1
|
Rayani K, Hantz ER, Haji-Ghassemi O, Li AY, Spuches AM, Van Petegem F, Solaro RJ, Lindert S, Tibbits GF. The effect of Mg 2+ on Ca 2+ binding to cardiac troponin C in hypertrophic cardiomyopathy associated TNNC1 variants. FEBS J 2022; 289:7446-7465. [PMID: 35838319 PMCID: PMC9836626 DOI: 10.1111/febs.16578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/14/2022] [Accepted: 07/13/2022] [Indexed: 01/14/2023]
Abstract
Cardiac troponin C (cTnC) is the critical Ca2+ -sensing component of the troponin complex. Binding of Ca2+ to cTnC triggers a cascade of conformational changes within the myofilament that culminate in force production. Hypertrophic cardiomyopathy (HCM)-associated TNNC1 variants generally induce a greater degree and duration of Ca2+ binding, which may underly the hypertrophic phenotype. Regulation of contraction has long been thought to occur exclusively through Ca2+ binding to site II of cTnC. However, work by several groups including ours suggest that Mg2+ , which is several orders of magnitude more abundant in the cell than Ca2+ , may compete for binding to the same cTnC regulatory site. We previously used isothermal titration calorimetry (ITC) to demonstrate that physiological concentrations of Mg2+ may decrease site II Ca2+ -binding in both N-terminal and full-length cTnC. Here, we explore the binding of Ca2+ and Mg2+ to cTnC harbouring a series of TNNC1 variants thought to be causal in HCM. ITC and thermodynamic integration (TI) simulations show that A8V, L29Q and A31S elevate the affinity for both Ca2+ and Mg2+ . Further, L48Q, Q50R and C84Y that are adjacent to the EF hand binding motif of site II have a more significant effect on affinity and the thermodynamics of the binding interaction. To the best of our knowledge, this work is the first to explore the role of Mg2+ in modifying the Ca2+ affinity of cTnC mutations linked to HCM. Our results indicate a physiologically significant role for cellular Mg2+ both at baseline and when elevated on modifying the Ca2+ binding properties of cTnC and the subsequent conformational changes which precede cardiac contraction.
Collapse
Affiliation(s)
- Kaveh Rayani
- Molecular Cardiac Physiology Group, Simon Fraser University, Burnaby, Canada
| | - Eric R Hantz
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, USA
| | - Omid Haji-Ghassemi
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, Canada
| | - Alison Y Li
- Molecular Cardiac Physiology Group, Simon Fraser University, Burnaby, Canada
| | - Anne M Spuches
- Department of Chemistry, 300 Science and Technology, East Carolina University, Greenville, NC, USA
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, Canada
| | - R John Solaro
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, USA
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, USA
| | - Glen F Tibbits
- Molecular Cardiac Physiology Group, Simon Fraser University, Burnaby, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
| |
Collapse
|
2
|
Rayani K, Seffernick J, Li AY, Davis JP, Spuches AM, Van Petegem F, Solaro RJ, Lindert S, Tibbits GF. Binding of calcium and magnesium to human cardiac troponin C. J Biol Chem 2021; 296:100350. [PMID: 33548225 PMCID: PMC7961095 DOI: 10.1016/j.jbc.2021.100350] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 01/03/2023] Open
Abstract
Cardiac muscle thin filaments are composed of actin, tropomyosin, and troponin that change conformation in response to Ca2+ binding, triggering muscle contraction. Human cardiac troponin C (cTnC) is the Ca2+-sensing component of the thin filament. It contains structural sites (III/IV) that bind both Ca2+ and Mg2+ and a regulatory site (II) that has been thought to bind only Ca2+. Binding of Ca2+ at this site initiates a series of conformational changes that culminate in force production. However, the mechanisms that underpin the regulation of binding at site II remain unclear. Here, we have quantified the interaction between site II and Ca2+/Mg2+ through isothermal titration calorimetry and thermodynamic integration simulations. Direct and competitive binding titrations with WT N-terminal cTnC and full-length cTnC indicate that physiologically relevant concentrations of both Ca2+/Mg2+ interacted with the same locus. Moreover, the D67A/D73A N-terminal cTnC construct in which two coordinating residues within site II were removed was found to have significantly reduced affinity for both cations. In addition, 1 mM Mg2+ caused a 1.4-fold lower affinity for Ca2+. These experiments strongly suggest that cytosolic-free Mg2+ occupies a significant population of the available site II. Interaction of Mg2+ with site II of cTnC likely has important functional consequences for the heart both at baseline as well as in diseased states that decrease or increase the availability of Mg2+, such as secondary hyperparathyroidism or ischemia, respectively.
