1
|
Morizumi T, Kim K, Li H, Nag P, Dogon T, Sineshchekov OA, Wang Y, Brown LS, Hwang S, Sun H, Bondar AN, Schapiro I, Govorunova EG, Spudich JL, Ernst OP. Structural insights into light-gating of potassium-selective channelrhodopsin. Nat Commun 2025; 16:1283. [PMID: 39900567 PMCID: PMC11790859 DOI: 10.1038/s41467-025-56491-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 01/17/2025] [Indexed: 02/05/2025] Open
Abstract
Structural information on channelrhodopsins' mechanism of light-gated ion conductance is scarce, limiting its engineering as optogenetic tools. Here, we use single-particle cryo-electron microscopy of peptidisc-incorporated protein samples to determine the structures of the slow-cycling mutant C110A of kalium channelrhodopsin 1 from Hyphochytrium catenoides (HcKCR1) in the dark and upon laser flash excitation. Upon photoisomerization of the retinal chromophore, the retinylidene Schiff base NH-bond reorients from the extracellular to the cytoplasmic side. This switch triggers a series of side chain reorientations and merges intramolecular cavities into a transmembrane K+ conduction pathway. Molecular dynamics simulations confirm K+ flux through the illuminated state but not through the resting state. The overall displacement between the closed and the open structure is small, involving mainly side chain rearrangements. Asp105 and Asp116 play a key role in K+ conductance. Structure-guided mutagenesis and patch-clamp analysis reveal the roles of the pathway-forming residues in channel gating and selectivity.
Collapse
Affiliation(s)
- Takefumi Morizumi
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Kyumhyuk Kim
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Hai Li
- Department of Biochemistry & Molecular Biology, Center for Membrane Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Probal Nag
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Physics, Technical University Dortmund, Dortmund, Germany
| | - Tal Dogon
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Oleg A Sineshchekov
- Department of Biochemistry & Molecular Biology, Center for Membrane Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Yumei Wang
- Department of Biochemistry & Molecular Biology, Center for Membrane Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada
| | - Songhwan Hwang
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Han Sun
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Institute of Chemistry, Technical University of Berlin, Berlin, Germany
| | - Ana-Nicoleta Bondar
- Faculty of Physics, University of Bucharest, Măgurele, Romania
- Institute for Computational Biomedicine (INM-9), Forschungszentrum Jülich, Jülich, Germany
| | - Igor Schapiro
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Physics, Technical University Dortmund, Dortmund, Germany
| | - Elena G Govorunova
- Department of Biochemistry & Molecular Biology, Center for Membrane Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - John L Spudich
- Department of Biochemistry & Molecular Biology, Center for Membrane Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA.
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Prignano LA, Stevens MJ, Vanegas JM, Rempe SB, Dempski RE. Metadynamics simulations reveal mechanisms of Na+ and Ca2+ transport in two open states of the channelrhodopsin chimera, C1C2. PLoS One 2024; 19:e0309553. [PMID: 39241014 PMCID: PMC11379304 DOI: 10.1371/journal.pone.0309553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/30/2024] [Indexed: 09/08/2024] Open
Abstract
Cation conducting channelrhodopsins (ChRs) are a popular tool used in optogenetics to control the activity of excitable cells and tissues using light. ChRs with altered ion selectivity are in high demand for use in different cell types and for other specialized applications. However, a detailed mechanism of ion permeation in ChRs is not fully resolved. Here, we use complementary experimental and computational methods to uncover the mechanisms of cation transport and valence selectivity through the channelrhodopsin chimera, C1C2, in the high- and low-conducting open states. Electrophysiology measurements identified a single-residue substitution within the central gate, N297D, that increased Ca2+ permeability vs. Na+ by nearly two-fold at peak current, but less so at stationary current. We then developed molecular models of dimeric wild-type C1C2 and N297D mutant channels in both open states and calculated the PMF profiles for Na+ and Ca2+ permeation through each protein using well-tempered/multiple-walker metadynamics. Results of these studies agree well with experimental measurements and demonstrate that the pore entrance on the extracellular side differs from original predictions and is actually located in a gap between helices I and II. Cation transport occurs via a relay mechanism where cations are passed between flexible carboxylate sidechains lining the full length of the pore by sidechain swinging, like a monkey swinging on vines. In the mutant channel, residue D297 enhances Ca2+ permeability by mediating the handoff between the central and cytosolic binding sites via direct coordination and sidechain swinging. We also found that altered cation binding affinities at both the extracellular entrance and central binding sites underly the distinct transport properties of the low-conducting open state. This work significantly advances our understanding of ion selectivity and permeation in cation channelrhodopsins and provides the insights needed for successful development of new ion-selective optogenetic tools.
Collapse
Affiliation(s)
- Lindsey A Prignano
- Department of Chemistry & Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Mark J Stevens
- Sandia National Laboratories, Albuquerque, New Mexico, United States of America
| | - Juan M Vanegas
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, Oregon, United States of America
| | - Susan B Rempe
- Sandia National Laboratories, Albuquerque, New Mexico, United States of America
| | - Robert E Dempski
- Department of Chemistry & Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| |
Collapse
|
3
|
Bestsennaia E, Maslov I, Balandin T, Alekseev A, Yudenko A, Abu Shamseye A, Zabelskii D, Baumann A, Catapano C, Karathanasis C, Gordeliy V, Heilemann M, Gensch T, Borshchevskiy V. Channelrhodopsin-2 Oligomerization in Cell Membrane Revealed by Photo-Activated Localization Microscopy. Angew Chem Int Ed Engl 2024; 63:e202307555. [PMID: 38226794 DOI: 10.1002/anie.202307555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Microbial rhodopsins are retinal membrane proteins that found a broad application in optogenetics. The oligomeric state of rhodopsins is important for their functionality and stability. Of particular interest is the oligomeric state in the cellular native membrane environment. Fluorescence microscopy provides powerful tools to determine the oligomeric state of membrane proteins directly in cells. Among these methods is quantitative photoactivated localization microscopy (qPALM) allowing the investigation of molecular organization at the level of single protein clusters. Here, we apply qPALM to investigate the oligomeric state of the first and most used optogenetic tool Channelrhodopsin-2 (ChR2) in the plasma membrane of eukaryotic cells. ChR2 appeared predominantly as a dimer in the cell membrane and did not form higher oligomers. The disulfide bonds between Cys34 and Cys36 of adjacent ChR2 monomers were not required for dimer formation and mutations disrupting these bonds resulted in only partial monomerization of ChR2. The monomeric fraction increased when the total concentration of mutant ChR2 in the membrane was low. The dissociation constant was estimated for this partially monomerized mutant ChR2 as 2.2±0.9 proteins/μm2 . Our findings are important for understanding the mechanistic basis of ChR2 activity as well as for improving existing and developing future optogenetic tools.
Collapse
Affiliation(s)
- Ekaterina Bestsennaia
- Institute of Biological Information Processing 1, IBI-1 (Molecular and Cellular Physiology), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Ivan Maslov
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and the Biomedical Research Institute, Hasselt University, B3590, Diepenbeek, Belgium
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, 3001, Leuven, Belgium
| | - Taras Balandin
- Institute of Biological Information Processing 7, IBI-7 (Structural Biochemistry), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Alexey Alekseev
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Anna Yudenko
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Assalla Abu Shamseye
- Institute of Biological Information Processing 1, IBI-1 (Molecular and Cellular Physiology), Forschungszentrum Jülich, 52428, Jülich, Germany
- Institute of Biological Information Processing 7, IBI-7 (Structural Biochemistry), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Dmitrii Zabelskii
- Institute of Biological Information Processing 7, IBI-7 (Structural Biochemistry), Forschungszentrum Jülich, 52428, Jülich, Germany
- European XFEL, 22869, Schenefeld, Germany
| | - Arnd Baumann
- Institute of Biological Information Processing 1, IBI-1 (Molecular and Cellular Physiology), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Claudia Catapano
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Christos Karathanasis
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Valentin Gordeliy
- Institute of Biological Information Processing 7, IBI-7 (Structural Biochemistry), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Thomas Gensch
- Institute of Biological Information Processing 1, IBI-1 (Molecular and Cellular Physiology), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Valentin Borshchevskiy
- Institute of Biological Information Processing 7, IBI-7 (Structural Biochemistry), Forschungszentrum Jülich, 52428, Jülich, Germany
| |
Collapse
|
4
|
Bühl E, Resler T, Lam R, Asido M, Bamberg E, Schlesinger R, Bamann C, Heberle J, Wachtveitl J. Assessing the Role of R120 in the Gating of CrChR2 by Time-Resolved Spectroscopy from Femtoseconds to Seconds. J Am Chem Soc 2023; 145:21832-21840. [PMID: 37773976 DOI: 10.1021/jacs.3c05399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
The light-gated ion channel channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2) is the most frequently used optogenetic tool in neurosciences. However, the precise molecular mechanism of the channel opening and the correlation among retinal isomerization, the photocycle, and the channel activity of the protein are missing. Here, we present electrophysiological and spectroscopic investigations on the R120H variant of CrChR2. R120 is a key residue in an extended network linking the retinal chromophore to several gates of the ion channel. We show that despite the deficient channel activity, the photocycle of the variant is intact. In a comparative study for R120H and the wild type, we resolve the vibrational changes in the spectral range of the retinal and amide I bands across the time range from femtoseconds to seconds. Analysis of the amide I mode reveals a significant impairment of the ultrafast protein response after retinal excitation. We conclude that channel opening in CrChR2 is prepared immediately after retinal excitation. Additionally, chromophore isomerization is essential for both photocycle and channel activities, although both processes can occur independently.
