1
|
Laatri S, El Khayari S, Qriouet Z. Exploring the molecular aspect and updating evolutionary approaches to the DNA polymerase enzymes for biotechnological needs: A comprehensive review. Int J Biol Macromol 2024; 276:133924. [PMID: 39033894 DOI: 10.1016/j.ijbiomac.2024.133924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
DNA polymerases are essential enzymes that play a key role in living organisms, as they participate in the synthesis and maintenance of the DNA molecule. The intrinsic properties of these enzymes have been widely observed and studied to understand their functions, activities, and behavior, which has allowed their natural power in DNA synthesis to be exploited in modern biotechnology, to the point of making them true pillars of the field. In this context, the laboratory evolution of these enzymes, either by directed evolution or rational design, has led to the generation of a wide range of new DNA polymerases with novel properties, suitable for a variety of biotechnological needs. In this review, we examine DNA polymerases at the molecular level, their biotechnological use, and their evolutionary methods in relation to the novel properties sought, providing a chronological selection of evolved DNA polymerases cited in the literature that we consider to be of great interest. To our knowledge, this work is the first to bring together the molecular, functional and evolutionary aspects of the DNA polymerase enzyme. We believe it will be of great interest to researchers whose aim is to produce new lines of evolved DNA polymerases.
Collapse
Affiliation(s)
- Said Laatri
- Microbiology and Molecular Biology Laboratory, Faculty of Sciences, Mohammed V-Souissi University, Rabat 10100, Morocco.
| | | | - Zidane Qriouet
- Pharmacology and Toxicology Laboratory, Faculty of Medicine and Pharmacy, Mohammed V-Souissi University, Rabat 10100, Morocco
| |
Collapse
|
2
|
Barpuzary B, Negria S, Chaput JC. Improved synthesis and polymerase recognition of 7-deaza-7-modified α-l-threofuranosyl guanosine analogs. RSC Adv 2024; 14:19701-19706. [PMID: 38903677 PMCID: PMC11188673 DOI: 10.1039/d4ra03029j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024] Open
Abstract
Threofuranosyl nucleic acid (TNA), an artificial genetic polymer known for its nuclease resistance and acid stability, has grown in popularity as a genetically-encoded material for applications in synthetic biology and biomedicine. TNA oligonucleotide synthesis requires enzymatic or solid phase synthesis pathways that rely on monomer building blocks that are not commercially available and can only be obtained by chemical synthesis. Here we present a synthetic route to 7-deaza-7-modified tGTP and phosphoramidite analogs that is operationally simpler than our previously described strategy. The new methodology offers an HPLC-free route to tGTP analogs that are recognized by engineered TNA polymerases and can be incorporated with continued TNA synthesis.
Collapse
Affiliation(s)
- Bhawna Barpuzary
- Department of Pharmaceutical Sciences, University of California Irvine CA 92697-3958 USA
| | - Sergey Negria
- Department of Pharmaceutical Sciences, University of California Irvine CA 92697-3958 USA
| | - John C Chaput
- Department of Pharmaceutical Sciences, University of California Irvine CA 92697-3958 USA
- Department of Chemistry, University of California Irvine CA 92697-3958 USA
- Department of Molecular Biology and Biochemistry, University of California CA 92697-3958 USA
- Department of Chemical and Biomolecular Engineering, University of California Irvine CA 92697-3958 USA
| |
Collapse
|
3
|
Ordóñez CD, Redrejo-Rodríguez M. DNA Polymerases for Whole Genome Amplification: Considerations and Future Directions. Int J Mol Sci 2023; 24:9331. [PMID: 37298280 PMCID: PMC10253169 DOI: 10.3390/ijms24119331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
In the same way that specialized DNA polymerases (DNAPs) replicate cellular and viral genomes, only a handful of dedicated proteins from various natural origins as well as engineered versions are appropriate for competent exponential amplification of whole genomes and metagenomes (WGA). Different applications have led to the development of diverse protocols, based on various DNAPs. Isothermal WGA is currently widely used due to the high performance of Φ29 DNA polymerase, but PCR-based methods are also available and can provide competent amplification of certain samples. Replication fidelity and processivity must be considered when selecting a suitable enzyme for WGA. However, other properties, such as thermostability, capacity to couple replication, and double helix unwinding, or the ability to maintain DNA replication opposite to damaged bases, are also very relevant for some applications. In this review, we provide an overview of the different properties of DNAPs widely used in WGA and discuss their limitations and future research directions.
Collapse
Affiliation(s)
- Carlos D. Ordóñez
- CIC bioGUNE, Bizkaia Science and Technology Park, Building 800, 48160 Derio, Spain
| | - Modesto Redrejo-Rodríguez
- Department of Biochemistry, Universidad Autónoma de Madrid and Instituto de Investigaciones Biomédicas “Alberto Sols”, CSIC-UAM, 28029 Madrid, Spain
| |
Collapse
|
4
|
Akram F, Shah FI, Ibrar R, Fatima T, Haq IU, Naseem W, Gul MA, Tehreem L, Haider G. Bacterial thermophilic DNA polymerases: A focus on prominent biotechnological applications. Anal Biochem 2023; 671:115150. [PMID: 37054862 DOI: 10.1016/j.ab.2023.115150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/24/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
DNA polymerases are the enzymes able to replicate the genetic information in nucleic acid. As a result, they are necessary to copy the complete genome of every living creature before cell division and sustain the integrity of the genetic information throughout the life of each cell. Any organism that uses DNA as its genetic information, whether unicellular or multicellular, requires one or more thermostable DNA polymerases to thrive. Thermostable DNA polymerase is important in modern biotechnology and molecular biology because it results in methods such as DNA cloning, DNA sequencing, whole genome amplification, molecular diagnostics, polymerase chain reaction, synthetic biology, and single nucleotide polymorphism detection. There are at least 14 DNA-dependent DNA polymerases in the human genome, which is remarkable. These include the widely accepted, high-fidelity enzymes responsible for replicating the vast majority of genomic DNA and eight or more specialized DNA polymerases discovered in the last decade. The newly discovered polymerases' functions are still being elucidated. Still, one of its crucial tasks is to permit synthesis to resume despite the DNA damage that stops the progression of replication-fork. One of the primary areas of interest in the research field has been the quest for novel DNA polymerase since the unique features of each thermostable DNA polymerase may lead to the prospective creation of novel reagents. Furthermore, protein engineering strategies for generating mutant or artificial DNA polymerases have successfully generated potent DNA polymerases for various applications. In molecular biology, thermostable DNA polymerases are extremely useful for PCR-related methods. This article examines the role and importance of DNA polymerase in a variety of techniques.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan.
| | - Fatima Iftikhar Shah
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan; The University of Lahore, Pakistan
| | - Ramesha Ibrar
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Taseer Fatima
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan; Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Waqas Naseem
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Mahmood Ayaz Gul
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Laiba Tehreem
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Ghanoor Haider
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
5
|
Wang G, He C, Zou J, Liu J, Du Y, Chen T. Enzymatic Synthesis of DNA with an Expanded Genetic Alphabet Using Terminal Deoxynucleotidyl Transferase. ACS Synth Biol 2022; 11:4142-4155. [PMID: 36455255 DOI: 10.1021/acssynbio.2c00456] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Development of unnatural base pairs (UBPs) has significantly expanded the genetic alphabet both in vitro and in vivo and led to numerous potential applications in the biotechnology and biopharmaceutical industry. Efficient synthesis of oligonucleotides containing unnatural nucleobases is undoubtedly an essential prerequisite for making full use of the UBPs, and de novo synthesis of oligonucleotides with terminal deoxynucleotidyl transferases (TdTs) has emerged as a method of great potential to overcome limitations of traditional solid-phase synthesis. Herein, we report the efficient template-independent incorporation of nucleotides of unnatural nucleobases dTPT3 and dNaM, which have been designed to make one of the most successful UBPs to date, dTPT3-dNaM, into DNA oligonucleotides with a TdT enzyme under optimized conditions. We also demonstrate the efficient TdT incorporation of dTPT3 derivatives with different functional linkers into oligonucleotides for orthogonal labeling of nucleic acids and applications thereof. The development of a method for the daily laboratory preparation of DNAs with UBPs at arbitrary sites with the assistance of TdT is also described.
Collapse
Affiliation(s)
- Guangyuan Wang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Chuanping He
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jinrong Zou
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jiayun Liu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yuhui Du
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Tingjian Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
6
|
Wang G, Du Y, Ma X, Ye F, Qin Y, Wang Y, Xiang Y, Tao R, Chen T. Thermophilic Nucleic Acid Polymerases and Their Application in Xenobiology. Int J Mol Sci 2022; 23:ijms232314969. [PMID: 36499296 PMCID: PMC9738464 DOI: 10.3390/ijms232314969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022] Open
Abstract
Thermophilic nucleic acid polymerases, isolated from organisms that thrive in extremely hot environments, possess great DNA/RNA synthesis activities under high temperatures. These enzymes play indispensable roles in central life activities involved in DNA replication and repair, as well as RNA transcription, and have already been widely used in bioengineering, biotechnology, and biomedicine. Xeno nucleic acids (XNAs), which are analogs of DNA/RNA with unnatural moieties, have been developed as new carriers of genetic information in the past decades, which contributed to the fast development of a field called xenobiology. The broad application of these XNA molecules in the production of novel drugs, materials, and catalysts greatly relies on the capability of enzymatic synthesis, reverse transcription, and amplification of them, which have been partially achieved with natural or artificially tailored thermophilic nucleic acid polymerases. In this review, we first systematically summarize representative thermophilic and hyperthermophilic polymerases that have been extensively studied and utilized, followed by the introduction of methods and approaches in the engineering of these polymerases for the efficient synthesis, reverse transcription, and amplification of XNAs. The application of XNAs facilitated by these polymerases and their mutants is then discussed. In the end, a perspective for the future direction of further development and application of unnatural nucleic acid polymerases is provided.