Collapse
Affiliation(s)
- Kaveh Rayani
- Molecular Cardiac Physiology Group, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Justin Seffernick
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio, USA
| | - Alison Yueh Li
- Molecular Cardiac Physiology Group, Simon Fraser University, Burnaby, British Columbia, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathan P Davis
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| | - Anne Marie Spuches
- Department of Chemistry, East Carolina University, 300 Science and Technology Building, Greenville, North Carolina, USA
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - R John Solaro
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio, USA
| | - Glen F Tibbits
- Molecular Cardiac Physiology Group, Simon Fraser University, Burnaby, British Columbia, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada; Cardiac Group, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.
| |
Collapse
|
3
|
Liang HF, Li J, Li XD. Identification and characterization of troponin genes in Locusta migratoria. INSECT MOLECULAR BIOLOGY 2020; 29:391-403. [PMID: 32338426 DOI: 10.1111/imb.12644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/12/2019] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Troponin complex comprises three subunits, namely troponin C (TpnC), troponin I (TpnI) and troponin T (TpnT), and regulates the contraction of striated muscle. We found that the locust Locusta migratoria genome has one TpnT gene (LmTpnT), one TpnI gene (LmTpnI) and three TpnC genes (LmTpnC1, LmTpnC2 and LmTpnC3). Through alternative splicing, LmTpnT and LmTpnI potentially encode two and eight isoforms, respectively. The flight muscle and the jump muscle of L. migratoria express an identical LmTpnT isoform, but different LmTpnC isoforms and LmTpnI isoforms. LmTpnC2 and LmTpnC3 both contain highly conserved residues essential for calcium binding in the EF-hand II and IV, thus belonging two-site isoform. LmTpnC1 contains non-conserved substitutions in the EF-hand II and all highly conserved residues for calcium binding in the EF-hand IV. Mutagenesis and tyrosine fluorescence spectroscopic analysis show that both the EF-hand II and IV of LmTpnC1 can serve as calcium-binding site. Therefore, all three LmTpnC isoforms belong to two-site isoform. This is in contrast to the situation in the insect with asynchronous flight muscle, which expresses both one-site isoform and two-site isoform of TpnC. Those results suggest that the origination of insect asynchronous flight muscle is associated with the emergence of one-site isoform of TpnC.
Collapse
Affiliation(s)
- H-F Liang
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - J Li
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - X-D Li
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Isolation and characterization of three skeletal troponin genes and association with growth-related traits in Exopalaemon carinicauda. Mol Biol Rep 2018; 46:705-718. [DOI: 10.1007/s11033-018-4526-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/23/2018] [Indexed: 12/15/2022]
|
5
|
Seafood allergy: A comprehensive review of fish and shellfish allergens. Mol Immunol 2018; 100:28-57. [PMID: 29858102 DOI: 10.1016/j.molimm.2018.04.008] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 11/23/2022]
Abstract
Seafood refers to several distinct groups of edible aquatic animals including fish, crustacean, and mollusc. The two invertebrate groups of crustacean and mollusc are, for culinary reasons, often combined as shellfish but belong to two very different phyla. The evolutionary and taxonomic diversity of the various consumed seafood species poses a challenge in the identification and characterisation of the major and minor allergens critical for reliable diagnostics and therapeutic treatments. Many allergenic proteins are very different between these groups; however, some pan-allergens, including parvalbumin, tropomyosin and arginine kinase, seem to induce immunological and clinical cross-reactivity. This extensive review details the advances in the bio-molecular characterisation of 20 allergenic proteins within the three distinct seafood groups; fish, crustacean and molluscs. Furthermore, the structural and biochemical properties of the major allergens are described to highlight the immunological and subsequent clinical cross-reactivities. A comprehensive list of purified and recombinant allergens is provided, and the applications of component-resolved diagnostics and current therapeutic developments are discussed.
Collapse
|
6
|
Tanaka H, Ishimaru S, Nagatsuka Y, Ohashi K. Smooth muscle-like Ca 2+-regulation of actin-myosin interaction in adult jellyfish striated muscle. Sci Rep 2018; 8:7776. [PMID: 29773804 PMCID: PMC5958069 DOI: 10.1038/s41598-018-24817-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/10/2018] [Indexed: 12/21/2022] Open
Abstract
Cnidaria is an animal phylum, whose members probably have the most ancestral musculature. We prepared and characterized, for the first time to our knowledge, native actomyosin from the striated myoepithelium of the adult moon jelly Aurelia sp. The actomyosin contained myosin, paramyosin-like protein, Ser/Thr-kinase, actin, and two isoforms of tropomyosin, but not troponin, which is known to activate contraction dependent on intracellular Ca2+ signaling in almost all striated muscles of bilaterians. Notably, the myosin comprised striated muscle-type heavy chain and smooth muscle-type regulatory light chains. In the presence of Ca2+, the Mg-ATPase activity of actomyosin was stimulated and Ser21 of the regulatory light chain was concomitantly phosphorylated by the addition of calmodulin and myosin light chain kinase prepared from chicken smooth muscle. Collectively, these results suggest that, similar to smooth muscle, the contraction of jellyfish striated muscle is regulated by Ca2+-dependent phosphorylation of the myosin light chain.
Collapse
Affiliation(s)
- Hiroyuki Tanaka
- Laboratory of Marine Biotechnology and Microbiology, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Japan.
| | - Shiori Ishimaru
- Laboratory of Marine Biotechnology and Microbiology, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Yasuhiro Nagatsuka
- Laboratory of Marine Biotechnology and Microbiology, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Keisuke Ohashi
- Laboratory of Marine Biotechnology and Microbiology, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| |
Collapse
|