Collapse
Affiliation(s)
- Elena Bühl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue Strasse 7, 60438 Frankfurt, Germany
| | - Tom Resler
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Rebecca Lam
- Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany
| | - Marvin Asido
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue Strasse 7, 60438 Frankfurt, Germany
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany
| | - Ramona Schlesinger
- Department of Physics, Genetic Biophysics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Christian Bamann
- Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany
| | - Joachim Heberle
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue Strasse 7, 60438 Frankfurt, Germany
| |
Collapse
|
5
|
Maity S, Price BD, Wilson CB, Mukherjee A, Starck M, Parker D, Wilson MZ, Lovett JE, Han S, Sherwin MS. Triggered Functional Dynamics of AsLOV2 by Time-Resolved Electron Paramagnetic Resonance at High Magnetic Fields. Angew Chem Int Ed Engl 2023; 62:e202212832. [PMID: 36638360 DOI: 10.1002/anie.202212832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
We present time-resolved Gd-Gd electron paramagnetic resonance (TiGGER) at 240 GHz for tracking inter-residue distances during a protein's mechanical cycle in the solution state. TiGGER makes use of Gd-sTPATCN spin labels, whose favorable qualities include a spin-7/2 EPR-active center, short linker, narrow intrinsic linewidth, and virtually no anisotropy at high fields (8.6 T) when compared to nitroxide spin labels. Using TiGGER, we determined that upon light activation, the C-terminus and N-terminus of AsLOV2 separate in less than 1 s and relax back to equilibrium with a time constant of approximately 60 s. TiGGER revealed that the light-activated long-range mechanical motion is slowed in the Q513A variant of AsLOV2 and is correlated to the similarly slowed relaxation of the optically excited chromophore as described in recent literature. TiGGER has the potential to valuably complement existing methods for the study of triggered functional dynamics in proteins.
Collapse
Affiliation(s)
- Shiny Maity
- Dept. of Chemistry and Biochemistry, Univ. of California, Santa Barbara, CA 93106, USA
| | - Brad D Price
- Dept. of Physics, Univ. of California, Santa Barbara, CA 93106, USA
| | - C Blake Wilson
- Dept. of Physics, Univ. of California, Santa Barbara, CA 93106, USA.,Laboratory of Chemical Physics, Nat. Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892-0520, USA
| | - Arnab Mukherjee
- Dept. of Chemical Engineering, Univ. of California, Santa Barbara, CA 93106, USA
| | | | - David Parker
- Dept. of Chemistry, Univ. of Durham, Durham, DH1 3LE, UK
| | - Maxwell Z Wilson
- Dept. of Molecular, Cellular, and Developmental Biology, Univ. of California, Santa Barbara, CA 93106, USA
| | - Janet E Lovett
- School of Physics and Astronomy and the Biomedical Sciences Research Complex, Univ. of St. Andrews, St. Andrews, KY16 9SS, UK
| | - Songi Han
- Dept. of Chemistry and Biochemistry, Univ. of California, Santa Barbara, CA 93106, USA
| | - Mark S Sherwin
- Dept. of Physics, Univ. of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
6
|
Govorunova EG, Sineshchekov OA, Brown LS, Bondar AN, Spudich JL. Structural Foundations of Potassium Selectivity in Channelrhodopsins. mBio 2022; 13:e0303922. [PMID: 36413022 PMCID: PMC9765531 DOI: 10.1128/mbio.03039-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
Abstract
Potassium-selective channelrhodopsins (KCRs) are light-gated K+ channels recently found in the stramenopile protist Hyphochytrium catenoides. When expressed in neurons, KCRs enable high-precision optical inhibition of spiking (optogenetic silencing). KCRs are capable of discriminating K+ from Na+ without the conventional K+ selectivity filter found in classical K+ channels. The genome of H. catenoides also encodes a third paralog that is more permeable for Na+ than for K+. To identify structural motifs responsible for the unusual K+ selectivity of KCRs, we systematically analyzed a series of chimeras and mutants of this protein. We found that mutations of three critical residues in the paralog convert its Na+-selective channel into a K+-selective one. Our characterization of homologous proteins from other protists (Colponema vietnamica, Cafeteria burkhardae, and Chromera velia) and metagenomic samples confirmed the importance of these residues for K+ selectivity. We also show that Trp102 and Asp116, conserved in all three H. catenoides paralogs, are necessary, although not sufficient, for K+ selectivity. Our results provide the foundation for further engineering of KCRs for optogenetic needs. IMPORTANCE Recently discovered microbial light-gated ion channels (channelrhodopsins) with a higher permeability for K+ than for Na+ (potassium-selective channelrhodopsins [kalium channelrhodopsins, or KCRs]) demonstrate an alternative K+ selectivity mechanism, unrelated to well-characterized "selectivity filters" of voltage- and ligand-gated K+ channels. KCRs can be used for optogenetic inhibition of neuronal firing and potentially for the development of gene therapies to treat neurological and cardiovascular disorders. In this study, we identified structural motifs that determine the K+ selectivity of KCRs that provide the foundation for their further improvement as optogenetic tools.
Collapse
Affiliation(s)
- Elena G. Govorunova
- Center for Membrane Biology, Department of Biochemistry & Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| | - Oleg A. Sineshchekov
- Center for Membrane Biology, Department of Biochemistry & Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| | - Leonid S. Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada
| | - Ana-Nicoleta Bondar
- Faculty of Physics, University of Bucharest, Bucharest, Romania
- Institute of Computational Biomedicine, Forschungszentrum Jülich, Jülich, Germany
| | - John L. Spudich
- Center for Membrane Biology, Department of Biochemistry & Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
7
|
Ataka K, Baumann A, Chen JL, Redlich A, Heberle J, Schlesinger R. Monitoring the Progression of Cell-Free Expression of Microbial Rhodopsins by Surface Enhanced IR Spectroscopy: Resolving a Branch Point for Successful/Unsuccessful Folding. Front Mol Biosci 2022; 9:929285. [PMID: 35911953 PMCID: PMC9329800 DOI: 10.3389/fmolb.2022.929285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
The translocon-unassisted folding process of transmembrane domains of the microbial rhodopsins sensory rhodopsin I (HsSRI) and II (HsSRII), channelrhodopsin II (CrChR2), and bacteriorhodopsin (HsBR) during cell-free expression has been investigated by Surface-Enhanced Infrared Absorption Spectroscopy (SEIRAS). Up to now, only a limited number of rhodopsins have been expressed and folded into the functional holoprotein in cell free expression systems, while other microbial rhodopsins fail to properly bind the chromophore all-trans retinal as indicated by the missing visible absorption. SEIRAS experiments suggest that all investigated rhodopsins lead to the production of polypeptides, which are co-translationally inserted into a solid-supported lipid bilayer during the first hour after the in-vitro expression is initiated. Secondary structure analysis of the IR spectra revealed that the polypeptides form a comparable amount of α-helical structure during the initial phase of insertion into the lipid bilayer. As the process progressed (>1 h), only HsBR exhibited a further increase and association of α-helices to form a compact tertiary structure, while the helical contents of the other rhodopsins stagnated. This result suggests that the molecular reason for the unsuccessful cell-free expression of the two sensory rhodopsins and of CrChR2 is not due to the translation process, but rather to the folding process during the post-translational period. Taking our previous observation into account that HsBR fails to form a tertiary structure in the absence of its retinal, we infer that the chromophore retinal is an integral component of the compaction of the polypeptide into its tertiary structure and the formation of a fully functional protein.
Collapse
Affiliation(s)
- Kenichi Ataka
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
- *Correspondence: Kenichi Ataka, ; Ramona Schlesinger,
| | - Axel Baumann
- Department of Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Jheng-Liang Chen
- Department of Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Aoife Redlich
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Joachim Heberle
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Ramona Schlesinger
- Department of Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
- *Correspondence: Kenichi Ataka, ; Ramona Schlesinger,
| |
Collapse
|
8
|
Structure-Function Relationship of Channelrhodopsins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:35-53. [PMID: 33398806 DOI: 10.1007/978-981-15-8763-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Ion-translocating rhodopsins, especially channelrhodopsins (ChRs), have attracted broad attention as a powerful tool to modulate the membrane potential of cells with light (optogenetics). Because of recent biophysical, spectroscopic, and computational studies, including the structural determination of cation and anion ChRs, our understanding of the molecular mechanism underlying light-gated ion conduction has been greatly advanced. In this chapter, I first describe the background of rhodopsin family proteins including ChR, and how the optogenetics technology has been established from the discovery of first ChR in 2002. I later introduce the recent findings of the structure-function relationship of ChR by comparing the crystal structures of cation and anion ChRs. I further discuss the future goal in the fields of ChR research and optogenetic tool development.
Collapse
|
9
|
Walter M, Schlesinger R. Nanodisc Reconstitution of Channelrhodopsins Heterologously Expressed in Pichia pastoris for Biophysical Investigations. Methods Mol Biol 2021; 2191:29-48. [PMID: 32865737 DOI: 10.1007/978-1-0716-0830-2_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
For a successful characterization of channelrhodopsins with biophysical methods like FTIR, Raman, EPR and NMR spectroscopy and X-ray crystallography, large amounts of purified protein are requested. For proteins of eukaryotic origin, which are poorly expressing in bacterial systems or not at all, the yeast Pichia pastoris represents a promising alternative for overexpression. Here we describe the methods for cloning, overexpression and mutagenesis as well as the purification procedures for channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2), channelrhodopsin-1 from Chlamydomonas augustae (CaChR1) and the scaffold protein MSP1D1 for reconstitution of the membrane proteins into nanodiscs. Finally, protocols are provided to study CaChR1 by FTIR difference spectroscopy and by time-resolved UV/Vis spectroscopy.
Collapse
Affiliation(s)
- Maria Walter
- Experimental Physics: Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Ramona Schlesinger
- Experimental Physics: Genetic Biophysics, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
10
|
Kozlova MI, Bushmakin IM, Belyaeva JD, Shalaeva DN, Dibrova DV, Cherepanov DA, Mulkidjanian AY. Expansion of the "Sodium World" through Evolutionary Time and Taxonomic Space. BIOCHEMISTRY. BIOKHIMIIA 2020; 85:1518-1542. [PMID: 33705291 DOI: 10.1134/s0006297920120056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In 1986, Vladimir Skulachev and his colleagues coined the term "Sodium World" for the group of diverse organisms with sodium (Na)-based bioenergetics. Albeit only few such organisms had been discovered by that time, the authors insightfully noted that "the great taxonomic variety of organisms employing the Na-cycle points to the ubiquitous distribution of this novel type of membrane-linked energy transductions". Here we used tools of bioinformatics to follow expansion of the Sodium World through the evolutionary time and taxonomic space. We searched for those membrane protein families in prokaryotic genomes that correlate with the use of the Na-potential for ATP synthesis by different organisms. In addition to the known Na-translocators, we found a plethora of uncharacterized protein families; most of them show no homology with studied proteins. In addition, we traced the presence of Na-based energetics in many novel archaeal and bacterial clades, which were recently identified by metagenomic techniques. The data obtained support the view that the Na-based energetics preceded the proton-dependent energetics in evolution and prevailed during the first two billion years of the Earth history before the oxygenation of atmosphere. Hence, the full capacity of Na-based energetics in prokaryotes remains largely unexplored. The Sodium World expanded owing to the acquisition of new functions by Na-translocating systems. Specifically, most classes of G-protein-coupled receptors (GPCRs), which are targeted by almost half of the known drugs, appear to evolve from the Na-translocating microbial rhodopsins. Thereby the GPCRs of class A, with 700 representatives in human genome, retained the Na-binding site in the center of the transmembrane heptahelical bundle together with the capacity of Na-translocation. Mathematical modeling showed that the class A GPCRs could use the energy of transmembrane Na-potential for increasing both their sensitivity and selectivity. Thus, GPCRs, the largest protein family coded by human genome, stem from the Sodium World, which encourages exploration of other Na-dependent enzymes of eukaryotes.
