1
|
Thornburg ZR, Bianchi DM, Brier TA, Gilbert BR, Earnest TM, Melo MC, Safronova N, Sáenz JP, Cook AT, Wise KS, Hutchison CA, Smith HO, Glass JI, Luthey-Schulten Z. Fundamental behaviors emerge from simulations of a living minimal cell. Cell 2022; 185:345-360.e28. [PMID: 35063075 PMCID: PMC9985924 DOI: 10.1016/j.cell.2021.12.025] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/01/2021] [Accepted: 12/17/2021] [Indexed: 01/18/2023]
Abstract
We present a whole-cell fully dynamical kinetic model (WCM) of JCVI-syn3A, a minimal cell with a reduced genome of 493 genes that has retained few regulatory proteins or small RNAs. Cryo-electron tomograms provide the cell geometry and ribosome distributions. Time-dependent behaviors of concentrations and reaction fluxes from stochastic-deterministic simulations over a cell cycle reveal how the cell balances demands of its metabolism, genetic information processes, and growth, and offer insight into the principles of life for this minimal cell. The energy economy of each process including active transport of amino acids, nucleosides, and ions is analyzed. WCM reveals how emergent imbalances lead to slowdowns in the rates of transcription and translation. Integration of experimental data is critical in building a kinetic model from which emerges a genome-wide distribution of mRNA half-lives, multiple DNA replication events that can be compared to qPCR results, and the experimentally observed doubling behavior.
Collapse
Affiliation(s)
- Zane R. Thornburg
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - David M. Bianchi
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Troy A. Brier
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Benjamin R. Gilbert
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tyler M. Earnest
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Marcelo C.R. Melo
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nataliya Safronova
- Technische Universität Dresden, B CUBE Center for Molecular Bioengineering, 01307 Dresden, Germany
| | - James P. Sáenz
- Technische Universität Dresden, B CUBE Center for Molecular Bioengineering, 01307 Dresden, Germany
| | | | - Kim S. Wise
- J. Craig Venter Institute, La Jolla, CA 92037, USA
| | | | | | | | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; NSF Center for the Physics of Living Cells, Urbana, IL 61801, USA; NIH Center for Macromolecular Modeling and Bioinformatics, Urbana, IL 61801, USA.
| |
Collapse
|
2
|
Wills PR, Carter CW. Impedance Matching and the Choice Between Alternative Pathways for the Origin of Genetic Coding. Int J Mol Sci 2020; 21:E7392. [PMID: 33036401 PMCID: PMC7582391 DOI: 10.3390/ijms21197392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 01/07/2023] Open
Abstract
We recently observed that errors in gene replication and translation could be seen qualitatively to behave analogously to the impedances in acoustical and electronic energy transducing systems. We develop here quantitative relationships necessary to confirm that analogy and to place it into the context of the minimization of dissipative losses of both chemical free energy and information. The formal developments include expressions for the information transferred from a template to a new polymer, Iσ; an impedance parameter, Z; and an effective alphabet size, neff; all of which have non-linear dependences on the fidelity parameter, q, and the alphabet size, n. Surfaces of these functions over the {n,q} plane reveal key new insights into the origin of coding. Our conclusion is that the emergence and evolutionary refinement of information transfer in biology follow principles previously identified to govern physical energy flows, strengthening analogies (i) between chemical self-organization and biological natural selection, and (ii) between the course of evolutionary trajectories and the most probable pathways for time-dependent transitions in physics. Matching the informational impedance of translation to the four-letter alphabet of genes uncovers a pivotal role for the redundancy of triplet codons in preserving as much intrinsic genetic information as possible, especially in early stages when the coding alphabet size was small.
