RNA (ta-siRNA) were identified in the clone PB 260 re-sequenced genome. Degradome libraries were constructed with a pool of total RNA from six different Hevea tissues in stressed and non-stressed plants. The analysis of cleaved RNA data, associated with genomics and transcriptomics data, led to the identification of transcripts that are affected by 20–22 nt small RNA-mediated post-transcriptional regulation. A detailed analysis was carried out on gene families related to latex production and in response to growth regulators. Results Compared to other tissues, latex cells had a higher proportion of transcript cleavage activity mediated by miRNAs and ta-siRNAs. Post-transcriptional regulation was also observed at each step of the natural rubber biosynthesis pathway. Among the genes involved in the miRNA biogenesis pathway, our analyses showed that all of them are expressed in latex. Using phylogenetic analyses, we show that both the Argonaute and Dicer-like gene families recently underwent expansion. Overall, our study underlines the fact that important biological pathways, including hormonal signalling and rubber biosynthesis, are subject to post-transcriptional silencing in laticifers.
Collapse
Affiliation(s)
- Julie Leclercq
- CIRAD, UMR AGAP, Montpellier, France.,AGAP, University of Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Shuangyang Wu
- University of Chinese Academy of Sciences, CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Benoît Farinas
- CIRAD, UMR AGAP, Montpellier, France.,AGAP, University of Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Stéphanie Pointet
- CIRAD, UMR AGAP, Montpellier, France.,AGAP, University of Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Bénédicte Favreau
- CIRAD, UMR AGAP, Montpellier, France.,AGAP, University of Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Hélène Vignes
- CIRAD, UMR AGAP, Montpellier, France.,AGAP, University of Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | | | - Enrique Ortega-Abboud
- CIRAD, UMR AGAP, Montpellier, France.,AGAP, University of Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Jean-François Dufayard
- CIRAD, UMR AGAP, Montpellier, France.,AGAP, University of Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Shenghan Gao
- University of Chinese Academy of Sciences, CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Gaëtan Droc
- CIRAD, UMR AGAP, Montpellier, France.,AGAP, University of Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Songnian Hu
- University of Chinese Academy of Sciences, CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Chaorong Tang
- Hainan University, College of Tropical Crops, Haikou, China
| | - Pascal Montoro
- CIRAD, UMR AGAP, Montpellier, France.,AGAP, University of Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
4
|
Gago-Zachert S, Schuck J, Weinholdt C, Knoblich M, Pantaleo V, Grosse I, Gursinsky T, Behrens SE. Highly efficacious antiviral protection of plants by small interfering RNAs identified in vitro. Nucleic Acids Res 2019; 47:9343-9357. [PMID: 31433052 PMCID: PMC6755098 DOI: 10.1093/nar/gkz678] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 06/21/2019] [Accepted: 08/02/2019] [Indexed: 01/09/2023] Open
Abstract
In response to a viral infection, the plant’s RNA silencing machinery processes viral RNAs into a huge number of small interfering RNAs (siRNAs). However, a very few of these siRNAs actually interfere with viral replication. A reliable approach to identify these immunologically effective siRNAs (esiRNAs) and to define the characteristics underlying their activity has not been available so far. Here, we develop a novel screening approach that enables a rapid functional identification of antiviral esiRNAs. Tests on the efficacy of such identified esiRNAs of a model virus achieved a virtual full protection of plants against a massive subsequent infection in transient applications. We find that the functionality of esiRNAs depends crucially on two properties: the binding affinity to Argonaute proteins and the ability to access the target RNA. The ability to rapidly identify functional esiRNAs could be of great benefit for all RNA silencing-based plant protection measures against viruses and other pathogens.