Collapse
|
7
|
Sun L, Ma X, Zhang B, Qin Y, Ma J, Du Y, Chen T. From polymerase engineering to semi-synthetic life: artificial expansion of the central dogma. RSC Chem Biol 2022; 3:1173-1197. [PMID: 36320892 PMCID: PMC9533422 DOI: 10.1039/d2cb00116k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Nucleic acids have been extensively modified in different moieties to expand the scope of genetic materials in the past few decades. While the development of unnatural base pairs (UBPs) has expanded the genetic information capacity of nucleic acids, the production of synthetic alternatives of DNA and RNA has increased the types of genetic information carriers and introduced novel properties and functionalities into nucleic acids. Moreover, the efforts of tailoring DNA polymerases (DNAPs) and RNA polymerases (RNAPs) to be efficient unnatural nucleic acid polymerases have enabled broad application of these unnatural nucleic acids, ranging from production of stable aptamers to evolution of novel catalysts. The introduction of unnatural nucleic acids into living organisms has also started expanding the central dogma in vivo. In this article, we first summarize the development of unnatural nucleic acids with modifications or alterations in different moieties. The strategies for engineering DNAPs and RNAPs are then extensively reviewed, followed by summarization of predominant polymerase mutants with good activities for synthesizing, reverse transcribing, or even amplifying unnatural nucleic acids. Some recent application examples of unnatural nucleic acids with their polymerases are then introduced. At the end, the approaches of introducing UBPs and synthetic genetic polymers into living organisms for the creation of semi-synthetic organisms are reviewed and discussed.
Collapse
Affiliation(s)
- Leping Sun
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology 510006 Guangzhou China
| | - Xingyun Ma
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology 510006 Guangzhou China
| | - Binliang Zhang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology 510006 Guangzhou China
| | - Yanjia Qin
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology 510006 Guangzhou China
| | - Jiezhao Ma
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology 510006 Guangzhou China
| | - Yuhui Du
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology 510006 Guangzhou China
| | - Tingjian Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology 510006 Guangzhou China
| |
Collapse
|
8
|
Geronimo I, Vidossich P, De Vivo M. Local Structural Dynamics at the Metal-Centered Catalytic Site of Polymerases is Critical for Fidelity. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Inacrist Geronimo
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Pietro Vidossich
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Marco De Vivo
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| |
Collapse
|
9
|
Xue Y, Braslavsky I, Quake SR. Temperature effect on polymerase fidelity. J Biol Chem 2021; 297:101270. [PMID: 34695416 PMCID: PMC8592868 DOI: 10.1016/j.jbc.2021.101270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 11/21/2022] Open
Abstract
The discovery of extremophiles helped enable the development of groundbreaking technology such as PCR. Temperature variation is often an essential step of these technology platforms, but the effect of temperature on the error rate of polymerases from different origins is underexplored. Here, we applied high-throughput sequencing to profile the error rates of DNA polymerases from psychrophilic, mesophilic, and thermophilic origins with single-molecule resolution. We found that the reaction temperature substantially increases substitution and deletion error rates of psychrophilic and mesophilic DNA polymerases. Our motif analysis shows that the substitution error profiles cluster according to phylogenetic similarity of polymerases, not the reaction temperature, thus suggesting that the reaction temperature increases the global error rate of polymerases independent of the sequence context. Intriguingly, we also found that the DNA polymerase I of psychrophilic bacteria exhibits higher polymerization activity than its mesophilic ortholog across all temperature ranges, including down to -19 °C, which is well below the freezing temperature of water. Our results provide a useful reference for how the reaction temperature, a crucial parameter of biochemistry, can affect DNA polymerase fidelity in organisms adapted to a wide range of thermal environments.
Collapse
Affiliation(s)
- Yuan Xue
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Ido Braslavsky
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Stephen R Quake
- Department of Bioengineering, Stanford University, Stanford, California, USA; Department of Applied Physics, Stanford University, Stanford, California, USA; Chan Zuckerberg Biohub, Mission Bay, California, USA.
| |
Collapse
|
10
|
Song P, Zhang R, He C, Chen T. Transcription, Reverse Transcription, and Amplification of Backbone-Modified Nucleic Acids with Laboratory-Evolved Thermophilic DNA Polymerases. Curr Protoc 2021; 1:e188. [PMID: 34232574 DOI: 10.1002/cpz1.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Backbone-modified nucleic acids are usually more stable enzymatically than their natural counterparts, enabling their broad application as potential diagnostic or therapeutic agents. Moreover, the development of nucleic acids with unnatural backbones has expanded the pool of genetic information carriers and paved the way toward synthetic xenobiology. However, synthesizing these molecules remains very challenging due to the requirement for harsh reaction conditions and the low coupling efficiency during their traditional solid-phase synthesis. Although enzymatic synthesis provides an attractive alternative that also allows the replication and artificial evolution of these molecules, it is crucially dependent on the availability of polymerases capable of synthesizing these backbone-modified nucleotides. Previously, a series of thermostable polymerases that can efficiently synthesize or even amplify backbone-modified DNA or RNA have been evolved through a polymerase evolution method based on phage display. Herein we summarize protocols to use these evolved polymerase mutants to transcribe, reverse transcribe, and PCR amplify backbone-modified nucleic acids. We also outline the polymerase chain transcription method, developed later for the rapid production of RNA or backbone-modified RNA with one of these evolved polymerases, SFM4-3. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Transcription/synthesis of modified DNA/RNA from DNA templates with evolved polymerases SFM4-3 or SFM4-6 Basic Protocol 2: Reverse transcription of modified DNA/RNA with evolved polymerase SFM4-9 Basic Protocol 3: PCR amplification of modified DNA with evolved polymerase SFM4-3 Basic Protocol 4: Polymerase chain transcription for the production of RNA/modified RNA oligonucleotides with evolved polymerase SFM4-3.
Collapse
Affiliation(s)
- Ping Song
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, P. R. China
| | - Rujie Zhang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, P. R. China
| | - Chuanping He
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, P. R. China
| | - Tingjian Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, P. R. China
| |
Collapse
|
11
|
Medina E, Yik EJ, Herdewijn P, Chaput JC. Functional Comparison of Laboratory-Evolved XNA Polymerases for Synthetic Biology. ACS Synth Biol 2021; 10:1429-1437. [PMID: 34029459 DOI: 10.1021/acssynbio.1c00048] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Artificial genetic polymers (XNAs) have enormous potential as new materials for synthetic biology, biotechnology, and molecular medicine; yet, very little is known about the biochemical properties of XNA polymerases that have been developed to synthesize and reverse-transcribe XNA polymers. Here, we compare the substrate specificity, thermal stability, reverse transcriptase activity, and fidelity of laboratory-evolved polymerases that were established to synthesize RNA, 2'-fluoroarabino nucleic acid (FANA), arabino nucleic acid (ANA), hexitol nucleic acid (HNA), threose nucleic acid (TNA), and phosphonomethylthreosyl nucleic acid (PMT). We find that the mutations acquired to facilitate XNA synthesis increase the tolerance of the enzymes for sugar-modified substrates with some sacrifice to protein-folding stability. Bst DNA polymerase was found to have weak reverse transcriptase activity on ANA and uncontrolled reverse transcriptase activity on HNA, differing from its known recognition of FANA and TNA templates. These data benchmark the activity of current XNA polymerases and provide opportunities for generating new polymerase variants that function with greater activity and substrate specificity.