Collapse
Affiliation(s)
- M I Kozlova
- School of Physics, Osnabrueck University, Osnabrueck, 49069, Germany. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - I M Bushmakin
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - J D Belyaeva
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - D N Shalaeva
- School of Physics, Osnabrueck University, Osnabrueck, 49069, Germany.
| | - D V Dibrova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - D A Cherepanov
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - A Y Mulkidjanian
- School of Physics, Osnabrueck University, Osnabrueck, 49069, Germany. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.,School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
11
|
Atomistic Insight into the Role of Threonine 127 in the Functional Mechanism of Channelrhodopsin-2. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9224905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Channelrhodopsins (ChRs) belong to the unique class of light-gated ion channels. The structure of channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2) has been resolved, but the mechanistic link between light-induced isomerization of the chromophore retinal and channel gating remains elusive. Replacements of residues C128 and D156 (DC gate) resulted in drastic effects in channel closure. T127 is localized close to the retinal Schiff base and links the DC gate to the Schiff base. The homologous residue in bacteriorhodopsin (T89) has been shown to be crucial for the visible absorption maximum and dark–light adaptation, suggesting an interaction with the retinylidene chromophore, but the replacement had little effect on photocycle kinetics and proton pumping activity. Here, we show that the T127A and T127S variants of CrChR2 leave the visible absorption maximum unaffected. We inferred from hybrid quantum mechanics/molecular mechanics (QM/MM) calculations and resonance Raman spectroscopy that the hydroxylic side chain of T127 is hydrogen-bonded to E123 and the latter is hydrogen-bonded to the retinal Schiff base. The C=N–H vibration of the Schiff base in the T127A variant was 1674 cm−1, the highest among all rhodopsins reported to date. We also found heterogeneity in the Schiff base ground state vibrational properties due to different rotamer conformations of E123. The photoreaction of T127A is characterized by a long-lived P2380 state during which the Schiff base is deprotonated. The conservative replacement of T127S hardly affected the photocycle kinetics. Thus, we inferred that the hydroxyl group at position 127 is part of the proton transfer pathway from D156 to the Schiff base during rise of the P3530 intermediate. This finding provides molecular reasons for the evolutionary conservation of the chemically homologous residues threonine, serine, and cysteine at this position in all channelrhodopsins known so far.
Collapse
|
12
|
Krause BS, Kaufmann JCD, Kuhne J, Vierock J, Huber T, Sakmar TP, Gerwert K, Bartl FJ, Hegemann P. Tracking Pore Hydration in Channelrhodopsin by Site-Directed Infrared-Active Azido Probes. Biochemistry 2019; 58:1275-1286. [DOI: 10.1021/acs.biochem.8b01211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Benjamin S. Krause
- Institut für Biologie, Experimentelle Biophysik, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | - Joel C. D. Kaufmann
- Institut für Biologie, Biophysikalische Chemie, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
- Institut für medizinische Physik und Biophysik, Charité-Universitätsmedizin, Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jens Kuhne
- Lehrstuhl für Biophysik, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Johannes Vierock
- Institut für Biologie, Experimentelle Biophysik, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | - Thomas Huber
- Laboratory of Chemical Biology & Signal Transduction, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Thomas P. Sakmar
- Laboratory of Chemical Biology & Signal Transduction, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
- Department of Neurobiology, Care Sciences and Society, Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Alfred Nobels Allé 23, 141 57 Huddinge, Sweden
| | - Klaus Gerwert
- Lehrstuhl für Biophysik, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Franz J. Bartl
- Institut für Biologie, Biophysikalische Chemie, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
- Institut für medizinische Physik und Biophysik, Charité-Universitätsmedizin, Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Peter Hegemann
- Institut für Biologie, Experimentelle Biophysik, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| |
Collapse
|
13
|
Kim YS, Kato HE, Yamashita K, Ito S, Inoue K, Ramakrishnan C, Fenno LE, Evans KE, Paggi JM, Dror RO, Kandori H, Kobilka BK, Deisseroth K. Crystal structure of the natural anion-conducting channelrhodopsin GtACR1. Nature 2018; 561:343-348. [PMID: 30158696 PMCID: PMC6340299 DOI: 10.1038/s41586-018-0511-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 08/13/2018] [Indexed: 01/08/2023]
Abstract
The naturally occurring channelrhodopsin variant anion channelrhodopsin-1 (ACR1), discovered in the cryptophyte algae Guillardia theta, exhibits large light-gated anion conductance and high anion selectivity when expressed in heterologous settings, properties that support its use as an optogenetic tool to inhibit neuronal firing with light. However, molecular insight into ACR1 is lacking owing to the absence of structural information underlying light-gated anion conductance. Here we present the crystal structure of G. theta ACR1 at 2.9 Å resolution. The structure reveals unusual architectural features that span the extracellular domain, retinal-binding pocket, Schiff-base region, and anion-conduction pathway. Together with electrophysiological and spectroscopic analyses, these findings reveal the fundamental molecular basis of naturally occurring light-gated anion conductance, and provide a framework for designing the next generation of optogenetic tools.
Collapse
Affiliation(s)
- Yoon Seok Kim
- Department of Bioengineering, Department of Psychiatry and Behavioral Sciences, and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Hideaki E Kato
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
- PRESTO, Japan Science and Technology Agency, Honcho, Kawaguchi, Japan.
| | | | - Shota Ito
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Japan
| | - Keiichi Inoue
- PRESTO, Japan Science and Technology Agency, Honcho, Kawaguchi, Japan
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, Japan
| | - Charu Ramakrishnan
- Department of Bioengineering, Department of Psychiatry and Behavioral Sciences, and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Lief E Fenno
- Department of Bioengineering, Department of Psychiatry and Behavioral Sciences, and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Kathryn E Evans
- Department of Bioengineering, Department of Psychiatry and Behavioral Sciences, and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Joseph M Paggi
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, Japan
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Karl Deisseroth
- Department of Bioengineering, Department of Psychiatry and Behavioral Sciences, and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
14
|
Cheng C, Kamiya M, Takemoto M, Ishitani R, Nureki O, Yoshida N, Hayashi S. An Atomistic Model of a Precursor State of Light-Induced Channel Opening of Channelrhodopsin. Biophys J 2018; 115:1281-1291. [PMID: 30236783 PMCID: PMC6170652 DOI: 10.1016/j.bpj.2018.08.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/11/2018] [Accepted: 08/13/2018] [Indexed: 01/01/2023] Open
Abstract
Channelrhodopsins (ChRs) are microbial light-gated ion channels with a retinal chromophore and are widely utilized in optogenetics to precisely control neuronal activity with light. Despite increasing understanding of their structures and photoactivation kinetics, the atomistic mechanism of light gating and ion conduction remains elusive. Here, we present an atomic structural model of a chimeric ChR in a precursor state of the channel opening determined by an accurate hybrid molecular simulation technique and a statistical theory of internal water distribution. The photoactivated structure features extensive tilt of the chromophore accompanied by redistribution of water molecules in its binding pocket, which is absent in previously known photoactivated structures of analogous photoreceptors, and widely agrees with structural and spectroscopic experimental evidence of ChRs. The atomistic model manifests a photoactivated ion-conduction pathway that is markedly different from a previously proposed one and successfully explains experimentally observed mutagenic effects on key channel properties.
Collapse
Affiliation(s)
- Cheng Cheng
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Motoshi Kamiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Mizuki Takemoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Ryuichiro Ishitani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Norio Yoshida
- Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka, Japan.
| | - Shigehiko Hayashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
15
|
Saita M, Pranga-Sellnau F, Resler T, Schlesinger R, Heberle J, Lorenz-Fonfria VA. Photoexcitation of the P4480 State Induces a Secondary Photocycle That Potentially Desensitizes Channelrhodopsin-2. J Am Chem Soc 2018; 140:9899-9903. [DOI: 10.1021/jacs.8b03931] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Mattia Saita
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Franziska Pranga-Sellnau
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Tom Resler
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Ramona Schlesinger
- Genetic Biophysics, Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Joachim Heberle
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Victor A. Lorenz-Fonfria
- Institute of Molecular Science, Universitat de València, 46980 Paterna, Spain
- Department of Biochemistry and Molecular Biology, Universitat de València, 46100 Burjassot, Spain
| |
Collapse
|
16
|
Volkov O, Kovalev K, Polovinkin V, Borshchevskiy V, Bamann C, Astashkin R, Marin E, Popov A, Balandin T, Willbold D, Büldt G, Bamberg E, Gordeliy V. Structural insights into ion conduction by channelrhodopsin 2. Science 2018; 358:358/6366/eaan8862. [PMID: 29170206 DOI: 10.1126/science.aan8862] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/30/2017] [Indexed: 11/02/2022]
Abstract
The light-gated ion channel channelrhodopsin 2 (ChR2) from Chlamydomonas reinhardtii is a major optogenetic tool. Photon absorption starts a well-characterized photocycle, but the structural basis for the regulation of channel opening remains unclear. We present high-resolution structures of ChR2 and the C128T mutant, which has a markedly increased open-state lifetime. The structure reveals two cavities on the intracellular side and two cavities on the extracellular side. They are connected by extended hydrogen-bonding networks involving water molecules and side-chain residues. Central is the retinal Schiff base that controls and synchronizes three gates that separate the cavities. Separate from this network is the DC gate that comprises a water-mediated bond between C128 and D156 and interacts directly with the retinal Schiff base. Comparison with the C128T structure reveals a direct connection of the DC gate to the central gate and suggests how the gating mechanism is affected by subtle tuning of the Schiff base's interactions.