Collapse
Affiliation(s)
- Selma Gago-Zachert
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale D-06120, Germany.,Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle/Saale D-06120, Germany
| | - Jana Schuck
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale D-06120, Germany
| | - Claus Weinholdt
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle/Saale D-06120, Germany
| | - Marie Knoblich
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale D-06120, Germany
| | - Vitantonio Pantaleo
- Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Bari, Bari I-70126, Italy
| | - Ivo Grosse
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle/Saale D-06120, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig D-04103, Germany
| | - Torsten Gursinsky
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale D-06120, Germany
| | - Sven-Erik Behrens
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale D-06120, Germany
| |
Collapse
|
5
|
Chung BYW, Valli A, Deery MJ, Navarro FJ, Brown K, Hnatova S, Howard J, Molnar A, Baulcombe DC. Distinct roles of Argonaute in the green alga Chlamydomonas reveal evolutionary conserved mode of miRNA-mediated gene expression. Sci Rep 2019; 9:11091. [PMID: 31366981 PMCID: PMC6668577 DOI: 10.1038/s41598-019-47415-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022] Open
Abstract
The unicellular green alga Chlamydomonas reinhardtii is evolutionarily divergent from higher plants, but has a fully functional silencing machinery including microRNA (miRNA)-mediated translation repression and mRNA turnover. However, distinct from the metazoan machinery, repression of gene expression is primarily associated with target sites within coding sequences instead of 3′UTRs. This feature indicates that the miRNA-Argonaute (AGO) machinery is ancient and the primary function is for post transcriptional gene repression and intermediate between the mechanisms in the rest of the plant and animal kingdoms. Here, we characterize AGO2 and 3 in Chlamydomonas, and show that cytoplasmically enriched Cr-AGO3 is responsible for endogenous miRNA-mediated gene repression. Under steady state, mid-log phase conditions, Cr-AGO3 binds predominantly miR-C89, which we previously identified as the predominant miRNA with effects on both translation repression and mRNA turnover. In contrast, the paralogue Cr-AGO2 is nuclear enriched and exclusively binds to 21-nt siRNAs. Further analysis of the highly similar Cr-AGO2 and Cr-AGO 3 sequences (90% amino acid identity) revealed a glycine-arginine rich N-terminal extension of ~100 amino acids that, given previous work on unicellular protists, may associate AGO with the translation machinery. Phylogenetic analysis revealed that this glycine-arginine rich N-terminal extension is present outside the animal kingdom and is highly conserved, consistent with our previous proposal that miRNA-mediated CDS-targeting operates in this green alga.
Collapse
Affiliation(s)
- Betty Y-W Chung
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom. .,Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, United Kingdom.
| | - Adrian Valli
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom.,Department of Plant Molecular Genetics, Spanish National Centre for Biotechnology, Madrid, 28049, Spain
| | - Michael J Deery
- Cambridge System Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, United Kingdom
| | - Francisco J Navarro
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Katherine Brown
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, United Kingdom
| | - Silvia Hnatova
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Julie Howard
- Cambridge System Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, United Kingdom
| | - Attila Molnar
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
| | - David C Baulcombe
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom.
| |
Collapse
|
6
|
Bhattacharjee S, Roche B, Martienssen RA. RNA-induced initiation of transcriptional silencing (RITS) complex structure and function. RNA Biol 2019; 16:1133-1146. [PMID: 31213126 DOI: 10.1080/15476286.2019.1621624] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Heterochromatic regions of the genome are epigenetically regulated to maintain a heritable '"silent state"'. In fission yeast and other organisms, epigenetic silencing is guided by nascent transcripts, which are targeted by the RNA interference pathway. The key effector complex of the RNA interference pathway consists of small interfering RNA molecules (siRNAs) associated with Argonaute, assembled into the RNA-induced transcriptional silencing (RITS) complex. This review focuses on our current understanding of how RITS promotes heterochromatin formation, and in particular on the role of Argonaute-containing complexes in many other functions such as quelling, release of RNA polymerases, cellular quiescence and genome defense.