Collapse
Affiliation(s)
| | | | - Piet Herdewijn
- KU Leuven, Rega Institute for Medical Research, Herestraat 49-bus 1041, 3000 Leuven, Belgium
| | | |
Collapse
|
12
|
Repecka D, Jauniskis V, Karpus L, Rembeza E, Rokaitis I, Zrimec J, Poviloniene S, Laurynenas A, Viknander S, Abuajwa W, Savolainen O, Meskys R, Engqvist MKM, Zelezniak A. Expanding functional protein sequence spaces using generative adversarial networks. NAT MACH INTELL 2021. [DOI: 10.1038/s42256-021-00310-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
13
|
Palla M, Punthambaker S, Stranges B, Vigneault F, Nivala J, Wiegand D, Ayer A, Craig T, Gremyachinskiy D, Franklin H, Sun S, Pollard J, Trans A, Arnold C, Schwab C, Mcgaw C, Sarvabhowman P, Dalal D, Thai E, Amato E, Lederman I, Taing M, Kelley S, Qwan A, Fuller CW, Roever S, Church GM. Multiplex Single-Molecule Kinetics of Nanopore-Coupled Polymerases. ACS NANO 2021; 15:489-502. [PMID: 33370106 DOI: 10.1021/acsnano.0c05226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
DNA polymerases have revolutionized the biotechnology field due to their ability to precisely replicate stored genetic information. Screening variants of these enzymes for specific properties gives the opportunity to identify polymerases with different features. We have previously developed a single-molecule DNA sequencing platform by coupling a DNA polymerase to an α-hemolysin pore on a nanopore array. Here, we use this approach to demonstrate a single-molecule method that enables rapid screening of polymerase variants in a multiplex manner. In this approach, barcoded DNA strands are complexed with polymerase variants and serve as templates for nanopore sequencing. Nanopore sequencing of the barcoded DNA reveals both the barcode identity and kinetic properties of the polymerase variant associated with the cognate barcode, allowing for multiplexed investigation of many polymerase variants in parallel on a single nanopore array. Further, we develop a robust classification algorithm that discriminates kinetic characteristics of the different polymerase mutants. As a proof of concept, we demonstrate the utility of our approach by screening a library of ∼100 polymerases to identify variants for potential applications of biotechnological interest. We anticipate our screening method to be broadly useful for applications that require polymerases with altered physical properties.
Collapse
Affiliation(s)
- Mirkó Palla
- Harvard Medical School, Department of Genetics, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - Sukanya Punthambaker
- Harvard Medical School, Department of Genetics, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - Benjamin Stranges
- Harvard Medical School, Department of Genetics, Boston, Massachusetts 02115, United States
| | - Frederic Vigneault
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - Jeff Nivala
- Harvard Medical School, Department of Genetics, Boston, Massachusetts 02115, United States
| | - Daniel Wiegand
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - Aruna Ayer
- Roche Sequencing Solutions, Santa Clara, California 95050, United States
| | - Timothy Craig
- Roche Sequencing Solutions, Santa Clara, California 95050, United States
| | | | - Helen Franklin
- Roche Sequencing Solutions, Santa Clara, California 95050, United States
| | - Shaw Sun
- Roche Sequencing Solutions, Santa Clara, California 95050, United States
| | - James Pollard
- Roche Sequencing Solutions, Santa Clara, California 95050, United States
| | - Andrew Trans
- Roche Sequencing Solutions, Santa Clara, California 95050, United States
| | - Cleoma Arnold
- Roche Sequencing Solutions, Santa Clara, California 95050, United States
| | - Charles Schwab
- Roche Sequencing Solutions, Santa Clara, California 95050, United States
| | - Colin Mcgaw
- Roche Sequencing Solutions, Santa Clara, California 95050, United States
| | | | - Dhruti Dalal
- Roche Sequencing Solutions, Santa Clara, California 95050, United States
| | - Eileen Thai
- Roche Sequencing Solutions, Santa Clara, California 95050, United States
| | - Evan Amato
- Roche Sequencing Solutions, Santa Clara, California 95050, United States
| | - Ilya Lederman
- Roche Sequencing Solutions, Santa Clara, California 95050, United States
| | - Meng Taing
- Roche Sequencing Solutions, Santa Clara, California 95050, United States
| | - Sara Kelley
- Roche Sequencing Solutions, Santa Clara, California 95050, United States
| | - Adam Qwan
- Roche Sequencing Solutions, Santa Clara, California 95050, United States
| | - Carl W Fuller
- Roche Sequencing Solutions, Santa Clara, California 95050, United States
- Columbia University, Center for Genome Technology and Biomolecular Engineering, Department of Chemical Engineering, New York, New York 10027, United States
| | - Stefan Roever
- Roche Sequencing Solutions, Santa Clara, California 95050, United States
| | - George M Church
- Harvard Medical School, Department of Genetics, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| |
Collapse
|
14
|
Ouaray Z, Benner SA, Georgiadis MM, Richards NGJ. Building better polymerases: Engineering the replication of expanded genetic alphabets. J Biol Chem 2020; 295:17046-17059. [PMID: 33004440 PMCID: PMC7863901 DOI: 10.1074/jbc.rev120.013745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/30/2020] [Indexed: 11/30/2022] Open
Abstract
DNA polymerases are today used throughout scientific research, biotechnology, and medicine, in part for their ability to interact with unnatural forms of DNA created by synthetic biologists. Here especially, natural DNA polymerases often do not have the "performance specifications" needed for transformative technologies. This creates a need for science-guided rational (or semi-rational) engineering to identify variants that replicate unnatural base pairs (UBPs), unnatural backbones, tags, or other evolutionarily novel features of unnatural DNA. In this review, we provide a brief overview of the chemistry and properties of replicative DNA polymerases and their evolved variants, focusing on the Klenow fragment of Taq DNA polymerase (Klentaq). We describe comparative structural, enzymatic, and molecular dynamics studies of WT and Klentaq variants, complexed with natural or noncanonical substrates. Combining these methods provides insight into how specific amino acid substitutions distant from the active site in a Klentaq DNA polymerase variant (ZP Klentaq) contribute to its ability to replicate UBPs with improved efficiency compared with Klentaq. This approach can therefore serve to guide any future rational engineering of replicative DNA polymerases.
Collapse
Affiliation(s)
- Zahra Ouaray
- School of Chemistry, Cardiff University, Park Place, Cardiff, United Kingdom
| | - Steven A Benner
- Foundation for Applied Molecular Evolution, Alachua, Florida, USA
| | - Millie M Georgiadis
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | - Nigel G J Richards
- School of Chemistry, Cardiff University, Park Place, Cardiff, United Kingdom; Foundation for Applied Molecular Evolution, Alachua, Florida, USA.
| |
Collapse
|
15
|
Thompson AS, Barrett SE, Weiden AG, Venkatesh A, Seto MKC, Gottlieb SZP, Leconte AM. Accurate and Efficient One-Pot Reverse Transcription and Amplification of 2'-Fluoro-Modified Nucleic Acids by Commercial DNA Polymerases. Biochemistry 2020; 59:2833-2841. [PMID: 32659079 DOI: 10.1021/acs.biochem.0c00494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
DNA is a foundational tool in biotechnology and synthetic biology but is limited by sensitivity to DNA-modifying enzymes. Recently, researchers have identified DNA polymerases that can enzymatically synthesize long oligonucleotides of modified DNA (M-DNA) that are resistant to DNA-modifying enzymes. Most applications require M-DNA to be reverse transcribed, typically using a RNA reverse transcriptase, back into natural DNA for sequence analysis or further manipulation. Here, we tested commercially available DNA-dependent DNA polymerases for their ability to reverse transcribe and amplify M-DNA in a one-pot reaction. Three of the six polymerases chosen (Phusion, Q5, and Deep Vent) could reverse transcribe and amplify synthetic 2'F M-DNA in a single reaction with <5 × 10-3 error per base pair. We further used Q5 DNA polymerase to reverse transcribe and amplify M-DNA synthesized by two candidate M-DNA polymerases (SFP1 and SFM4-6), allowing for quantification of the frequency, types, and locations of errors made during M-DNA synthesis. From these studies, we identify SFP1 as one of the most accurate M-DNA polymerases identified to date. Collectively, these studies establish a simple, robust method for the conversion of 2'F M-DNA to DNA in <1 h using commercially available materials, significantly improving the ease of use of M-DNA.
Collapse
Affiliation(s)
- Arianna S Thompson
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| | - Susanna E Barrett
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| | - Aurora G Weiden
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| | - Ananya Venkatesh
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| | - Madison K C Seto
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| | - Simone Z P Gottlieb
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| | - Aaron M Leconte
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| |
Collapse
|
16
|
Nie P, Bai Y, Mei H. Synthetic Life with Alternative Nucleic Acids as Genetic Materials. Molecules 2020; 25:E3483. [PMID: 32751873 PMCID: PMC7435384 DOI: 10.3390/molecules25153483] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
DNA, the fundamental genetic polymer of all living organisms on Earth, can be chemically modified to embrace novel functions that do not exist in nature. The key chemical and structural parameters for genetic information storage, heredity, and evolution have been elucidated, and many xenobiotic nucleic acids (XNAs) with non-canonical structures are developed as alternative genetic materials in vitro. However, it is still particularly challenging to replace DNAs with XNAs in living cells. This review outlines some recent studies in which the storage and propagation of genetic information are achieved in vivo by expanding genetic systems with XNAs.