Collapse
Affiliation(s)
- Oleksandr Volkov
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Juelich, Juelich, Germany
| | - Kirill Kovalev
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Juelich, Juelich, Germany.,Institut de Biologie Structurale Jean-Pierre Ebel, Université Grenoble Alpes-Commissariat à l'Energie Atomique et aux Energies Alternatives-CNRS, Grenoble, France.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Institute of Crystallography, University of Aachen, Aachen, Germany
| | - Vitaly Polovinkin
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Juelich, Juelich, Germany.,Institut de Biologie Structurale Jean-Pierre Ebel, Université Grenoble Alpes-Commissariat à l'Energie Atomique et aux Energies Alternatives-CNRS, Grenoble, France.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,ELI Beamlines, Institute of Physics, Czech Academy of Sciences, 18221 Prague, Czech Republic
| | | | | | - Roman Astashkin
- Institut de Biologie Structurale Jean-Pierre Ebel, Université Grenoble Alpes-Commissariat à l'Energie Atomique et aux Energies Alternatives-CNRS, Grenoble, France.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Egor Marin
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alexander Popov
- European Synchrotron Radiation Facility, 38027 Grenoble, France
| | - Taras Balandin
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Juelich, Juelich, Germany
| | - Dieter Willbold
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Juelich, Juelich, Germany.,Institut de Biologie Structurale Jean-Pierre Ebel, Université Grenoble Alpes-Commissariat à l'Energie Atomique et aux Energies Alternatives-CNRS, Grenoble, France.,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Georg Büldt
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| | - Valentin Gordeliy
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Juelich, Juelich, Germany. .,Institut de Biologie Structurale Jean-Pierre Ebel, Université Grenoble Alpes-Commissariat à l'Energie Atomique et aux Energies Alternatives-CNRS, Grenoble, France.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
17
|
Abstract
Channelrhodopsin-2 (ChR2) is a light-sensitive ion channel widely used in optogenetics. Photoactivation triggers a trans-to-cis isomerization of a covalently bound retinal. Ensuing conformational changes open a cation-selective channel. We explore the structural dynamics in the early photocycle leading to channel opening by classical (MM) and quantum mechanical (QM) molecular simulations. With QM/MM simulations, we generated a protein-adapted force field for the retinal chromophore, which we validated against absorption spectra. In a 4-µs MM simulation of a dark-adapted ChR2 dimer, water entered the vestibules of the closed channel. Retinal all-trans to 13-cis isomerization, simulated with metadynamics, triggered a major restructuring of the charge cluster forming the channel gate. On a microsecond time scale, water penetrated the gate to form a membrane-spanning preopen pore between helices H1, H2, H3, and H7. This influx of water into an ion-impermeable preopen pore is consistent with time-resolved infrared spectroscopy and electrophysiology experiments. In the retinal 13-cis state, D253 emerged as the proton acceptor of the Schiff base. Upon proton transfer from the Schiff base to D253, modeled by QM/MM simulations, we obtained an early-M/P2390-like intermediate. Rapid rotation of the unprotonated Schiff base toward the cytosolic side effectively prevents its reprotonation from the extracellular side. From MM and QM simulations, we gained detailed insight into the mechanism of ChR2 photoactivation and early events in pore formation. By rearranging the network of charges and hydrogen bonds forming the gate, water emerges as a key player in light-driven ChR2 channel opening.
Collapse
Affiliation(s)
- Albert Ardevol
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany;
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany;
- Department of Physics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|
18
|
Vierock J, Grimm C, Nitzan N, Hegemann P. Molecular determinants of proton selectivity and gating in the red-light activated channelrhodopsin Chrimson. Sci Rep 2017; 7:9928. [PMID: 28855540 PMCID: PMC5577340 DOI: 10.1038/s41598-017-09600-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/21/2017] [Indexed: 12/15/2022] Open
Abstract
Channelrhodopsins are light-gated ion channels of green algae used for the precise temporal and spatial control of transmembrane ion fluxes. The channelrhodopsin Chrimson from Chlamydomonas noctigama allows unprecedented deep tissue penetration due to peak absorption at 590 nm. We demonstrate by electrophysiological recordings and imaging techniques that Chrimson is highly proton selective causing intracellular acidification in HEK cells that is responsible for slow photocurrent decline during prolonged illumination. We localized molecular determinants of both high proton selectivity and red light activation to the extracellular pore. Whereas exchange of Glu143 only drops proton conductance and generates an operational Na-channel with 590 nm activation, exchange of Glu139 in addition increased the open state lifetime and shifted the absorption hypsochromic by 70 nm. In conjunction with Glu300 in the center and Glu124 and Glu125 at the intracellular end of the pore, Glu139 contributes to a delocalized activation gate and stabilizes by long-range interaction counterion configuration involving protonation of Glu165 that we identified as a key determinant of the large opsin shift in Chrimson.
Collapse
Affiliation(s)
- Johannes Vierock
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.
| | - Christiane Grimm
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Noam Nitzan
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.,Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Peter Hegemann
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| |
Collapse
|
19
|
Recent advances in biophysical studies of rhodopsins - Oligomerization, folding, and structure. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1512-1521. [PMID: 28844743 DOI: 10.1016/j.bbapap.2017.08.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/06/2017] [Accepted: 08/11/2017] [Indexed: 12/19/2022]
Abstract
Retinal-binding proteins, mainly known as rhodopsins, function as photosensors and ion transporters in a wide range of organisms. From halobacterial light-driven proton pump, bacteriorhodopsin, to bovine photoreceptor, visual rhodopsin, they have served as prototypical α-helical membrane proteins in a large number of biophysical studies and aided in the development of many cutting-edge techniques of structural biology and biospectroscopy. In the last decade, microbial and animal rhodopsin families have expanded significantly, bringing into play a number of new interesting structures and functions. In this review, we will discuss recent advances in biophysical approaches to retinal-binding proteins, primarily microbial rhodopsins, including those in optical spectroscopy, X-ray crystallography, nuclear magnetic resonance, and electron paramagnetic resonance, as applied to such fundamental biological aspects as protein oligomerization, folding, and structure.
Collapse
|
20
|
Govorunova EG, Sineshchekov OA, Li H, Spudich JL. Microbial Rhodopsins: Diversity, Mechanisms, and Optogenetic Applications. Annu Rev Biochem 2017; 86:845-872. [PMID: 28301742 PMCID: PMC5747503 DOI: 10.1146/annurev-biochem-101910-144233] [Citation(s) in RCA: 257] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microbial rhodopsins are a family of photoactive retinylidene proteins widespread throughout the microbial world. They are notable for their diversity of function, using variations of a shared seven-transmembrane helix design and similar photochemical reactions to carry out distinctly different light-driven energy and sensory transduction processes. Their study has contributed to our understanding of how evolution modifies protein scaffolds to create new protein chemistry, and their use as tools to control membrane potential with light is fundamental to optogenetics for research and clinical applications. We review the currently known functions and present more in-depth assessment of three functionally and structurally distinct types discovered over the past two years: (a) anion channelrhodopsins (ACRs) from cryptophyte algae, which enable efficient optogenetic neural suppression; (b) cryptophyte cation channelrhodopsins (CCRs), structurally distinct from the green algae CCRs used extensively for neural activation and from cryptophyte ACRs; and
Collapse
Affiliation(s)
- Elena G Govorunova
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030; , , ,
| | - Oleg A Sineshchekov
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030; , , ,
| | - Hai Li
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030; , , ,
| | - John L Spudich
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030; , , ,
| |
Collapse
|
21
|
Oligomeric Structure of Anabaena Sensory Rhodopsin in a Lipid Bilayer Environment by Combining Solid-State NMR and Long-range DEER Constraints. J Mol Biol 2017; 429:1903-1920. [DOI: 10.1016/j.jmb.2017.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/27/2017] [Accepted: 05/06/2017] [Indexed: 11/22/2022]
|
22
|
The Synergetic Effects of Combining Structural Biology and EPR Spectroscopy on Membrane Proteins. CRYSTALS 2017. [DOI: 10.3390/cryst7040117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein structures as provided by structural biology such as X-ray crystallography, cryo-electron microscopy and NMR spectroscopy are key elements to understand the function of a protein on the molecular level. Nonetheless, they might be error-prone due to crystallization artifacts or, in particular in case of membrane-imbedded proteins, a mostly artificial environment. In this review, we will introduce different EPR spectroscopy methods as powerful tools to complement and validate structural data gaining insights in the dynamics of proteins and protein complexes such that functional cycles can be derived. We will highlight the use of EPR spectroscopy on membrane-embedded proteins and protein complexes ranging from receptors to secondary active transporters as structural information is still limited in this field and the lipid environment is a particular challenge.
Collapse
|
23
|
Kottke T, Lórenz-Fonfría VA, Heberle J. The Grateful Infrared: Sequential Protein Structural Changes Resolved by Infrared Difference Spectroscopy. J Phys Chem B 2016; 121:335-350. [PMID: 28100053 DOI: 10.1021/acs.jpcb.6b09222] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The catalytic activity of proteins is a function of structural changes. Very often these are as minute as protonation changes, hydrogen bonding changes, and amino acid side chain reorientations. To resolve these, a methodology is afforded that not only provides the molecular sensitivity but allows for tracing the sequence of these hierarchical reactions at the same time. This feature article showcases results from time-resolved IR spectroscopy on channelrhodopsin (ChR), light-oxygen-voltage (LOV) domain protein, and cryptochrome (CRY). All three proteins are activated by blue light, but their biological role is drastically different. Channelrhodopsin is a transmembrane retinylidene protein which represents the first light-activated ion channel of its kind and which is involved in primitive vision (phototaxis) of algae. LOV and CRY are flavin-binding proteins acting as photoreceptors in a variety of signal transduction mechanisms in all kingdoms of life. Beyond their biological relevance, these proteins are employed in exciting optogenetic applications. We show here how IR difference absorption resolves crucial structural changes of the protein after photonic activation of the chromophore. Time-resolved techniques are introduced that cover the time range from nanoseconds to minutes along with some technical considerations. Finally, we provide an outlook toward novel experimental approaches that are currently developed in our laboratories or are just in our minds ("Gedankenexperimente"). We believe that some of them have the potential to provide new science.