Collapse
Affiliation(s)
- Peter R. Wills
- Department of Physics and Te Ao Marama Centre for Fundamental Inquiry, University of Auckland, PB 92019, Auckland 1142, New Zealand
| | - Charles W. Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, USA
| |
Collapse
|
3
|
Liu Y, Xu WZ, Charpentier PA. Reactivity Ratios of MMA and N, N-Dimethyl- N-{2-[(2-methylprop-2-enoyl)oxy]ethyl}undecane-1-aminium Bromide in Thermal and UV Initiation Copolymerization. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yixian Liu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - William Z. Xu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Paul A. Charpentier
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| |
Collapse
|
4
|
Thornburg ZR, Melo MCR, Bianchi D, Brier TA, Crotty C, Breuer M, Smith HO, Hutchison CA, Glass JI, Luthey-Schulten Z. Kinetic Modeling of the Genetic Information Processes in a Minimal Cell. Front Mol Biosci 2019; 6:130. [PMID: 31850364 PMCID: PMC6892953 DOI: 10.3389/fmolb.2019.00130] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/07/2019] [Indexed: 11/13/2022] Open
Abstract
JCVI-syn3A is a minimal bacterial cell with a 543 kbp genome consisting of 493 genes. For this slow growing minimal cell with a 105 min doubling time, we recently established the essential metabolism including the transport of required nutrients from the environment, the gene map, and genome-wide proteomics. Of the 452 protein-coding genes, 143 are assigned to metabolism and 212 are assigned to genetic information processing. Using genome-wide proteomics and experimentally measured kinetic parameters from the literature we present here kinetic models for the genetic information processes of DNA replication, replication initiation, transcription, and translation which are solved stochastically and averaged over 1,000 replicates/cells. The model predicts the time required for replication initiation and DNA replication to be 8 and 50 min on average respectively and the number of proteins and ribosomal components to be approximately doubled in a cell cycle. The model of genetic information processing when combined with the essential metabolic and cell growth networks will provide a powerful platform for studying the fundamental principles of life.
Collapse
Affiliation(s)
- Zane R Thornburg
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Marcelo C R Melo
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Machine Biology Group, Department of Psychiatry, Microbiology, and Bioengineering, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - David Bianchi
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Troy A Brier
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Cole Crotty
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Marian Breuer
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, Netherlands
| | - Hamilton O Smith
- Synthetic Biology and Bioenergy Group, J. Craig Venter Institute, La Jolla, CA, United States
| | - Clyde A Hutchison
- Synthetic Biology and Bioenergy Group, J. Craig Venter Institute, La Jolla, CA, United States
| | - John I Glass
- Synthetic Biology and Bioenergy Group, J. Craig Venter Institute, La Jolla, CA, United States
| | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
5
|
Zhao C, Zheng H, Feng L, Wang Y, Liu Y, Liu B, Djibrine BZ. Improvement of Sludge Dewaterability by Ultrasound-Initiated Cationic Polyacrylamide with Microblock Structure: The Role of Surface-Active Monomers. MATERIALS 2017; 10:ma10030282. [PMID: 28772642 PMCID: PMC5503336 DOI: 10.3390/ma10030282] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 11/25/2022]
Abstract
Cationic polyacrylamides have been employed widely to improve sludge dewatering performance, but the cationic units are randomly distributed in the molecular chain, which restricts the further enhancement of dewaterability. Common template technology to prepare block copolymers requiring a huge number of templates reduces the polymer purity and molecular weight. Here, we adopted the surface-active monomer benzyl dimethyl 2-(methacryloyloxy)ethyl ammonium chloride (BDMDAC) to synthesize cationic microblocky polyacrylamide initiated by ultrasound. The reactivity ratio of monomers suggested that novel cationic monomer BDMDAC had higher homopolymerization ability, and was thus more prone to forming a microblock structure. The statistical analysis of sequence-length distribution indicated that the number and length of cationic segments increased in the PAB molecules. In addition, the characteristic results of Fourier transform infrared (FTIR), proton nuclear magnetic resonance (1H NMR), and thermogravimetric analysis (TGA) provided evidence for the synthesis of copolymer with cationic microblocks. Finally, the results of dewatering tests demonstrated that sludge dewaterability was greatly improved by adding the synthesized novel flocculants, and the sludge-specific resistance to filtration, filter cake moisture content and residual turbidity all reached a minimum (68.7%, 5.4 × 1012 m·kg−1, and 2.6 NTU, respectively) at 40 mg·L−1. The PAB flocs were large, compact, difficult to break, and easy to regrow. Furthermore, PAB was more effective in the removal of protein from soluble extracellular polymeric substances (SEPSs). In summary, this study provides a novel solution to synthesize cationic microblock polyacrylamide for improving sludge dewatering.
Collapse
Affiliation(s)
- Chuanliang Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, China.
- National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China.
| | - Huaili Zheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, China.
- National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China.
| | - Li Feng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, China.
- National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China.
| | - Yili Wang
- College of Environmental Science and Engineering, Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China.
| | - Yongzhi Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, China.