Collapse
Affiliation(s)
| | | | - Hui Mei
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (P.N.); (Y.B.)
| |
Collapse
|
17
|
|
18
|
Promoter Length Affects the Initiation of T7 RNA Polymerase In Vitro: New Insights into Promoter/Polymerase Co-evolution. J Mol Evol 2019; 88:179-193. [PMID: 31863129 DOI: 10.1007/s00239-019-09922-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 11/28/2019] [Indexed: 10/25/2022]
Abstract
Polymerases are integral factors of gene expression and are essential for the maintenance and transmission of genetic information. RNA polymerases (RNAPs) differ from other polymerases in that they can bind promoter sequences and initiate transcription de novo and this promoter recognition requires the presence of specific DNA binding domains in the polymerase. Bacteriophage T7 RNA polymerase (T7RNAP) is the prototype for single subunit RNA polymerases which include bacteriophage and mitochondrial RNAPs, and the structure and mechanistic aspects of transcription by T7 RNAP are well characterized. Here, we describe experiments to determine whether the prototype T7 RNAP is able to recognize and initiate at truncated promoters similar to mitochondrial promoters. Using an in vitro oligonucleotide transcriptional system, we have assayed transcription initiation activity by T7 RNAP. These assays have not only defined the limits of conventional de novo initiation on truncated promoters, but have identified novel activities of initiation of RNA synthesis. We propose that these novel activities may be vestigial activities surviving from the transition of single subunit polymerase initiation using primers to de novo initiation using promoters.
Collapse
|
19
|
Ledbetter MP, Malyshev DA, Romesberg FE. Site-Specific Labeling of DNA via PCR with an Expanded Genetic Alphabet. Methods Mol Biol 2019; 1973:193-212. [PMID: 31016704 DOI: 10.1007/978-1-4939-9216-4_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The polymerase chain reaction (PCR) is a universal and essential tool in molecular biology and biotechnology, but it is generally limited to the amplification of DNA with the four-letter genetic alphabet. Here, we describe PCR amplification with a six-letter alphabet that includes the two natural dA-dT and dG-dC base pairs and an unnatural base pair (UBP) formed between the synthetic nucleotides dNaM and d5SICS or dTPT3 or analogs of these synthetic nucleotides modified with linkers that allow for the site-specific labeling of the amplified DNA with different functional groups. Under standard conditions, the six-letter DNA may be amplified with high efficiency and with greater than 99.9% fidelity. This allows for the efficient production of DNA site-specifically modified with different functionalities of interest for use in a wide range of applications.
Collapse
Affiliation(s)
| | - Denis A Malyshev
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Floyd E Romesberg
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
20
|
Liao JY, Bala S, Ngor AK, Yik EJ, Chaput JC. P(V) Reagents for the Scalable Synthesis of Natural and Modified Nucleoside Triphosphates. J Am Chem Soc 2019; 141:13286-13289. [PMID: 31298849 DOI: 10.1021/jacs.9b04728] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Natural and modified nucleoside triphosphates impact nearly every major aspect of healthcare research from DNA sequencing to drug discovery. However, a scalable synthetic route to these molecules has long been hindered by the need for purification by high performance liquid chromatography (HPLC). Here, we describe a fundamentally different approach that uses a novel P(V) pyrene pyrophosphate reagent to generate derivatives that are purified by silica gel chromatography and converted to the desired compounds on scales vastly exceeding those achievable by HPLC. The power of this approach is demonstrated through the synthesis of a broad range of natural and unnatural nucleoside triphosphates (dNTPs and xNTPs) using protocols that are efficient, inexpensive, and operationally straightforward.
Collapse
Affiliation(s)
- Jen-Yu Liao
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry , University of California , Irvine , California 92697-3958 , United States
| | - Saikat Bala
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry , University of California , Irvine , California 92697-3958 , United States
| | - Arlene K Ngor
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry , University of California , Irvine , California 92697-3958 , United States
| | - Eric J Yik
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry , University of California , Irvine , California 92697-3958 , United States
| | - John C Chaput
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry , University of California , Irvine , California 92697-3958 , United States
| |
Collapse
|
21
|
Nikoomanzar A, Vallejo D, Chaput JC. Elucidating the Determinants of Polymerase Specificity by Microfluidic-Based Deep Mutational Scanning. ACS Synth Biol 2019; 8:1421-1429. [PMID: 31081325 DOI: 10.1021/acssynbio.9b00104] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Engineering polymerases to synthesize artificial genetic polymers with unique backbone structures is limited by a general lack of understanding about the structural determinants that govern substrate specificity. Here, we report a high-throughput microfluidic-based approach for mapping sequence-function relationships that combines droplet-based optical polymerase sorting with deep mutational scanning. We applied this strategy to map the finger subdomain of a replicative DNA polymerase isolated from Thermococcus kodakarensis (Kod). The enrichment profile provides an unbiased view of the ability of each mutant to synthesize threose nucleic acid, which was used as a model non-natural genetic polymer. From a single round of sorting, we discovered two cases of positive epistasis and demonstrate the near inversion of substrate specificity from a double mutant variant. This effort indicates that polymerase specificity may be governed by a small number of highly specific residues that can be elucidated by deep mutational scanning without the need for iterative rounds of directed evolution.
Collapse
Affiliation(s)
- Ali Nikoomanzar
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry , University of California , Irvine , California 92697-3958 , United States
| | - Derek Vallejo
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry , University of California , Irvine , California 92697-3958 , United States
| | - John C Chaput
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry , University of California , Irvine , California 92697-3958 , United States
| |
Collapse
|
22
|
Engineering Polymerases for New Functions. Trends Biotechnol 2019; 37:1091-1103. [PMID: 31003719 DOI: 10.1016/j.tibtech.2019.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/08/2019] [Accepted: 03/19/2019] [Indexed: 01/04/2023]
Abstract
DNA polymerases are critical tools in biotechnology, enabling efficient and accurate amplification of DNA templates, yet many desired functions are not readily available in natural DNA polymerases. New or improved functions can be engineered in DNA polymerases by mutagenesis or through the creation of protein chimeras. Engineering often necessitates the development of new techniques, such as selections in water-in-oil emulsions that connect genotype to phenotype and allow more flexibility in engineering than phage display. Engineering efforts have led to DNA polymerases that can withstand extreme conditions or the presence of inhibitors, as well as polymerases with the ability to copy modified DNA templates. In this review we discuss polymerases for biotechnology that have been reported along with tools to enable further development.
Collapse
|
23
|
Zhang Y, Lai BS, Juhas M. Recent Advances in Aptamer Discovery and Applications. Molecules 2019; 24:molecules24050941. [PMID: 30866536 PMCID: PMC6429292 DOI: 10.3390/molecules24050941] [Citation(s) in RCA: 381] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 12/22/2022] Open
Abstract
Aptamers are short, single-stranded DNA, RNA, or synthetic XNA molecules that can be developed with high affinity and specificity to interact with any desired targets. They have been widely used in facilitating discoveries in basic research, ensuring food safety and monitoring the environment. Furthermore, aptamers play promising roles as clinical diagnostics and therapeutic agents. This review provides update on the recent advances in this rapidly progressing field of research with particular emphasis on generation of aptamers and their applications in biosensing, biotechnology and medicine. The limitations and future directions of aptamers in target specific delivery and real-time detection are also discussed.
Collapse
Affiliation(s)
- Yang Zhang
- College of Science, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Bo Shiun Lai
- School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Mario Juhas
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28/30, CH-8006 Zurich, Switzerland.
| |
Collapse
|
24
|
Antipova OM, Zavyalova EG, Golovin AV, Pavlova GV, Kopylov AM, Reshetnikov RV. Advances in the Application of Modified Nucleotides in SELEX Technology. BIOCHEMISTRY (MOSCOW) 2018; 83:1161-1172. [PMID: 30472954 DOI: 10.1134/s0006297918100024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aptamers are widely used as molecular recognition elements for detecting and blocking functional biological molecules. Since the common "alphabet" of DNA and RNA consists of only four letters, the chemical diversity of aptamers is less than the diversity of protein recognition elements built of 20 amino acids. Chemical modification of nucleotides enlarges the potential of DNA/RNA aptamers. This review describes the latest achievements in a variety of approaches to aptamers selection with an extended genetic alphabet.
Collapse
Affiliation(s)
- O M Antipova
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia. .,Apto-Pharm Ltd., Moscow, 115564, Russia
| | - E G Zavyalova
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.,Apto-Pharm Ltd., Moscow, 115564, Russia
| | - A V Golovin
- Apto-Pharm Ltd., Moscow, 115564, Russia.,Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119234, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| | - G V Pavlova
- Apto-Pharm Ltd., Moscow, 115564, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia.,Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.,Burdenko National Scientific and Practical Center for Neurosurgery, Ministry of Healthcare of the Russian Federation, Moscow, 125047, Russia
| | - A M Kopylov
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.,Apto-Pharm Ltd., Moscow, 115564, Russia
| | - R V Reshetnikov
- Apto-Pharm Ltd., Moscow, 115564, Russia.,Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119234, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia.,Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
25
|
Wang Y, Ngor AK, Nikoomanzar A, Chaput JC. Evolution of a General RNA-Cleaving FANA Enzyme. Nat Commun 2018; 9:5067. [PMID: 30498223 PMCID: PMC6265334 DOI: 10.1038/s41467-018-07611-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/06/2018] [Indexed: 11/09/2022] Open
Abstract
The isolation of synthetic genetic polymers (XNAs) with catalytic activity demonstrates that catalysis is not limited to natural biopolymers, but it remains unknown whether such systems can achieve robust catalysis with Michaelis-Menten kinetics. Here, we describe an efficient RNA-cleaving 2'-fluoroarabino nucleic acid enzyme (FANAzyme) that functions with a rate enhancement of >106-fold over the uncatalyzed reaction and exhibits substrate saturation kinetics typical of most natural enzymes. The FANAzyme was generated by in vitro evolution using natural polymerases that were found to recognize FANA substrates with high fidelity. The enzyme comprises a small 25 nucleotide catalytic domain flanked by substrate-binding arms that can be engineered to recognize diverse RNA targets. Substrate cleavage occurs at a specific phosphodiester bond located between an unpaired guanine and a paired uracil in the substrate recognition arm. Our results expand the chemical space of nucleic acid enzymes to include nuclease-resistant scaffolds with strong catalytic activity.