Collapse
Affiliation(s)
- Tilman Kottke
- Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University , Universitätsstraße 25, 33615 Bielefeld, Germany
| | | | - Joachim Heberle
- Experimental Molecular Biophysics, Freie Universität Berlin , Arnimalle 14, 14195 Berlin, Germany
| |
Collapse
|
24
|
Kato HE, Inoue K, Kandori H, Nureki O. The light-driven sodium ion pump: A new player in rhodopsin research. Bioessays 2016; 38:1274-1282. [PMID: 27859420 DOI: 10.1002/bies.201600065] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Rhodopsins are one of the most studied photoreceptor protein families, and ion-translocating rhodopsins, both pumps and channels, have recently attracted broad attention because of the development of optogenetics. Recently, a new functional class of ion-pumping rhodopsins, an outward Na+ pump, was discovered, and following structural and functional studies enable us to compare three functionally different ion-pumping rhodopsins: outward proton pump, inward Cl- pump, and outward Na+ pump. Here, we review the current knowledge on structure-function relationships in these three light-driven pumps, mainly focusing on Na+ pumps. A structural and functional comparison reveals both unique and conserved features of these ion pumps, and enhances our understanding about how the structurally similar microbial rhodopsins acquired such diverse functions. We also discuss some unresolved questions and future perspectives in research of ion-pumping rhodopsins, including optogenetics application and engineering of novel rhodopsins.
Collapse
Affiliation(s)
- Hideaki E Kato
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Keiichi Inoue
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
25
|
Volz P, Krause N, Balke J, Schneider C, Walter M, Schneider F, Schlesinger R, Alexiev U. Light and pH-induced Changes in Structure and Accessibility of Transmembrane Helix B and Its Immediate Environment in Channelrhodopsin-2. J Biol Chem 2016; 291:17382-93. [PMID: 27268055 DOI: 10.1074/jbc.m115.711200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Indexed: 11/06/2022] Open
Abstract
A variant of the cation channel channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2) was selectively labeled at position Cys-79 at the end of the first cytoplasmic loop and the beginning of transmembrane helix B with the fluorescent dye fluorescein (acetamidofluorescein). We utilized (i) time-resolved fluorescence anisotropy experiments to monitor the structural dynamics at the cytoplasmic surface close to the inner gate in the dark and after illumination in the open channel state and (ii) time-resolved fluorescence quenching experiments to observe the solvent accessibility of helix B at pH 6.0 and 7.4. The light-induced increase in final anisotropy for acetamidofluorescein bound to the channel variant with a prolonged conducting state clearly shows that the formation of the open channel state is associated with a large conformational change at the cytoplasmic surface, consistent with an outward tilt of helix B. Furthermore, results from solute accessibility studies of the cytoplasmic end of helix B suggest a pH-dependent structural heterogeneity that appears below pH 7. At pH 7.4 conformational homogeneity was observed, whereas at pH 6.0 two protein fractions exist, including one in which residue 79 is buried. This inaccessible fraction amounts to 66% in nanodiscs and 82% in micelles. Knowledge about pH-dependent structural heterogeneity may be important for CrChR2 applications in optogenetics.
Collapse
Affiliation(s)
- Pierre Volz
- From the Freie Universität Berlin, Institut für Experimentalphysik, D-14195 Berlin, Germany and
| | - Nils Krause
- From the Freie Universität Berlin, Institut für Experimentalphysik, D-14195 Berlin, Germany and
| | - Jens Balke
- From the Freie Universität Berlin, Institut für Experimentalphysik, D-14195 Berlin, Germany and
| | - Constantin Schneider
- From the Freie Universität Berlin, Institut für Experimentalphysik, D-14195 Berlin, Germany and
| | - Maria Walter
- From the Freie Universität Berlin, Institut für Experimentalphysik, D-14195 Berlin, Germany and
| | - Franziska Schneider
- the Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Ramona Schlesinger
- From the Freie Universität Berlin, Institut für Experimentalphysik, D-14195 Berlin, Germany and
| | - Ulrike Alexiev
- From the Freie Universität Berlin, Institut für Experimentalphysik, D-14195 Berlin, Germany and
| |
Collapse
|
26
|
Aitha M, Moller AJ, Sahu ID, Horitani M, Tierney DL, Crowder MW. Investigating the position of the hairpin loop in New Delhi metallo-β-lactamase, NDM-1, during catalysis and inhibitor binding. J Inorg Biochem 2016; 156:35-9. [PMID: 26717260 PMCID: PMC4843777 DOI: 10.1016/j.jinorgbio.2015.10.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 10/07/2015] [Accepted: 10/19/2015] [Indexed: 12/29/2022]
Abstract
In an effort to examine the relative position of a hairpin loop in New Delhi metallo-β-lactamase, NDM-1, during catalysis, rapid freeze quench double electron electron resonance (RFQ-DEER) spectroscopy was used. A doubly-labeled mutant of NDM-1, which had one spin label on the invariant loop at position 69 and another label at position 235, was prepared and characterized. The reaction of the doubly spin labeled mutant with chromacef was freeze quenched at 500μs and 10ms. DEER results showed that the average distance between labels decreased by 4Å in the 500μs quenched sample and by 2Å in the 10ms quenched sample, as compared to the distance in the unreacted enzyme, although the peaks corresponding to distance distributions were very broad. DEER spectra with the doubly spin labeled enzyme with two inhibitors showed that the distance between the loop residue at position 69 and the spin label at position 235 does not change upon inhibitor binding. This study suggests that the hairpin loop in NDM-1 moves over the metal ion during the catalysis and then moves back to its original position after hydrolysis, which is consistent with a previous hypothesis based on NMR solution studies on a related metallo-β-lactamase. This study also demonstrates that this loop motion occurs in the millisecond time domain.
Collapse
Affiliation(s)
- Mahesh Aitha
- Department of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, OH 45056, USA
| | - Abraham J Moller
- Department of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, OH 45056, USA
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, OH 45056, USA
| | - Masaki Horitani
- Department of Chemistry, Northwestern University, Evanston, IL 60208-3113, USA
| | - David L Tierney
- Department of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, OH 45056, USA
| | - Michael W Crowder
- Department of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, OH 45056, USA.
| |
Collapse
|
27
|
Guo Y, Beyle FE, Bold BM, Watanabe HC, Koslowski A, Thiel W, Hegemann P, Marazzi M, Elstner M. Active site structure and absorption spectrum of channelrhodopsin-2 wild-type and C128T mutant. Chem Sci 2016; 7:3879-3891. [PMID: 30155032 PMCID: PMC6013792 DOI: 10.1039/c6sc00468g] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 02/24/2016] [Indexed: 12/25/2022] Open
Abstract
We show by extensive ground state and absorption spectra simulations that the channelrhodopsin-2 active site samples three different hydrogen-bonding patterns.
In spite of considerable interest, the active site of channelrhodopsin still lacks a detailed atomistic description, the understanding of which could strongly enhance the development of novel optogenetics tools. We present a computational study combining different state-of-the-art techniques, including hybrid quantum mechanics/molecular mechanics schemes and high-level quantum chemical methods, to properly describe the hydrogen-bonding pattern between the retinal chromophore and its counterions in channelrhodopsin-2 Wild-Type and C128T mutant. Especially, we show by extensive ground state dynamics that the active site, containing a glutamic acid (E123) and a water molecule, is highly dynamic, sampling three different hydrogen-bonding patterns. This results in a broad absorption spectrum that is representative of the different structural motifs found. A comparison with bacteriorhodopsin, characterized by a pentagonal hydrogen-bonded active site structure, elucidates their different absorption properties.
Collapse
Affiliation(s)
- Yanan Guo
- Department of Theoretical Chemical Biology , Institute of Physical Chemistry , KIT , Kaiserstrasse 12 , 76131 Karlsruhe , Germany . ;
| | - Franziska E Beyle
- Department of Theoretical Chemical Biology , Institute of Physical Chemistry , KIT , Kaiserstrasse 12 , 76131 Karlsruhe , Germany . ;
| | - Beatrix M Bold
- Department of Theoretical Chemical Biology , Institute of Physical Chemistry , KIT , Kaiserstrasse 12 , 76131 Karlsruhe , Germany . ;
| | - Hiroshi C Watanabe
- Research Center for Advanced Science and Technology , The University of Tokyo , 4-6-1 Komaba, Meguro-ku , Tokyo 153-8904 , Japan
| | - Axel Koslowski
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 Mülheim an der Ruhr , Germany
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 Mülheim an der Ruhr , Germany
| | - Peter Hegemann
- Institute of Biology , Experimental Biophysics , Humboldt-Universität , Invalidenstraße 42 , D-10115 Berlin , Germany
| | - Marco Marazzi
- Department of Theoretical Chemical Biology , Institute of Physical Chemistry , KIT , Kaiserstrasse 12 , 76131 Karlsruhe , Germany . ;
| | - Marcus Elstner
- Department of Theoretical Chemical Biology , Institute of Physical Chemistry , KIT , Kaiserstrasse 12 , 76131 Karlsruhe , Germany . ;
| |
Collapse
|
28
|
Shalaeva DN, Galperin MY, Mulkidjanian AY. Eukaryotic G protein-coupled receptors as descendants of prokaryotic sodium-translocating rhodopsins. Biol Direct 2015; 10:63. [PMID: 26472483 PMCID: PMC4608122 DOI: 10.1186/s13062-015-0091-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/12/2015] [Indexed: 12/20/2022] Open
Abstract
Abstract Microbial rhodopsins and G-protein coupled receptors (GPCRs, which include animal rhodopsins) are two distinct (super) families of heptahelical (7TM) membrane proteins that share obvious structural similarities but no significant sequence similarity. Comparison of the recently solved high-resolution structures of the sodium-translocating bacterial rhodopsin and various Na+-binding GPCRs revealed striking similarity of their sodium-binding sites. This similarity allowed us to construct a structure-guided sequence alignment for the two (super)families, which highlighted their evolutionary relatedness. Our analysis supports a common underlying molecular mechanism for both families that involves a highly conserved aromatic residue playing a pivotal role in rotation of the 6th transmembrane helix. Reviewers This article was reviewed by Oded Beja, G. P. S. Raghava and L. Aravind. Electronic supplementary material The online version of this article (doi:10.1186/s13062-015-0091-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daria N Shalaeva
- School of Physics, Osnabrueck University, 49069, Osnabrueck, Germany. .,School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| | - Armen Y Mulkidjanian
- School of Physics, Osnabrueck University, 49069, Osnabrueck, Germany. .,School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia. .,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
29
|
Temporal evolution of helix hydration in a light-gated ion channel correlates with ion conductance. Proc Natl Acad Sci U S A 2015; 112:E5796-804. [PMID: 26460012 DOI: 10.1073/pnas.1511462112] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The discovery of channelrhodopsins introduced a new class of light-gated ion channels, which when genetically encoded in host cells resulted in the development of optogenetics. Channelrhodopsin-2 from Chlamydomonas reinhardtii, CrChR2, is the most widely used optogenetic tool in neuroscience. To explore the connection between the gating mechanism and the influx and efflux of water molecules in CrChR2, we have integrated light-induced time-resolved infrared spectroscopy and electrophysiology. Cross-correlation analysis revealed that ion conductance tallies with peptide backbone amide I vibrational changes at 1,665(-) and 1,648(+) cm(-1). These two bands report on the hydration of transmembrane α-helices as concluded from vibrational coupling experiments. Lifetime distribution analysis shows that water influx proceeded in two temporally separated steps with time constants of 10 μs (30%) and 200 μs (70%), the latter phase concurrent with the start of ion conductance. Water efflux and the cessation of the ion conductance are synchronized as well, with a time constant of 10 ms. The temporal correlation between ion conductance and hydration of helices holds for fast (E123T) and slow (D156E) variants of CrChR2, strengthening its functional significance.