Collapse
Affiliation(s)
- Sonali Bhattacharjee
- a Cold Spring Harbor Laboratory, Howard Hughes Medical Institute , Cold Spring Harbor , NY , USA
| | - Benjamin Roche
- a Cold Spring Harbor Laboratory, Howard Hughes Medical Institute , Cold Spring Harbor , NY , USA
| | - Robert A Martienssen
- a Cold Spring Harbor Laboratory, Howard Hughes Medical Institute , Cold Spring Harbor , NY , USA
| |
Collapse
|
7
|
Šečić E, Zanini S, Kogel KH. Further Elucidation of the Argonaute and Dicer Protein Families in the Model Grass Species Brachypodium distachyon. FRONTIERS IN PLANT SCIENCE 2019; 10:1332. [PMID: 31708948 PMCID: PMC6822278 DOI: 10.3389/fpls.2019.01332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 09/25/2019] [Indexed: 05/08/2023]
Abstract
RNA interference (RNAi) is a biological process in which small RNAs regulate gene silencing at the transcriptional or posttranscriptional level. The trigger for gene silencing is double-stranded RNA generated from an endogenous genomic locus or a foreign source, such as a transgene or virus. In addition to regulating endogenous gene expression, RNAi provides the mechanistic basis for small RNA-mediated communication between plant hosts and interacting pathogenic microbes, known as cross-kingdom RNAi. Two core protein components, Argonaute (AGO) and Dicer (DCL), are central to the RNAi machinery of eukaryotes. Plants encode for several copies of AGO and DCL genes; in Arabidopsis thaliana, the AGO protein family contains 10 members, and the DCL family contains four. Little is known about the conservation and specific roles of these proteins in monocotyledonous plants, which account for the most important food staples. Here, we utilized in silico tools to investigate the structure and related functions of AGO and DCL proteins from the model grass Brachypodium distachyon. Based on the presence of characteristic domains, 16 BdAGO- and 6 BdDCL-predicted proteins were identified. Phylogenetic analysis showed that both protein families were expanded in Brachypodium as compared with Arabidopsis. For BdDCL proteins, both plant species contain a single copy of DCL1 and DCL4; however, Brachypodium contains two copies each of DCL2 and DCL3. Members of the BdAGO family were placed in all three functional clades of AGO proteins previously described in Arabidopsis. The greatest expansion occurred in the AtAGO1/5/10 clade, which contains nine BdAGOs (BdAGO5/6/7/9/10/11/12/15/16). The catalytic tetrad of the AGO P-element-induced wimpy testis domain (PIWI), which is required for endonuclease activity, is conserved in most BdAGOs, with the exception of BdAGO1, which lacks the last D/H residue. Three-dimensional modeling of BdAGO proteins using tertiary structure prediction software supported the phylogenetic classification. We also predicted a provisional interactome network for BdAGOs, their localization within the cell, and organ/tissue-specific expression. Exploring the specifics of RNAi machinery proteins in a model grass species can serve as a proxy for agronomically important cereals such as barley and wheat, where the development of RNAi-based plant protection strategies is of great interest.
Collapse
|
8
|
Discovering Structural Motifs in miRNA Precursors from the Viridiplantae Kingdom. Molecules 2018; 23:molecules23061367. [PMID: 29882777 PMCID: PMC6100135 DOI: 10.3390/molecules23061367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 11/17/2022] Open
Abstract
A small non-coding molecule of microRNA (19–24 nt) controls almost every biological process, including cellular and physiological, of various organisms’ lives. The amount of microRNA (miRNA) produced within an organism is highly correlated to the organism’s key processes, and determines whether the system works properly or not. A crucial factor in plant biogenesis of miRNA is the Dicer Like 1 (DCL1) enzyme. Its responsibility is to perform the cleavages in the miRNA maturation process. Despite everything we already know about the last phase of plant miRNA creation, recognition of miRNA by DCL1 in pre-miRNA structures of plants remains an enigma. Herein, we present a bioinformatic procedure we have followed to discover structure patterns that could guide DCL1 to perform a cleavage in front of or behind an miRNA:miRNA* duplex. The patterns in the closest vicinity of microRNA are searched, within pre-miRNA sequences, as well as secondary and tertiary structures. The dataset consists of structures of plant pre-miRNA from the Viridiplantae kingdom. The results confirm our previous observations based on Arabidopsis thaliana precursor analysis. Hereby, our hypothesis was tested on pre-miRNAs, collected from the miRBase database to show secondary structure patterns of small symmetric internal loops 1-1 and 2-2 at a 1–10 nt distance from the miRNA:miRNA* duplex.