Collapse
Affiliation(s)
- Yajun Wang
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697-3958, USA.,Department of Chemistry, University of California, Irvine, CA, 92697-3958, USA.,Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-3958, USA
| | - Arlene K Ngor
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697-3958, USA.,Department of Chemistry, University of California, Irvine, CA, 92697-3958, USA.,Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-3958, USA
| | - Ali Nikoomanzar
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697-3958, USA.,Department of Chemistry, University of California, Irvine, CA, 92697-3958, USA.,Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-3958, USA
| | - John C Chaput
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697-3958, USA. .,Department of Chemistry, University of California, Irvine, CA, 92697-3958, USA. .,Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-3958, USA.
| |
Collapse
|
26
|
Palumbo CM, Beal PA. Nucleoside analogs in the study of the epitranscriptome. Methods 2018; 156:46-52. [PMID: 30827466 DOI: 10.1016/j.ymeth.2018.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/27/2018] [Accepted: 10/13/2018] [Indexed: 01/15/2023] Open
Abstract
Over 150 unique RNA modifications are now known including several nonstandard nucleotides present in the body of messenger RNAs. These modifications can alter a transcript's function and are collectively referred to as the epitrancriptome. Chemically modified nucleoside analogs are poised to play an important role in the study of these epitranscriptomic marks. Introduced chemical features on nucleic acid strands provide unique structures or reactivity that can be used for downstream detection or quantification. Three methods are used in the field to synthesize RNA containing chemically modified nucleoside analogs. Nucleoside analogs can be introduced by metabolic labeling, via polymerases with modified nucleotide triphosphates or via phosphoramidite-based chemical synthesis. In this review, these methods for incorporation of nucleoside analogs will be discussed with specific recently published examples pertaining to the study of the epitranscriptome.
Collapse
Affiliation(s)
- Cody M Palumbo
- Department of Chemistry, University of California, One Shields Ave, Davis, CA 95616, USA
| | - Peter A Beal
- Department of Chemistry, University of California, One Shields Ave, Davis, CA 95616, USA.
| |
Collapse
|
27
|
Affiliation(s)
- Vito Genna
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Elisa Donati
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| |
Collapse
|
28
|
Bala S, Liao JY, Zhang L, Tran CN, Chim N, Chaput JC. Synthesis of 2′-Deoxy-α-l-threofuranosyl Nucleoside Triphosphates. J Org Chem 2018; 83:8840-8850. [DOI: 10.1021/acs.joc.8b00875] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Saikat Bala
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3958, United States
| | - Jen-Yu Liao
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3958, United States
| | - Li Zhang
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3958, United States
| | - Chantel N. Tran
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3958, United States
| | - Nicholas Chim
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3958, United States
| | - John C. Chaput
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3958, United States
| |
Collapse
|
29
|
Taylor AI, Holliger P. Selecting Fully-Modified XNA Aptamers Using Synthetic Genetics. ACTA ACUST UNITED AC 2018; 10:e44. [PMID: 29927117 DOI: 10.1002/cpch.44] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This unit describes the application of "synthetic genetics," i.e., the replication of xeno nucleic acids (XNAs), artificial analogs of DNA and RNA bearing alternative backbone or sugar congeners, to the directed evolution of synthetic oligonucleotide ligands (XNA aptamers) specific for target proteins or nucleic acid motifs, using a cross-chemistry selective exponential enrichment (X-SELEX) approach. Protocols are described for synthesis of diverse-sequence XNA repertoires (typically 1014 molecules) using DNA templates, isolation and panning for functional XNA sequences using targets immobilized on solid phase or gel shift induced by target binding in solution, and XNA reverse transcription to allow cDNA amplification or sequencing. The method may be generally applied to select fully-modified XNA aptamers specific for a wide range of target molecules. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Alexander I Taylor
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Philipp Holliger
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
30
|
Mei H, Liao JY, Jimenez RM, Wang Y, Bala S, McCloskey C, Switzer C, Chaput JC. Synthesis and Evolution of a Threose Nucleic Acid Aptamer Bearing 7-Deaza-7-Substituted Guanosine Residues. J Am Chem Soc 2018; 140:5706-5713. [PMID: 29667819 DOI: 10.1021/jacs.7b13031] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In vitro selection experiments carried out on artificial genetic polymers require robust and faithful methods for copying genetic information back and forth between DNA and xeno-nucleic acids (XNA). Previously, we have shown that Kod-RI, an engineered polymerase developed to transcribe DNA templates into threose nucleic acid (TNA), can function with high fidelity in the absence of manganese ions. However, the transcriptional efficiency of this enzyme diminishes greatly when individual templates are replaced with libraries of DNA sequences, indicating that manganese ions are still required for in vitro selection. Unfortunately, the presence of manganese ions in the transcription mixture leads to the misincorporation of tGTP nucleotides opposite dG residues in the templating strand, which are detected as G-to-C transversions when the TNA is reverse transcribed back into DNA. Here we report the synthesis and fidelity of TNA replication using 7-deaza-7-modified guanosine base analogues in the DNA template and incoming TNA nucleoside triphosphate. Our findings reveal that tGTP misincorporation occurs via a Hoogsteen base pair in which the incoming tGTP residue adopts a syn conformation with respect to the sugar. Substitution of tGTP for 7-deaza-7-phenyl tGTP enabled the synthesis of TNA polymers with >99% overall fidelity. A TNA library containing the 7-deaza-7-phenyl guanine analogue was used to evolve a biologically stable TNA aptamer that binds to HIV reverse transcriptase with low nanomolar affinity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Christopher Switzer
- Department of Chemistry , University of California , Riverside , California 92521 , United States
| | | |
Collapse
|
31
|
Milligan JN, Shroff R, Garry DJ, Ellington AD. Evolution of a Thermophilic Strand-Displacing Polymerase Using High-Temperature Isothermal Compartmentalized Self-Replication. Biochemistry 2018; 57:4607-4619. [PMID: 29629759 DOI: 10.1021/acs.biochem.8b00200] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Strand-displacing polymerases are a crucial component of isothermal amplification (IA) reactions, where the lack of thermal cycling reduces equipment needs and improves the time to answer, especially for point-of-care applications. In order to improve the function of strand-displacing polymerases, we have developed an emulsion-based directed evolution scheme, high-temperature isothermal compartmentalized self-replication (HTI-CSR) that does not rely on thermal cycling. Starting from an algorithm-optimized shuffled library of exonuclease-deficient Family A polymerases from Geobacillus stearothermophilus (Bst LF) and Thermus aquaticus (Klentaq), we have applied HTI-CSR to generate a more thermostable strand-displacing polymerase variant that performs well in loop-mediated isothermal amplification and rolling circle amplification, even after thermal challenges of up to 95 °C that lead to better primer annealing. The new enzyme (v5.9) is also capable of a variety of new reactions, including isothermal hyperbranched rolling circle amplification. The HTI-CSR method should now prove useful for evolving additional beneficial phenotypes in strand-displacing polymerases.
Collapse
Affiliation(s)
- John N Milligan
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences , University of Texas , 2500 Speedway , Austin , Texas 78712 , United States
| | - Raghav Shroff
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences , University of Texas , 2500 Speedway , Austin , Texas 78712 , United States
| | - Daniel J Garry
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences , University of Texas , 2500 Speedway , Austin , Texas 78712 , United States
| | - Andrew D Ellington
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences , University of Texas , 2500 Speedway , Austin , Texas 78712 , United States
| |
Collapse
|
32
|
Fluorescence Sensing Using DNA Aptamers in Cancer Research and Clinical Diagnostics. Cancers (Basel) 2017; 9:cancers9120174. [PMID: 29261171 PMCID: PMC5742822 DOI: 10.3390/cancers9120174] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/14/2017] [Accepted: 12/16/2017] [Indexed: 12/12/2022] Open
Abstract
Among the various advantages of aptamers over antibodies, remarkable is their ability to tolerate a large number of chemical modifications within their backbone or at the termini without losing significant activity. Indeed, aptamers can be easily equipped with a wide variety of reporter groups or coupled to different carriers, nanoparticles, or other biomolecules, thus producing valuable molecular recognition tools effective for diagnostic and therapeutic purposes. This review reports an updated overview on fluorescent DNA aptamers, designed to recognize significant cancer biomarkers both in soluble or membrane-bound form. In many examples, the aptamer secondary structure switches induced by target recognition are suitably translated in a detectable fluorescent signal using either fluorescently-labelled or label-free aptamers. The fluorescence emission changes, producing an enhancement (“signal-on”) or a quenching (“signal-off”) effect, directly reflect the extent of the binding, thereby allowing for quantitative determination of the target in bioanalytical assays. Furthermore, several aptamers conjugated to fluorescent probes proved to be effective for applications in tumour diagnosis and intraoperative surgery, producing tumour-type specific, non-invasive in vivo imaging tools for cancer pre- and post-treatment assessment.