Collapse
|
30
|
Richards R, Dempski RE. Cysteine Substitution and Labeling Provide Insight into Channelrhodopsin-2 Ion Conductance. Biochemistry 2015; 54:5665-8. [PMID: 26322955 DOI: 10.1021/acs.biochem.5b00738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Channelrhodopsin-2 is a light-activated cation channel. However, the mechanism of ion conductance is unresolved. Here, we performed cysteine scanning mutagenesis on transmembrane domain 7 followed by labeling with a methanethiosulfonate compound. Analysis of our results shows that residues that line the putative pore and interface with adjacent transmembrane domains 1 and 3, as proposed by our channelrhodopsin-2 homology model, affect ion conductance, decay kinetics, and/or off kinetics. Combined, these results suggest that negative charges at the extracellular side of transmembrane domain 7 funnel cations into the pore.
Collapse
Affiliation(s)
- Ryan Richards
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute , Worcester, Massachusetts 01609, United States
| | - Robert E Dempski
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute , Worcester, Massachusetts 01609, United States
| |
Collapse
|
31
|
Lórenz-Fonfría VA, Muders V, Schlesinger R, Heberle J. Changes in the hydrogen-bonding strength of internal water molecules and cysteine residues in the conductive state of channelrhodopsin-1. J Chem Phys 2015; 141:22D507. [PMID: 25494778 DOI: 10.1063/1.4895796] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Water plays an essential role in the structure and function of proteins, particularly in the less understood class of membrane proteins. As the first of its kind, channelrhodopsin is a light-gated cation channel and paved the way for the new and vibrant field of optogenetics, where nerve cells are activated by light. Still, the molecular mechanism of channelrhodopsin is not understood. Here, we applied time-resolved FT-IR difference spectroscopy to channelrhodopsin-1 from Chlamydomonas augustae. It is shown that the (conductive) P2(380) intermediate decays with τ ≈ 40 ms and 200 ms after pulsed excitation. The vibrational changes between the closed and the conductive states were analyzed in the X-H stretching region (X = O, S, N), comprising vibrational changes of water molecules, sulfhydryl groups of cysteine side chains and changes of the amide A of the protein backbone. The O-H stretching vibrations of "dangling" water molecules were detected in two different states of the protein using H2 (18)O exchange. Uncoupling experiments with a 1:1 mixture of H2O:D2O provided the natural uncoupled frequencies of the four O-H (and O-D) stretches of these water molecules, each with a very weakly hydrogen-bonded O-H group (3639 and 3628 cm(-1)) and with the other O-H group medium (3440 cm(-1)) to moderately strongly (3300 cm(-1)) hydrogen-bonded. Changes in amide A and thiol vibrations report on global and local changes, respectively, associated with the formation of the conductive state. Future studies will aim at assigning the respective cysteine group(s) and at localizing the "dangling" water molecules within the protein, providing a better understanding of their functional relevance in CaChR1.
Collapse
Affiliation(s)
| | - Vera Muders
- Genetic Biophysics, Freie Universität Berlin, 14195 Berlin, Germany
| | | | - Joachim Heberle
- Experimental Molecular Biophysics, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
32
|
Enlightening the photoactive site of channelrhodopsin-2 by DNP-enhanced solid-state NMR spectroscopy. Proc Natl Acad Sci U S A 2015. [PMID: 26216996 DOI: 10.1073/pnas.1507713112] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Channelrhodopsin-2 from Chlamydomonas reinhardtii is a light-gated ion channel. Over recent years, this ion channel has attracted considerable interest because of its unparalleled role in optogenetic applications. However, despite considerable efforts, an understanding of how molecular events during the photocycle, including the retinal trans-cis isomerization and the deprotonation/reprotonation of the Schiff base, are coupled to the channel-opening mechanism remains elusive. To elucidate this question, changes of conformation and configuration of several photocycle and conducting/nonconducting states need to be determined at atomic resolution. Here, we show that such data can be obtained by solid-state NMR enhanced by dynamic nuclear polarization applied to (15)N-labeled channelrhodopsin-2 carrying 14,15-(13)C2 retinal reconstituted into lipid bilayers. In its dark state, a pure all-trans retinal conformation with a stretched C14-C15 bond and a significant out-of-plane twist of the H-C14-C15-H dihedral angle could be observed. Using a combination of illumination, freezing, and thermal relaxation procedures, a number of intermediate states was generated and analyzed by DNP-enhanced solid-state NMR. Three distinct intermediates could be analyzed with high structural resolution: the early [Formula: see text] K-like state, the slowly decaying late intermediate [Formula: see text], and a third intermediate populated only under continuous illumination conditions. Our data provide novel insight into the photoactive site of channelrhodopsin-2 during the photocycle. They further show that DNP-enhanced solid-state NMR fills the gap for challenging membrane proteins between functional studies and X-ray-based structure analysis, which is required for resolving molecular mechanisms.
Collapse
|
33
|
Stensitzki T, Muders V, Schlesinger R, Heberle J, Heyne K. The primary photoreaction of channelrhodopsin-1: wavelength dependent photoreactions induced by ground-state heterogeneity. Front Mol Biosci 2015; 2:41. [PMID: 26258130 PMCID: PMC4510425 DOI: 10.3389/fmolb.2015.00041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/06/2015] [Indexed: 12/31/2022] Open
Abstract
The primary photodynamics of channelrhodopsin-1 from Chlamydomonas augustae (CaChR1) was investigated by VIS-pump supercontinuum probe experiments from femtoseconds to 100 picoseconds. In contrast to reported experiments on channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2), we found a clear dependence of the photoreaction dynamics on varying the excitation wavelength. Upon excitation at 500 and at 550 nm we detected different bleaching bands, and spectrally distinct photoproduct absorptions in the first picoseconds. We assign the former to the ground-state heterogeneity of a mixture of 13-cis and all-trans retinal maximally absorbing around 480 and 540 nm, respectively. At 550 nm, all-trans retinal of the ground state is almost exclusively excited. Here, we found a fast all-trans to 13-cis isomerization process to a hot and spectrally broad P1 photoproduct with a time constant of (100 ± 50) fs, followed by photoproduct relaxation with time constants of (500 ± 100) fs and (5 ± 1) ps. The remaining fraction relaxes back to the parent ground state with time constants of (500 ± 100) fs and (5 ± 1) ps. Upon excitation at 500 nm a mixture of both chromophore conformations is excited, resulting in overlapping reaction dynamics with additional time constants of <300 fs, (1.8 ± 0.3) ps and (90 ± 25) ps. A new photoproduct Q is formed absorbing at around 600 nm. Strong coherent oscillatory signals were found pertaining up to several picoseconds. We determined low frequency modes around 200 cm−1, similar to those reported for bacteriorhodopsin.
Collapse
Affiliation(s)
- Till Stensitzki
- Institute of Experimental Physics, Free University Berlin Berlin, Germany
| | - Vera Muders
- Institute of Experimental Physics, Free University Berlin Berlin, Germany
| | - Ramona Schlesinger
- Institute of Experimental Physics, Free University Berlin Berlin, Germany
| | - Joachim Heberle
- Institute of Experimental Physics, Free University Berlin Berlin, Germany
| | - Karsten Heyne
- Institute of Experimental Physics, Free University Berlin Berlin, Germany
| |
Collapse
|
34
|
Resler T, Schultz BJ, Lórenz-Fonfría VA, Schlesinger R, Heberle J. Kinetic and vibrational isotope effects of proton transfer reactions in channelrhodopsin-2. Biophys J 2015; 109:287-97. [PMID: 26200864 PMCID: PMC4621815 DOI: 10.1016/j.bpj.2015.06.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/12/2015] [Accepted: 06/10/2015] [Indexed: 12/25/2022] Open
Abstract
Channelrhodopsins (ChRs) are light-gated cation channels. After blue-light excitation, the protein undergoes a photocycle with different intermediates. Here, we have recorded transient absorbance changes of ChR2 from Chlamydomonas reinhardtii in the visible and infrared regions with nanosecond time resolution, the latter being accomplished using tunable quantum cascade lasers. Because proton transfer reactions play a key role in channel gating, we determined vibrational as well as kinetic isotope effects (VIEs and KIEs) of carboxylic groups of various key aspartic and glutamic acid residues by monitoring their C=O stretching vibrations in H2O and in D2O. D156 exhibits a substantial KIE (>2) in its deprotonation and reprotonation, which substantiates its role as the internal proton donor to the retinal Schiff base. The unusual VIE of D156, upshifted from 1736 cm(-1) to 1738 cm(-1) in D2O, was scrutinized by studying the D156E variant. The C=O stretch of E156 shifted down by 8 cm(-1) in D2O, providing evidence for the accessibility of the carboxylic group. The C=O stretching band of E90 exhibits a VIE of 9 cm(-1) and a KIE of ∼2 for the de- and the reprotonation reactions during the lifetime of the late desensitized state. The KIE of 1 determined in the time range from 20 ns to 5 ms is incompatible with early deprotonation of E90.