Collapse
|
9
|
Frank F, Nagar B. Structural and Functional Characterization of Plant ARGONAUTE MID Domains. Methods Mol Biol 2018; 1640:227-239. [PMID: 28608347 DOI: 10.1007/978-1-4939-7165-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The interaction of small silencing RNA 5' nucleotides with the MID domain of ARGONAUTE (AGO) proteins provides an anchor point that contributes to strong binding between RNA and protein. The following protocols describe the necessary procedures to characterize the structure of AGO MID domains using X-ray crystallography as well as their interaction with nucleotides that mimic the 5' end of small silencing RNAs using two-dimensional NMR spectroscopy.
Collapse
Affiliation(s)
- Filipp Frank
- Department of Biochemistry, Emory University, 1510 Clifton Rd. NE, Atlanta, GA, 30322, USA.
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA.
| | - Bhushan Nagar
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, Canada, H3F 0B1
| |
Collapse
|
10
|
Identification of AGO3-associated miRNAs and computational prediction of their targets in the green alga Chlamydomonas reinhardtii. Genetics 2015; 200:105-21. [PMID: 25769981 DOI: 10.1534/genetics.115.174797] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/11/2015] [Indexed: 11/18/2022] Open
Abstract
The unicellular green alga Chlamydomonas reinhardtii harbors many types of small RNAs (sRNAs) but little is known about their role(s) in the regulation of endogenous genes and cellular processes. To define functional microRNAs (miRNAs) in Chlamydomonas, we characterized sRNAs associated with an argonaute protein, AGO3, by affinity purification and deep sequencing. Using a stringent set of criteria for canonical miRNA annotation, we identified 39 precursor miRNAs, which produce 45 unique, AGO3-associated miRNA sequences including 13 previously reported miRNAs and 32 novel ones. Potential miRNA targets were identified based on the complementarity of miRNAs with candidate binding sites on transcripts and classified, depending on the extent of complementarity, as being likely to be regulated through cleavage or translational repression. The search for cleavage targets identified 74 transcripts. However, only 6 of them showed an increase in messenger RNA (mRNA) levels in a mutant strain almost devoid of sRNAs. The search for translational repression targets, which used complementarity criteria more stringent than those empirically required for a reduction in target protein levels, identified 488 transcripts. However, unlike observations in metazoans, most predicted translation repression targets did not show appreciable changes in transcript abundance in the absence of sRNAs. Additionally, of three candidate targets examined at the protein level, only one showed a moderate variation in polypeptide amount in the mutant strain. Our results emphasize the difficulty in identifying genuine miRNA targets in Chlamydomonas and suggest that miRNAs, under standard laboratory conditions, might have mainly a modulatory role in endogenous gene regulation in this alga.
Collapse
|
11
|
Kumar SP, Pandya HA, Jasrai YT. A computational model for non-conserved mature miRNAs from the rice genome. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2014; 25:205-20. [PMID: 24601753 DOI: 10.1080/1062936x.2013.875941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Several computational approaches employ the high complementarity of plant miRNAs to target mRNAs as a filter to recognize miRNA. Numerous non-conserved miRNAs are known with more recent evolutionary origin as a result of target gene duplication events. We present here a computational model with knowledge inputs from reported non-conserved mature miRNAs of Oryza sativa (rice). Sequence- and structure-based approaches were used to retrieve miRNA features based on rice Argonaute protein and develop a multiple linear regression (MLR) model (r(2) = 0.996, q(2)cv = 0.989) which scored mature miRNAs as predicted by the MaturePred program. The model was validated by scoring test set (q(2) = 0.990) and computationally predicted mature miRNAs as external test set (q(2)test = 0.895). This strategy successfully enhanced the confidence of retrieving most probable non-conserved miRNAs from the rice genome. We anticipate that this computational model would recognize unknown non-conserved miRNA candidates and nurture the current mechanistic understanding of miRNA sorting to unveil the role of non-conserved miRNAs in gene silencing.