Collapse
|
33
|
Nikoomanzar A, Dunn MR, Chaput JC. Evaluating the Rate and Substrate Specificity of Laboratory Evolved XNA Polymerases. Anal Chem 2017; 89:12622-12625. [DOI: 10.1021/acs.analchem.7b03807] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ali Nikoomanzar
- Departments of Pharmaceutical Sciences,
Chemistry, and Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3958, United States
| | - Matthew R. Dunn
- Departments of Pharmaceutical Sciences,
Chemistry, and Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3958, United States
| | - John C. Chaput
- Departments of Pharmaceutical Sciences,
Chemistry, and Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3958, United States
| |
Collapse
|
34
|
Agudo R, Calvo PA, Martínez-Jiménez MI, Blanco L. Engineering human PrimPol into an efficient RNA-dependent-DNA primase/polymerase. Nucleic Acids Res 2017; 45:9046-9058. [PMID: 28911121 PMCID: PMC5587808 DOI: 10.1093/nar/gkx633] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/12/2017] [Indexed: 02/01/2023] Open
Abstract
We have developed a straightforward fluorometric assay to measure primase-polymerase activity of human PrimPol (HsPrimPol). The sensitivity of this procedure uncovered a novel RNA-dependent DNA priming-polymerization activity (RdDP) of this enzyme. In an attempt to enhance HsPrimPol RdDP activity, we constructed a smart mutant library guided by prior sequence-function analysis, and tested this library in an adapted screening platform of our fluorometric assay. After screening less than 500 variants, we found a specific HsPrimPol mutant, Y89R, which displays 10-fold higher RdDP activity than the wild-type enzyme. The improvement of RdDP activity in the Y89R variant was due mainly to an increased in the stabilization of the preternary complex (protein:template:incoming nucleotide), a specific step preceding dimer formation. Finally, in support of the biotechnological potential of PrimPol as a DNA primer maker during reverse transcription, mutant Y89R HsPrimPol rendered up to 17-fold more DNA than with random hexamer primers.
Collapse
Affiliation(s)
- Rubén Agudo
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Cantoblanco, E-28049 Madrid, Spain
- To whom correspondence should be addressed. Tel: +34 91 196 46 85; Fax: +34 91 196 44 20; . Correspondence may also be addressed to Rubén Agudo. Tel: +34 91 196 46 86; Fax: +34 91 196 44 20;
| | - Patricia A. Calvo
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Cantoblanco, E-28049 Madrid, Spain
| | | | - Luis Blanco
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Cantoblanco, E-28049 Madrid, Spain
- To whom correspondence should be addressed. Tel: +34 91 196 46 85; Fax: +34 91 196 44 20; . Correspondence may also be addressed to Rubén Agudo. Tel: +34 91 196 46 86; Fax: +34 91 196 44 20;
| |
Collapse
|
35
|
Lewis EL, Leconte AM. DNA Polymerase Activity Assay Using Near-infrared Fluorescent Labeled DNA Visualized by Acrylamide Gel Electrophoresis. J Vis Exp 2017. [PMID: 29053685 DOI: 10.3791/56228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
For any enzyme, robust, quantitative methods are required for characterization of both native and engineered enzymes. For DNA polymerases, DNA synthesis can be characterized using an in vitro DNA synthesis assay followed by polyacrylamide gel electrophoresis. The goal of this assay is to quantify synthesis of both natural DNA and modified DNA (M-DNA). These approaches are particularly useful for resolving oligonucleotides with single nucleotide resolution, enabling observation of individual steps during enzymatic oligonucleotide synthesis. These methods have been applied to the evaluation of an array of biochemical and biophysical properties such as the measurement of steady-state rate constants of individual steps of DNA synthesis, the error rate of DNA synthesis, and DNA binding affinity. By using modified components including, but not limited to, modified nucleoside triphosphates (NTP), M-DNA, and/or mutant DNA polymerases, the relative utility of substrate-DNA polymerase pairs can be effectively evaluated. Here, we detail the assay itself, including the changes that must be made to accommodate nontraditional primer DNA labeling strategies such as near-infrared fluorescently labeled DNA. Additionally, we have detailed crucial technical steps for acrylamide gel pouring and running, which can often be technically challenging.
Collapse
Affiliation(s)
- Eliza L Lewis
- Department of Chemistry, W.M. Keck Science Department of Claremont Mckenna, Pitzer, and Scripps College
| | - Aaron M Leconte
- Department of Chemistry, W.M. Keck Science Department of Claremont Mckenna, Pitzer, and Scripps College;
| |
Collapse
|
36
|
|
37
|
Nikoomanzar A, Dunn MR, Chaput JC. Engineered Polymerases with Altered Substrate Specificity: Expression and Purification. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/cpnc.33] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ali Nikoomanzar
- Department of Pharmaceutical Sciences. University of California Irvine California
| | - Matthew R. Dunn
- Department of Pharmaceutical Sciences. University of California Irvine California
| | - John C. Chaput
- Department of Pharmaceutical Sciences. University of California Irvine California
| |
Collapse
|
38
|
Rosenblum SL, Weiden AG, Lewis EL, Ogonowsky AL, Chia HE, Barrett SE, Liu MD, Leconte AM. Design and Discovery of New Combinations of Mutant DNA Polymerases and Modified DNA Substrates. Chembiochem 2017; 18:816-823. [PMID: 28160372 DOI: 10.1002/cbic.201600701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Indexed: 11/06/2022]
Abstract
Chemical modifications can enhance the properties of DNA by imparting nuclease resistance and generating more-diverse physical structures. However, native DNA polymerases generally cannot synthesize significant lengths of DNA with modified nucleotide triphosphates. Previous efforts have identified a mutant of DNA polymerase I from Thermus aquaticus DNA (SFM19) as capable of synthesizing a range of short, 2'-modified DNAs; however, it is limited in the length of the products it can synthesize. Here, we rationally designed and characterized ten mutants of SFM19. From this, we identified enzymes with substantially improved activity for the synthesis of 2'F-, 2'OH-, 2'OMe-, and 3'OMe-modified DNA as well as for reverse transcription of 2'OMe DNA. We also evaluated mutant DNA polymerases previously only tested for synthesis for 2'OMe DNA and showed that they are capable of an expanded range of modified DNA synthesis. This work significantly expands the known combinations of modified DNA and Taq DNA polymerase mutants.
Collapse
Affiliation(s)
- Sydney L Rosenblum
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Aurora G Weiden
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Eliza L Lewis
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Alexie L Ogonowsky
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Hannah E Chia
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Susanna E Barrett
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Mira D Liu
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Aaron M Leconte
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| |
Collapse
|
39
|
Liao JY, Anosova I, Bala S, Van Horn WD, Chaput JC. A parallel stranded G-quadruplex composed of threose nucleic acid (TNA). Biopolymers 2017; 107. [PMID: 27718227 DOI: 10.1002/bip.22999] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/26/2016] [Accepted: 10/05/2016] [Indexed: 11/08/2022]
Abstract
G-rich sequences can adopt four-stranded helical structures, called G-quadruplexes, that self-assemble around monovalent cations like sodium (Na+ ) and potassium (K+ ). Whether similar structures can be formed from xeno-nucleic acid (XNA) polymers with a shorter backbone repeat unit is an unanswered question with significant implications on the fold space of functional XNA polymers. Here, we examine the potential for TNA (α-l-threofuranosyl nucleic acid) to adopt a four-stranded helical structure based on a planar G-quartet motif. Using native polyacrylamide gel electrophoresis (PAGE), circular dichroism (CD) and solution-state nuclear magnetic resonance (NMR) spectroscopy, we show that despite a backbone repeat unit that is one atom shorter than the backbone repeat unit found in DNA and RNA, TNA can self-assemble into stable G-quadruplex structures that are similar in thermal stability to equivalent DNA structures. However, unlike DNA, TNA does not appear to discriminate between Na+ and K+ ions, as G-quadruplex structures form equally well in the presence of either ion. Together, these findings demonstrate that despite a shorter backbone repeat unit, TNA is capable of self-assembling into stable G-quadruplex structures.