Collapse
Affiliation(s)
- Tom Resler
- Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | | | | | - Ramona Schlesinger
- Genetic Biophysics at Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Joachim Heberle
- Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
35
|
Van Eps N, Caro LN, Morizumi T, Ernst OP. Characterizing rhodopsin signaling by EPR spectroscopy: from structure to dynamics. Photochem Photobiol Sci 2015; 14:1586-97. [PMID: 26140679 DOI: 10.1039/c5pp00191a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy, together with spin labeling techniques, has played a major role in the characterization of rhodopsin, the photoreceptor protein and G protein-coupled receptor (GPCR) in rod cells. Two decades ago, these biophysical tools were the first to identify transmembrane helical movements in rhodopsin upon photo-activation, a critical step in the study of GPCR signaling. EPR methods were employed to identify functional loop dynamics within rhodopsin, to measure light-induced millisecond timescale changes in rhodopsin conformation, to characterize the effects of partial agonists on the apoprotein opsin, and to study lipid interactions with rhodopsin. With the emergence of advanced pulsed EPR techniques, the stage was set to determine the amplitude of structural changes in rhodopsin and the dynamics in the rhodopsin signaling complexes. Work in this area has yielded invaluable information about mechanistic properties of GPCRs. Using EPR techniques, receptors are studied in native-like membrane environments and the effects of lipids on conformational equilibria can be explored. This perspective addresses the impact of EPR methods on rhodopsin and GPCR structural biology, highlighting historical discoveries made with spin labeling techniques, and outlining exciting new directions in the field.
Collapse
Affiliation(s)
- Ned Van Eps
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
36
|
Takemoto M, Kato HE, Koyama M, Ito J, Kamiya M, Hayashi S, Maturana AD, Deisseroth K, Ishitani R, Nureki O. Molecular Dynamics of Channelrhodopsin at the Early Stages of Channel Opening. PLoS One 2015; 10:e0131094. [PMID: 26114863 PMCID: PMC4482709 DOI: 10.1371/journal.pone.0131094] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/28/2015] [Indexed: 11/25/2022] Open
Abstract
Channelrhodopsin (ChR) is a light-gated cation channel that responds to blue light. Since ChR can be readily expressed in specific neurons to precisely control their activities by light, it has become a powerful tool in neuroscience. Although the recently solved crystal structure of a chimeric ChR, C1C2, provided the structural basis for ChR, our understanding of the molecular mechanism of ChR still remains limited. Here we performed electrophysiological analyses and all-atom molecular dynamics (MD) simulations, to investigate the importance of the intracellular and central constrictions of the ion conducting pore observed in the crystal structure of C1C2. Our electrophysiological analysis revealed that two glutamate residues, Glu122 and Glu129, in the intracellular and central constrictions, respectively, should be deprotonated in the photocycle. The simulation results suggested that the deprotonation of Glu129 in the central constriction leads to ion leakage in the ground state, and implied that the protonation of Glu129 is important for preventing ion leakage in the ground state. Moreover, we modeled the 13-cis retinal bound; i.e., activated C1C2, and performed MD simulations to investigate the conformational changes in the early stage of the photocycle. Our simulations suggested that retinal photoisomerization induces the conformational change toward channel opening, including the movements of TM6, TM7 and TM2. These insights into the dynamics of the ground states and the early photocycle stages enhance our understanding of the channel function of ChR.
Collapse
Affiliation(s)
- Mizuki Takemoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–0033, Japan
| | - Hideaki E. Kato
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–0033, Japan
| | - Michio Koyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–0033, Japan
| | - Jumpei Ito
- Department of Bioengineering Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464–8601, Japan
| | - Motoshi Kamiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606–8502, Japan
| | - Shigehiko Hayashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606–8502, Japan
| | - Andrés D. Maturana
- Department of Bioengineering Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464–8601, Japan
| | - Karl Deisseroth
- Department of Bioengineering and Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, United States of America
| | - Ryuichiro Ishitani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–0033, Japan
- * E-mail: (ON); (RI)
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–0033, Japan
- * E-mail: (ON); (RI)
| |
Collapse
|
37
|
Doi S, Mori A, Tsukamoto T, Reissig L, Ihara K, Sudo Y. Structural and functional roles of the N- and C-terminal extended modules in channelrhodopsin-1. Photochem Photobiol Sci 2015; 14:1628-36. [PMID: 26098533 DOI: 10.1039/c5pp00213c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Channelrhodopsins have become a focus of interest because of their ability to control neural activity by light, used in a technology called optogenetics. The channelrhodopsin in the eukaryote Chlamydomonas reinhardtii (CrChR-1) is a light-gated cation channel responsible for motility changes upon photo-illumination and a member of the membrane-embedded retinal protein family. Recent crystal structure analysis revealed that CrChR-1 has unique extended modules both at its N- and C-termini compared to other microbial retinal proteins. This study reports the first successful expression of a ChR-1 variant in Escherichia coli as a holoprotein: the ChR-1 variant lacking both the N- and C-termini (CrChR-1_82-308). However, compared to ChR-1 having the extended modules (CrChR-1_1-357), truncation of the termini greatly altered the absorption maximum and photochemical properties, including the pKa values of its charged residues around the chromophore, the reaction rates in the photocycle and the photo-induced ion channeling activity. The results of some experiments regarding ion transport activity suggest that CrChR-1_82-308 has a proton channeling activity even in the dark. On the basis of these results, we discuss the structural and functional roles of the N- and C-terminal extended modules in CrChR-1.
Collapse
Affiliation(s)
- Satoko Doi
- Division of Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan.
| | | | | | | | | | | |
Collapse
|
38
|
Affiliation(s)
- Franziska Schneider
- Experimental Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; , ,
| | - Christiane Grimm
- Experimental Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; , ,
| | - Peter Hegemann
- Experimental Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; , ,
| |
Collapse
|
39
|
da Silva GFZ, Goblirsch BR, Tsai AL, Spudich JL. Cation-Specific Conformations in a Dual-Function Ion-Pumping Microbial Rhodopsin. Biochemistry 2015; 54:3950-9. [PMID: 26037033 DOI: 10.1021/bi501386d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A recently discovered rhodopsin ion pump (DeNaR, also known as KR2) in the marine bacterium Dokdonia eikasta uses light to pump protons or sodium ions from the cell depending on the ionic composition of the medium. In cells suspended in a KCl solution, DeNaR functions as a light-driven proton pump, whereas in a NaCl solution, DeNaR conducts light-driven sodium ion pumping, a novel activity within the rhodopsin family. These two distinct functions raise the questions of whether the conformations of the protein differ in the presence of K(+) or Na(+) and whether the helical movements that result in the canonical E → C conformational change in other microbial rhodopsins are conserved in DeNaR. Visible absorption maxima of DeNaR in its unphotolyzed (dark) state show an 8 nm difference between Na(+) and K(+) in decyl maltopyranoside micelles, indicating an influence of the cations on the retinylidene photoactive site. In addition, electronic paramagnetic resonance (EPR) spectra of the dark states reveal repositioning of helices F and G when K(+) is replaced with Na(+). Furthermore, the conformational changes assessed by EPR spin-spin dipolar coupling show that the light-induced transmembrane helix movements are very similar to those found in bacteriorhodopsin but are altered by the presence of Na(+), resulting in a new feature, the clockwise rotation of helix F. The results establish the first observation of a cation switch controlling the conformations of a microbial rhodopsin and indicate specific interactions of Na(+) with the half-channels of DeNaR to open an appropriate path for ion translocation.
Collapse
Affiliation(s)
- Giordano F Z da Silva
- †Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77030, United States
| | - Brandon R Goblirsch
- †Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77030, United States
| | - Ah-Lim Tsai
- ‡Department of Internal Medicine, Division of Hematology, University of Texas Medical School, Houston, Texas 77030, United States
| | - John L Spudich
- †Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77030, United States
| |
Collapse
|
40
|
Lórenz-Fonfría VA, Schultz BJ, Resler T, Schlesinger R, Bamann C, Bamberg E, Heberle J. Pre-gating conformational changes in the ChETA variant of channelrhodopsin-2 monitored by nanosecond IR spectroscopy. J Am Chem Soc 2015; 137:1850-61. [PMID: 25584873 DOI: 10.1021/ja5108595] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Light-gated ion permeation by channelrhodopsin-2 (ChR2) relies on the photoisomerization of the retinal chromophore and the subsequent photocycle, leading to the formation (on-gating) and decay (off-gating) of the conductive state. Here, we have analyzed the photocycle of a fast-cycling ChR2 variant (E123T mutation, also known as ChETA), by time-resolved UV/vis, step-scan FT-IR, and tunable quantum cascade laser IR spectroscopies with nanosecond resolution. Pre-gating conformational changes rise with a half-life of 200 ns, silent to UV/vis but detected by IR spectroscopy. They involve changes in the peptide backbone and in the H-bond of the side chain of the critical residue D156. Thus, the P1(500) intermediate must be separated into early and late states. Light-adapted ChR2 contains a mixture of all-trans and 13-cis retinal in a 70:30 ratio which are both photoactive. Analysis of ethylenic and fingerprint vibrations of retinal provides evidence that the 13-cis photocycle recovers in 1 ms. This recovery is faster than channel off-gating and most of the proton transfer reactions, implying that the 13-cis photocycle is of minor functional relevance for ChR2.