Collapse
Affiliation(s)
- S P Kumar
- a Department of Bioinformatics, Applied Botany Centre (ABC) , Gujarat University , Ahmedabad , India
| | | | | |
Collapse
|
12
|
Guo W, Liew JY, Yuan YA. Structural insights into the arms race between host and virus along RNA silencing pathways inArabidopsis thaliana. Biol Rev Camb Philos Soc 2013; 89:337-55. [DOI: 10.1111/brv.12057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 06/29/2013] [Accepted: 07/30/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Wei Guo
- Department of Biological Sciences and Centre for Bioimaging Sciences; National University of Singapore; Singapore 117543 Singapore
| | - Jia Yee Liew
- Department of Biological Sciences and Centre for Bioimaging Sciences; National University of Singapore; Singapore 117543 Singapore
| | - Y. Adam Yuan
- Department of Biological Sciences and Centre for Bioimaging Sciences; National University of Singapore; Singapore 117543 Singapore
- Mechanobiology Institute; National University of Singapore; Singapore 117411 Singapore
- National University of Singapore (Suzhou) Research Institute; Suzhou Jiangsu 215123 P. R. China
| |
Collapse
|
13
|
Molecular dissection of human Argonaute proteins by DNA shuffling. Nat Struct Mol Biol 2013; 20:818-26. [PMID: 23748378 DOI: 10.1038/nsmb.2607] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 05/13/2013] [Indexed: 01/01/2023]
Abstract
A paramount task in RNA interference research is to decipher the complex biology of cellular effectors, exemplified in humans by four pleiotropic Argonaute proteins (Ago1-Ago4). Here, we exploited DNA family shuffling, a molecular evolution technology, to generate chimeric Ago protein libraries for dissection of intricate phenotypes independently of prior structural knowledge. Through shuffling of human Ago2 and Ago3, we discovered two N-terminal motifs that govern RNA cleavage in concert with the PIWI domain. Structural modeling predicts an impact on protein rigidity and/or RNA-PIWI alignment, suggesting new mechanistic explanations for Ago3's slicing deficiency. Characterization of hybrids including Ago1 and Ago4 solidifies that slicing requires the juxtaposition and combined action of multiple disseminated modules. We also present a Gateway library of codon-optimized chimeras of human Ago1-Ago4 and molecular evolution analysis software as resources for future investigations into RNA interference sequence-structure-function relationships.
Collapse
|
14
|
Rogers K, Chen X. microRNA biogenesis and turnover in plants. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2013; 77:183-94. [PMID: 23439913 DOI: 10.1101/sqb.2013.77.014530] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
microRNAs (miRNAs) are short RNAs that regulate gene expression in eukaryotes. The biogenesis and turnover of miRNAs determine their spatiotemporal accumulation within tissues. miRNA biogenesis is a multistep process that entails transcription, processing, nuclear export, and formation of the miRNA-ARGONAUTE complex. Factors that perform each of these steps have been identified. Generation of mature miRNAs from primary transcripts, i.e., miRNA processing, is a key step in miRNA biogenesis. Our understanding of miRNA processing has expanded beyond the enzyme that performs the reactions, as more and more additional factors that impact the efficiency and accuracy of miRNA processing are uncovered. In contrast to miRNA biogenesis, miRNA turnover is an important but poorly understood process that contributes to the steady-state levels of miRNAs. Enzymes responsible for miRNA degradation have only recently been identified. This review describes the processes of miRNA maturation and degradation in plants.
Collapse
Affiliation(s)
- K Rogers
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | | |
Collapse
|