Collapse
Affiliation(s)
- Jen-Yu Liao
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697
| | - Irina Anosova
- School of Molecular Sciences and the Biodesign Institute, Arizona State University. Tempe, AZ, 85287
| | - Saikat Bala
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697
| | - Wade D Van Horn
- School of Molecular Sciences and the Biodesign Institute, Arizona State University. Tempe, AZ, 85287
| | - John C Chaput
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697
| |
Collapse
|
40
|
Daskalova SM, Bhattacharya C, Dedkova LM, Hecht SM. Probing the Flexibility of the Catalytic Nucleophile in the Lyase Catalytic Pocket of Human DNA Polymerase β with Unnatural Lysine Analogues. Biochemistry 2017; 56:500-513. [PMID: 28005340 DOI: 10.1021/acs.biochem.6b00807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
DNA polymerase β (Pol β) is a key enzyme in mammalian base excision repair (BER), contributing stepwise 5'-deoxyribose phosphate (dRP) lyase and "gap-filling" DNA polymerase activities. The lyase reaction is believed to occur via a β-elimination reaction following the formation of a Schiff base between the dRP group at the pre-incised apurinic/apyrimidinic site and the ε-amino group of Lys72. To probe the steric constraints on the formation and subsequent resolution of the putative Schiff base intermediate within the lyase catalytic pocket, Lys72 was replaced with each of several nonproteinogenic lysine analogues. The modified Pol β enzymes were produced by coupled in vitro transcription and translation from a modified DNA template containing a TAG codon at the position corresponding to Lys72. In the presence of a misacylated tRNACUA transcript, suppression of the UAG codon in the transcribed mRNA led to elaboration of full length Pol β having a lysine analogue at position 72. Replacement of the primary nucleophilic amine with a secondary amine in the form of N-methyllysine (4) affected mainly the stability of the Schiff base intermediate and resulted in relatively moderate inhibition of lyase activity and BER. Elongation of the side chain of the catalytic residue by one methylene group, achieved by introduction of homolysine (6) at position 72, apparently shifted the amino group to a position less favorable for Schiff base formation. Interestingly, this effect was attenuated when the side chain was elongated by replacing one side-chain methylene group with a bridging S atom (thialysine, 2). In comparison, replacement of lysine 72 with an analogue having a guanidine moiety in lieu of an ε-amino group (homoarginine, 5) or a sterically constrained secondary amine (piperidinylalanine, 3) led to almost complete suppression of dRP excision activity and the ability of Pol β to support BER. These results help to define the tolerance of Pol β to subtle local structural and functional alterations.
Collapse
Affiliation(s)
- Sasha M Daskalova
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University , Tempe, Arizona 85287, United States
| | - Chandrabali Bhattacharya
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University , Tempe, Arizona 85287, United States
| | - Larisa M Dedkova
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University , Tempe, Arizona 85287, United States
| | - Sidney M Hecht
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University , Tempe, Arizona 85287, United States
| |
Collapse
|
41
|
Abstract
Aptamers are nucleic acid-based scaffolds that can bind with high affinity to a variety of biological targets. Aptamers are identified from large DNA or RNA libraries through a process of directed molecular evolution (SELEX). Chemical modification of nucleic acids considerably increases the functional and structural diversity of aptamer libraries and substantially increases the affinity of the aptamers. Additionally, modified aptamers exhibit much greater resistance to biodegradation. The evolutionary selection of modified aptamers is conditioned by the possibility of the enzymatic synthesis and replication of non-natural nucleic acids. Wild-type or mutant polymerases and their non-natural nucleotide substrates that can support SELEX are highlighted in the present review. A focus is made on the efforts to find the most suitable type of nucleotide modifications and the engineering of new polymerases. Post-SELEX modification as a complementary method will be briefly considered as well.
Collapse
Affiliation(s)
- Sergey A Lapa
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Alexander V Chudinov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Edward N Timofeev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
42
|
Dunn MR, Chaput JC. Reverse Transcription of Threose Nucleic Acid by a Naturally Occurring DNA Polymerase. Chembiochem 2016; 17:1804-1808. [DOI: 10.1002/cbic.201600338] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Matthew R. Dunn
- Department of Pharmaceutical Sciences; University of California Irvine; Irvine CA 92697 USA
| | - John C. Chaput
- Department of Pharmaceutical Sciences; University of California Irvine; Irvine CA 92697 USA
| |
Collapse
|
43
|
Dunn MR, Otto C, Fenton KE, Chaput JC. Improving Polymerase Activity with Unnatural Substrates by Sampling Mutations in Homologous Protein Architectures. ACS Chem Biol 2016; 11:1210-9. [PMID: 26860781 DOI: 10.1021/acschembio.5b00949] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ability to synthesize and propagate genetic information encoded in the framework of xeno-nucleic acid (XNA) polymers would inform a wide range of topics from the origins of life to synthetic biology. While directed evolution has produced examples of engineered polymerases that can accept XNA substrates, these enzymes function with reduced activity relative to their natural counterparts. Here, we describe a biochemical strategy that enables the discovery of engineered polymerases with improved activity for a given unnatural polymerase function. Our approach involves identifying specificity determining residues (SDRs) that control polymerase activity, screening mutations at SDR positions in a model polymerase scaffold, and assaying key gain-of-function mutations in orthologous protein architectures. By transferring beneficial mutations between homologous protein structures, we show that new polymerases can be identified that function with superior activity relative to their starting donor scaffold. This concept, which we call scaffold sampling, was used to generate engineered DNA polymerases that can faithfully synthesize RNA and TNA (threose nucleic acid), respectively, on a DNA template with high primer-extension efficiency and low template sequence bias. We suggest that the ability to combine phenotypes from different donor and recipient scaffolds provides a new paradigm in polymerase engineering where natural structural diversity can be used to refine the catalytic activity of synthetic enzymes.
Collapse
Affiliation(s)
- Matthew R. Dunn
- Department
of Pharmaceutical Sciences, University of California, Irvine, California 92697-3958, United States
| | | | | | - John C. Chaput
- Department
of Pharmaceutical Sciences, University of California, Irvine, California 92697-3958, United States
| |
Collapse
|
44
|
Dellafiore MA, Montserrat JM, Iribarren AM. Modified Nucleoside Triphosphates for In-vitro Selection Techniques. Front Chem 2016; 4:18. [PMID: 27200340 PMCID: PMC4854868 DOI: 10.3389/fchem.2016.00018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/05/2016] [Indexed: 12/22/2022] Open
Abstract
The development of SELEX (Selective Enhancement of Ligands by Exponential Enrichment) provides a powerful tool for the search of functional oligonucleotides with the ability to bind ligands with high affinity and selectivity (aptamers) and for the discovery of nucleic acid sequences with diverse enzymatic activities (ribozymes and DNAzymes). This technique has been extensively applied to the selection of natural DNA or RNA molecules but, in order to improve chemical and structural diversity as well as for particular applications where further chemical or biological stability is necessary, the extension of this strategy to modified oligonucleotides is desirable. Taking into account these needs, this review intends to collect the research carried out during the past years, focusing mainly on the use of modified nucleotides in SELEX and the development of mutant enzymes for broadening nucleoside triphosphates acceptance. In addition, comments regarding the synthesis of modified nucleoside triphosphate will be briefly discussed.
Collapse
Affiliation(s)
- María A Dellafiore
- Laboratorio de Química de Ácidos Nucleicos, INGEBI (CONICET) Ciudad Autónoma de Buenos Aires, Argentina
| | - Javier M Montserrat
- Laboratorio de Química de Ácidos Nucleicos, INGEBI (CONICET)Ciudad Autónoma de Buenos Aires, Argentina; Instituto de Ciencias, Universidad Nacional de General SarmientoLos Polvorines, Argentina
| | - Adolfo M Iribarren
- Laboratorio de Química de Ácidos Nucleicos, INGEBI (CONICET)Ciudad Autónoma de Buenos Aires, Argentina; Laboratorio de Biotransformaciones, Universidad Nacional de QuilmesBernal, Argentina
| |
Collapse
|
45
|
Mahaffee WF, Stoll R. The Ebb and Flow of Airborne Pathogens: Monitoring and Use in Disease Management Decisions. PHYTOPATHOLOGY 2016; 106:420-431. [PMID: 27003505 DOI: 10.1094/phyto-02-16-0060-rvw] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Perhaps the earliest form of monitoring the regional spread of plant disease was a group of growers gathering together at the market and discussing what they see in their crops. This type of reporting continues to this day through regional extension blogs, by crop consultants and more formal scouting of sentential plots in the IPM PIPE network (http://www.ipmpipe.org/). As our knowledge of plant disease epidemiology has increased, we have also increased our ability to detect and monitor the presence of pathogens and use this information to make management decisions in commercial production systems. The advent of phylogenetics, next-generation sequencing, and nucleic acid amplification technologies has allowed for development of sensitive and accurate assays for pathogen inoculum detection and quantification. The application of these tools is beginning to change how we manage diseases with airborne inoculum by allowing for the detection of pathogen movement instead of assuming it and by targeting management strategies to the early phases of the epidemic development when there is the greatest opportunity to reduce the rate of disease development. While there are numerous advantages to using data on inoculum presence to aid management decisions, there are limitations in what the data represent that are often unrecognized. In addition, our understanding of where and how to effectively monitor airborne inoculum is limited. There is a strong need to improve our knowledge of the mechanisms that influence inoculum dispersion across scales as particles move from leaf to leaf, and everything in between.