- National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China.
| | - Bingzhi Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, China.
- National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China.
| | - Badradine Zakaria Djibrine
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, China.
- National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
6
|
Noor E, Flamholz A, Bar-Even A, Davidi D, Milo R, Liebermeister W. The Protein Cost of Metabolic Fluxes: Prediction from Enzymatic Rate Laws and Cost Minimization. PLoS Comput Biol 2016; 12:e1005167. [PMID: 27812109 PMCID: PMC5094713 DOI: 10.1371/journal.pcbi.1005167] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/27/2016] [Indexed: 02/03/2023] Open
Abstract
Bacterial growth depends crucially on metabolic fluxes, which are limited by the cell’s capacity to maintain metabolic enzymes. The necessary enzyme amount per unit flux is a major determinant of metabolic strategies both in evolution and bioengineering. It depends on enzyme parameters (such as kcat and KM constants), but also on metabolite concentrations. Moreover, similar amounts of different enzymes might incur different costs for the cell, depending on enzyme-specific properties such as protein size and half-life. Here, we developed enzyme cost minimization (ECM), a scalable method for computing enzyme amounts that support a given metabolic flux at a minimal protein cost. The complex interplay of enzyme and metabolite concentrations, e.g. through thermodynamic driving forces and enzyme saturation, would make it hard to solve this optimization problem directly. By treating enzyme cost as a function of metabolite levels, we formulated ECM as a numerically tractable, convex optimization problem. Its tiered approach allows for building models at different levels of detail, depending on the amount of available data. Validating our method with measured metabolite and protein levels in E. coli central metabolism, we found typical prediction fold errors of 4.1 and 2.6, respectively, for the two kinds of data. This result from the cost-optimized metabolic state is significantly better than randomly sampled metabolite profiles, supporting the hypothesis that enzyme cost is important for the fitness of E. coli. ECM can be used to predict enzyme levels and protein cost in natural and engineered pathways, and could be a valuable computational tool to assist metabolic engineering projects. Furthermore, it establishes a direct connection between protein cost and thermodynamics, and provides a physically plausible and computationally tractable way to include enzyme kinetics into constraint-based metabolic models, where kinetics have usually been ignored or oversimplified. “Enzyme cost”, the amount of protein needed for a given metabolic flux, is crucial for the metabolic choices cells have to make. However, due to the technical limitations of linear optimization methods, this cost has traditionally been ignored by constraint-based metabolic models such as Flux Balance Analysis. On the other hand, more detailed kinetic models which use ordinary differential equations to simulate fluxes for different choices of enzyme allocation, are computationally demanding and not scalable enough. In this work, we developed a method which utilizes the full kinetic model to predict steady-state enzyme costs, using a scalable and robust algorithm based on convex optimization. We show that the minimization of enzyme cost is a meaningful optimality principle by comparing our predictions to measured enzyme and metabolite levels in exponentially growing E. coli. This method could be used to quantify the enzyme cost of many other pathways and explain why evolution has selected some low-yield metabolic strategies, including aerobic fermentation in yeast and cancer cells. Furthermore, future metabolic engineering projects could benefit from our method by choosing pathways that reduce the total amount of enzyme required for the synthesis of a value-added product.
Collapse
Affiliation(s)
- Elad Noor
- Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | - Avi Flamholz
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Arren Bar-Even
- Max Planck Institute for Molecular Plant Physiology, Golm, Germany
| | - Dan Davidi
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Ron Milo
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Wolfram Liebermeister
- Institute of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
7
|
Zhang Z, Zheng H, Huang F, Li X, He S, Zhao C. Template Polymerization of a Novel Cationic Polyacrylamide: Sequence Distribution, Characterization, and Flocculation Performance. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b01894] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhengan Zhang
- College
of Resources and Environmental Engineering, Yibin University, Yibin 644000, China
| | | | - Fei Huang
- College
of Resources and Environmental Engineering, Yibin University, Yibin 644000, China
- Key
Laboratory of the Yangtze
River Water Environment, State Ministry of Education, Yibin Research Base, Yibin 400045, China
| | | | - Shengying He
- College
of Resources and Environmental Engineering, Yibin University, Yibin 644000, China
- Key
Laboratory of the Yangtze
River Water Environment, State Ministry of Education, Yibin Research Base, Yibin 400045, China
| | | |
Collapse
|