Collapse
Affiliation(s)
- Víctor A Lórenz-Fonfría
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin , Arnimallee 14, 14195 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Isotope Labeling of Eukaryotic Membrane Proteins in Yeast for Solid-State NMR. Methods Enzymol 2015; 565:193-212. [DOI: 10.1016/bs.mie.2015.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
42
|
Kuhne J, Eisenhauer K, Ritter E, Hegemann P, Gerwert K, Bartl F. Early formation of the ion-conducting pore in channelrhodopsin-2. Angew Chem Int Ed Engl 2014; 54:4953-7. [PMID: 25537168 DOI: 10.1002/anie.201410180] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/20/2014] [Indexed: 11/10/2022]
Abstract
Channelrhodopsins (ChRs) are light-gated ion channels that are widely used in optogenetics. They allow precise control of neuronal activity with light, but a detailed understanding of how the channel is gated and the ions are conducted is still lacking. The recent determination of the X-ray structural model in the closed state marks an important milestone. Herein the open state structure is presented and the early formation of the ion conducting pore is elucidated in atomic detail using time-resolved FTIR spectroscopy. Photo-isomerization of the retinal-chromophore causes a downward movement of the highly conserved E90, which opens the pore. Molecular dynamic (MD) simulations show that water molecules invade through this opened pore, Helix 2 tilts and the channel fully opens within ms. Since E90 is a highly conserved residue, the proposed E90-Helix2-tilt (EHT) model might describe a general activation mechanism and provides a new avenue for further mechanistic studies and engineering.
Collapse
Affiliation(s)
- Jens Kuhne
- Lehrstuhl für Biophysik, Ruhr Universität Bochum, Universitätsstrasse 150, 44780 Bochum (Germany)
| | | | | | | | | | | |
Collapse
|
43
|
Kuhne J, Eisenhauer K, Ritter E, Hegemann P, Gerwert K, Bartl F. Die frühe Entstehung der ionenleitenden Pore in Channelrhodopsin-2. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201410180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
44
|
Müller M, Bamann C, Bamberg E, Kühlbrandt W. Light-induced helix movements in channelrhodopsin-2. J Mol Biol 2014; 427:341-9. [PMID: 25451024 DOI: 10.1016/j.jmb.2014.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/10/2014] [Accepted: 11/02/2014] [Indexed: 11/26/2022]
Abstract
Channelrhodopsin-2 (ChR2) is a cation-selective light-gated channel from Chlamydomonas reinhardtii (Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci USA 2003;100:13940-5), which has become a powerful tool in optogenetics. Two-dimensional crystals of the slow photocycling C128T ChR2 mutant were exposed to 473 nm light and rapidly frozen to trap the open state. Projection difference maps at 6Å resolution show the location, extent and direction of light-induced conformational changes in ChR2 during the transition from the closed state to the ion-conducting open state. Difference peaks indicate that transmembrane helices (TMHs) TMH2, TMH6 and TMH7 reorient or rearrange during the photocycle. No major differences were found near TMH3 and TMH4 at the dimer interface. While conformational changes in TMH6 and TMH7 are known from other microbial-type rhodopsins, our results indicate that TMH2 has a key role in light-induced channel opening and closing in ChR2.
Collapse
Affiliation(s)
- Maria Müller
- Max Planck Institute of Biophysics Department of Structural Biology, Max von Laue Strasse 3, 60438 Frankfurt, Germany
| | - Christian Bamann
- Max Planck Institute of Biophysics Department of Biophysical Chemistry, Max von Laue Strasse 3, 60438 Frankfurt, Germany
| | - Ernst Bamberg
- Max Planck Institute of Biophysics Department of Biophysical Chemistry, Max von Laue Strasse 3, 60438 Frankfurt, Germany
| | - Werner Kühlbrandt
- Max Planck Institute of Biophysics Department of Structural Biology, Max von Laue Strasse 3, 60438 Frankfurt, Germany.
| |
Collapse
|
45
|
Dien H, Deane CM, Knapp B. Gro2mat: A package to efficiently read gromacs output in MATLAB. J Comput Chem 2014; 35:1528-31. [DOI: 10.1002/jcc.23650] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/14/2014] [Accepted: 05/16/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Hung Dien
- Department of Analysis and Scientific Computing; Vienna University of Technology; Vienna 1040 Austria
| | - Charlotte M. Deane
- Department of Statistics; Protein Informatics Group; University of Oxford; Oxford OX1 United Kingdom
| | - Bernhard Knapp
- Department of Statistics; Protein Informatics Group; University of Oxford; Oxford OX1 United Kingdom
| |
Collapse
|
46
|
Muders V, Kerruth S, Lórenz-Fonfría VA, Bamann C, Heberle J, Schlesinger R. Resonance Raman and FTIR spectroscopic characterization of the closed and open states of channelrhodopsin-1. FEBS Lett 2014; 588:2301-6. [PMID: 24859039 DOI: 10.1016/j.febslet.2014.05.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 05/09/2014] [Accepted: 05/09/2014] [Indexed: 11/17/2022]
Abstract
Channelrhodopsin-1 from Chlamydomonas augustae (CaChR1) is a light-activated cation channel, which is a promising optogenetic tool. We show by resonance Raman spectroscopy and retinal extraction followed by high pressure liquid chromatography (HPLC) that the isomeric ratio of all-trans to 13-cis of solubilized channelrhodopsin-1 is with 70:30 identical to channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2). Critical frequency shifts in the retinal vibrations are identified in the Raman spectrum upon transition to the open (conductive P2(380)) state. Fourier transform infrared spectroscopy (FTIR) spectra indicate different structures of the open states in the two channelrhodopsins as reflected by the amide I bands and the protonation pattern of acidic amino acids.
Collapse
Affiliation(s)
- Vera Muders
- Genetic Biophysics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Silke Kerruth
- Experimental Molecular Biophysics, Freie Universität Berlin, 14195 Berlin, Germany
| | | | - Christian Bamann
- Max-Planck-Institute of Biophysics, Department of Biophysical Chemistry, 60438 Frankfurt/Main, Germany
| | - Joachim Heberle
- Experimental Molecular Biophysics, Freie Universität Berlin, 14195 Berlin, Germany
| | | |
Collapse
|
47
|
Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown L, Kandori H. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem Rev 2014; 114:126-63. [PMID: 24364740 PMCID: PMC3979449 DOI: 10.1021/cr4003769] [Citation(s) in RCA: 808] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Oliver P. Ernst
- Departments
of Biochemistry and Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Toronto, Ontario M5S 1A8, Canada
| | - David T. Lodowski
- Center
for Proteomics and Bioinformatics, Case
Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Marcus Elstner
- Institute
for Physical Chemistry, Karlsruhe Institute
of Technology, Kaiserstrasse
12, 76131 Karlsruhe, Germany
| | - Peter Hegemann
- Institute
of Biology, Experimental Biophysics, Humboldt-Universität
zu Berlin, Invalidenstrasse
42, 10115 Berlin, Germany
| | - Leonid
S. Brown
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Hideki Kandori
- Department
of Frontier Materials, Nagoya Institute
of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
48
|
Del Val C, Royuela-Flor J, Milenkovic S, Bondar AN. Channelrhodopsins: a bioinformatics perspective. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:643-55. [PMID: 24252597 DOI: 10.1016/j.bbabio.2013.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 11/07/2013] [Accepted: 11/09/2013] [Indexed: 12/28/2022]
Abstract
Channelrhodopsins are microbial-type rhodopsins that function as light-gated cation channels. Understanding how the detailed architecture of the protein governs its dynamics and specificity for ions is important, because it has the potential to assist in designing site-directed channelrhodopsin mutants for specific neurobiology applications. Here we use bioinformatics methods to derive accurate alignments of channelrhodopsin sequences, assess the sequence conservation patterns and find conserved motifs in channelrhodopsins, and use homology modeling to construct three-dimensional structural models of channelrhodopsins. The analyses reveal that helices C and D of channelrhodopsins contain Cys, Ser, and Thr groups that can engage in both intra- and inter-helical hydrogen bonds. We propose that these polar groups participate in inter-helical hydrogen-bonding clusters important for the protein conformational dynamics and for the local water interactions. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Coral Del Val
- Department of Computer Science and Artificial Intelligence, University of Granada, 18071 Granada, Spain.
| | - José Royuela-Flor
- Theoretical Molecular Biophysics, Department of Physics, Freie Universitaet Berlin, 14195 Berlin, Germany
| | - Stefan Milenkovic
- Theoretical Molecular Biophysics, Department of Physics, Freie Universitaet Berlin, 14195 Berlin, Germany
| | - Ana-Nicoleta Bondar
- Theoretical Molecular Biophysics, Department of Physics, Freie Universitaet Berlin, 14195 Berlin, Germany.
| |
Collapse
|
49
|
Lórenz-Fonfría VA, Heberle J. Channelrhodopsin unchained: structure and mechanism of a light-gated cation channel. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:626-42. [PMID: 24212055 DOI: 10.1016/j.bbabio.2013.10.014] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/21/2013] [Accepted: 10/30/2013] [Indexed: 12/25/2022]
Abstract
The new and vibrant field of optogenetics was founded by the seminal discovery of channelrhodopsin, the first light-gated cation channel. Despite the numerous applications that have revolutionised neurophysiology, the functional mechanism is far from understood on the molecular level. An arsenal of biophysical techniques has been established in the last decades of research on microbial rhodopsins. However, application of these techniques is hampered by the duration and the complexity of the photoreaction of channelrhodopsin compared with other microbial rhodopsins. A particular interest in resolving the molecular mechanism lies in the structural changes that lead to channel opening and closure. Here, we review the current structural and mechanistic knowledge that has been accomplished by integrating the static structure provided by X-ray crystallography and electron microscopy with time-resolved spectroscopic and electrophysiological techniques. The dynamical reactions of the chromophore are effectively coupled to structural changes of the protein, as shown by ultrafast spectroscopy. The hierarchical sequence of structural changes in the protein backbone that spans the time range from 10(-12)s to 10(-3)s prepares the channel to open and, consequently, cations can pass. Proton transfer reactions that are associated with channel gating have been resolved. In particular, glutamate 253 and aspartic acid 156 were identified as proton acceptor and donor to the retinal Schiff base. The reprotonation of the latter is the critical determinant for channel closure. The proton pathway that eventually leads to proton pumping is also discussed. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Víctor A Lórenz-Fonfría
- Freie Universität Berlin, Experimental Molecular Biophysics, Arnimallee 14, 14195 Berlin, Germany
| | - Joachim Heberle
- Freie Universität Berlin, Experimental Molecular Biophysics, Arnimallee 14, 14195 Berlin, Germany.
| |
Collapse
|