Collapse
Affiliation(s)
- Walter F Mahaffee
- First author: U.S. Department of Agriculture-Agricultural Research Service, Horticulture Crops Research Unit, Corvallis, OR 97330; and second author: Department of Mechanical Engineering, University of Utah, Salt Lake City 84112
| | - Rob Stoll
- First author: U.S. Department of Agriculture-Agricultural Research Service, Horticulture Crops Research Unit, Corvallis, OR 97330; and second author: Department of Mechanical Engineering, University of Utah, Salt Lake City 84112
| |
Collapse
|
46
|
Chen T, Hongdilokkul N, Liu Z, Adhikary R, Tsuen SS, Romesberg FE. Evolution of thermophilic DNA polymerases for the recognition and amplification of C2'-modified DNA. Nat Chem 2016; 8:556-62. [PMID: 27219699 PMCID: PMC4880425 DOI: 10.1038/nchem.2493] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 03/03/2016] [Indexed: 12/13/2022]
Abstract
The PCR amplification of oligonucleotides enables the evolution of sequences called aptamers that bind specific targets with antibody-like affinity. However, the use of these aptamers is limited in many applications by nuclease-mediated degradation. In contrast, oligonucleotides that are modified at their sugar C2' positions with methoxy or fluorine substituents are stable to nucleases but cannot be synthesized by natural polymerases. Here, we report the development of a polymerase evolution system and its use to evolve thermostable polymerases that efficiently interconvert C2'-OMe modified oligonucleotides and their DNA counterparts via “transcription” and “reverse transcription,” or more importantly, PCR amplify partially C2'-OMe or C2'-F modified oligonucleotides. A mechanistic analysis demonstrates that the ability to amplify the modified oligonucleotides was evolved by optimizing interdomain interactions that stabilize the catalytically competent closed conformation of the polymerase. The evolved polymerases should find practical applications and the developed evolution system should be a powerful tool for the tailoring of polymerases to have other types of novel function.
Collapse
Affiliation(s)
- Tingjian Chen
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Narupat Hongdilokkul
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Zhixia Liu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Ramkrishna Adhikary
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Shujian S Tsuen
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Floyd E Romesberg
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
47
|
Molina-Espeja P, Viña-Gonzalez J, Gomez-Fernandez BJ, Martin-Diaz J, Garcia-Ruiz E, Alcalde M. Beyond the outer limits of nature by directed evolution. Biotechnol Adv 2016; 34:754-767. [PMID: 27064127 DOI: 10.1016/j.biotechadv.2016.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/22/2016] [Accepted: 03/27/2016] [Indexed: 01/19/2023]
Abstract
For more than thirty years, biotechnology has borne witness to the power of directed evolution in designing molecules of industrial relevance. While scientists all over the world discuss the future of molecular evolution, dozens of laboratory-designed products are being released with improved characteristics in terms of turnover rates, substrate scope, catalytic promiscuity or stability. In this review we aim to present the most recent advances in this fascinating research field that are allowing us to surpass the limits of nature and apply newly gained attributes to a range of applications, from gene therapy to novel green processes. The use of directed evolution in non-natural environments, the generation of catalytic promiscuity for non-natural reactions, the insertion of unnatural amino acids into proteins or the creation of unnatural DNA, is described comprehensively, together with the potential applications in bioremediation, biomedicine and in the generation of new bionanomaterials. These successful case studies show us that the limits of directed evolution will be defined by our own imagination, and in some cases, stretching beyond that.
Collapse
Affiliation(s)
- Patricia Molina-Espeja
- Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Javier Viña-Gonzalez
- Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28049 Madrid, Spain
| | | | - Javier Martin-Diaz
- Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Eva Garcia-Ruiz
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Ave, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 600 South Mathews Ave, Urbana, IL 61801, USA
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
48
|
A general strategy for expanding polymerase function by droplet microfluidics. Nat Commun 2016; 7:11235. [PMID: 27044725 PMCID: PMC4822039 DOI: 10.1038/ncomms11235] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/03/2016] [Indexed: 02/07/2023] Open
Abstract
Polymerases that synthesize artificial genetic polymers hold great promise for advancing future applications in synthetic biology. However, engineering natural polymerases to replicate unnatural genetic polymers is a challenging problem. Here we present droplet-based optical polymerase sorting (DrOPS) as a general strategy for expanding polymerase function that employs an optical sensor to monitor polymerase activity inside the microenvironment of a uniform synthetic compartment generated by microfluidics. We validated this approach by performing a complete cycle of encapsulation, sorting and recovery on a doped library and observed an enrichment of ∼1,200-fold for a model engineered polymerase. We then applied our method to evolve a manganese-independent α-L-threofuranosyl nucleic acid (TNA) polymerase that functions with >99% template-copying fidelity. Based on our findings, we suggest that DrOPS is a versatile tool that could be used to evolve any polymerase function, where optical detection can be achieved by Watson–Crick base pairing. Droplet-based optical polymerase sorting employs a fluorescent sensor to monitor polymerase activity inside the microenvironment of uniform water-in-oil emulsions. Here, the authors use this technique to select and isolate single cells for evolution of an unnatural nucleic acid polymerase.
Collapse
|
49
|
Schultz HJ, Gochi AM, Chia HE, Ogonowsky AL, Chiang S, Filipovic N, Weiden AG, Hadley EE, Gabriel SE, Leconte AM. Taq DNA Polymerase Mutants and 2'-Modified Sugar Recognition. Biochemistry 2015; 54:5999-6008. [PMID: 26334839 DOI: 10.1021/acs.biochem.5b00689] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chemical modifications to DNA, such as 2' modifications, are expected to increase the biotechnological utility of DNA; however, these modified forms of DNA are limited by their inability to be effectively synthesized by DNA polymerase enzymes. Previous efforts have identified mutant Thermus aquaticus DNA polymerase I (Taq) enzymes capable of recognizing 2'-modified DNA nucleotides. While these mutant enzymes recognize these modified nucleotides, they are not capable of synthesizing full length modified DNA; thus, further engineering is required for these enzymes. Here, we describe comparative biochemical studies that identify useful, but previously uncharacterized, properties of these enzymes; one enzyme, SFM19, is able to recognize a range of 2'-modified nucleotides much wider than that previously examined, including fluoro, azido, and amino modifications. To understand the molecular origins of these differences, we also identify specific amino acids and combinations of amino acids that contribute most to the previously evolved unnatural activity. Our data suggest that a negatively charged amino acid at 614 and mutation of the steric gate residue, E615, to glycine make up the optimal combination for modified oligonucleotide synthesis. These studies yield an improved understanding of the mutational origins of 2'-modified substrate recognition as well as identify SFM19 as the best candidate for further engineering, whether via rational design or directed evolution.
Collapse
Affiliation(s)
- Hayley J Schultz
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges , Claremont, California 91711, United States
| | - Andrea M Gochi
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges , Claremont, California 91711, United States
| | - Hannah E Chia
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges , Claremont, California 91711, United States
| | - Alexie L Ogonowsky
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges , Claremont, California 91711, United States
| | - Sharon Chiang
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges , Claremont, California 91711, United States
| | - Nedim Filipovic
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges , Claremont, California 91711, United States
| | - Aurora G Weiden
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges , Claremont, California 91711, United States
| | - Emma E Hadley
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges , Claremont, California 91711, United States
| | - Sara E Gabriel
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges , Claremont, California 91711, United States
| | - Aaron M Leconte
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges , Claremont, California 91711, United States
| |
Collapse
|
50
|
Millar D, Christova Y, Holliger P. A polymerase engineered for bisulfite sequencing. Nucleic Acids Res 2015; 43:e155. [PMID: 26271989 PMCID: PMC4678845 DOI: 10.1093/nar/gkv798] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/27/2015] [Indexed: 01/17/2023] Open
Abstract
Bisulfite sequencing is a key methodology in epigenetics. However, the standard workflow of bisulfite sequencing involves heat and strongly basic conditions to convert the intermediary product 5,6-dihydrouridine-6-sulfonate (dhU6S) (generated by reaction of bisulfite with deoxycytidine (dC)) to uracil (dU). These harsh conditions generally lead to sample loss and DNA damage while milder conditions may result in incomplete conversion of intermediates to uracil. Both can lead to poor recovery of bisulfite-treated DNA by the polymerase chain reaction (PCR) as either damaged DNA and/or intermediates of bisulfite treatment are poor substrate for standard DNA polymerases. Here we describe an engineered DNA polymerase (5D4) with an enhanced ability to replicate and PCR amplify bisulfite-treated DNA due to an ability to bypass both DNA lesions and bisulfite intermediates, allowing significantly milder conversion conditions and increased sensitivity in the PCR amplification of bisulfite-treated DNA. Incorporation of the 5D4 DNA polymerase into the bisulfite sequencing workflow thus promises significant sensitivity and efficiency gains.
Collapse
Affiliation(s)
- Doug Millar
- Genetic Signatures, Level 9, Lowy Packer Building 405, Liverpool Street, Darlinghurst 2010, Sydney, Australia
| | - Yonka Christova
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Philipp Holliger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| |
Collapse
|