1
|
Gil‐Martínez A, Galiana‐Roselló C, Lázaro‐Gómez A, Mulet‐Rivero L, González‐García J. Deciphering the Interplay Between G-Quadruplexes and Natural/Synthetic Polyamines. Chembiochem 2025; 26:e202400873. [PMID: 39656761 PMCID: PMC12002122 DOI: 10.1002/cbic.202400873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
The interplay between polyamines and G-quadruplexes has been largely overlooked in the literature, even though polyamines are ubiquitous metabolites in living cells and G-quadruplexes are transient regulatory elements, being both of them key regulators of biological processes. Herein, we compile the investigations connecting G-quadruplexes and biogenic polyamines to understand the biological interplay between them. Moreover, we overview the main works focused on synthetic ligands containing polyamines designed to target G-quadruplexes, aiming to unravel the structural motifs for designing potent and selective G4 ligands.
Collapse
Affiliation(s)
- Ariadna Gil‐Martínez
- Department of Inorganic ChemistryInstitute of Molecular ScienceUniversity of ValenciaCatedrático José Beltrán 246980PaternaSpain
| | - Cristina Galiana‐Roselló
- Department of Inorganic ChemistryInstitute of Molecular ScienceUniversity of ValenciaCatedrático José Beltrán 246980PaternaSpain
- Príncipe Felipe Research CenterEduardo Primo Yúfera, 346012ValenciaSpain
| | - Andrea Lázaro‐Gómez
- Department of Inorganic ChemistryInstitute of Molecular ScienceUniversity of ValenciaCatedrático José Beltrán 246980PaternaSpain
| | - Laura Mulet‐Rivero
- Department of Inorganic ChemistryInstitute of Molecular ScienceUniversity of ValenciaCatedrático José Beltrán 246980PaternaSpain
| | - Jorge González‐García
- Department of Inorganic ChemistryInstitute of Molecular ScienceUniversity of ValenciaCatedrático José Beltrán 246980PaternaSpain
| |
Collapse
|
2
|
Biswas S, Basak S, Samui S, Pasadi S, Muniyappa K, Naskar J. Co‐Assembly of Peptide with G‐Quadruplex DNA: A Strategic Approach to Develop Anticancer Therapeutics. ChemistrySelect 2023. [DOI: 10.1002/slct.202203563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Soumi Biswas
- Department of Biochemistry and Biophysics University of Kalyani Nadia WB 741235 India
| | - Shubhanwita Basak
- Department of Biochemistry and Biophysics University of Kalyani Nadia WB 741235 India
| | - Satyabrata Samui
- Department of Biochemistry and Biophysics University of Kalyani Nadia WB 741235 India
| | - Sanjeev Pasadi
- Department of Biochemistry Indian Institute of Science Bangalore Karnataka 560 012 India
| | - K. Muniyappa
- Department of Biochemistry Indian Institute of Science Bangalore Karnataka 560 012 India
| | - Jishu Naskar
- Department of Biochemistry and Biophysics University of Kalyani Nadia WB 741235 India
| |
Collapse
|
3
|
Lightfoot HL, Hagen T, Tatum NJ, Hall J. The diverse structural landscape of quadruplexes. FEBS Lett 2019; 593:2083-2102. [PMID: 31325371 DOI: 10.1002/1873-3468.13547] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022]
Abstract
G-quadruplexes are secondary structures formed in G-rich sequences in DNA and RNA. Considerable research over the past three decades has led to in-depth insight into these unusual structures in DNA. Since the more recent exploration into RNA G-quadruplexes, such structures have demonstrated their in cellulo existence, function and roles in pathology. In comparison to Watson-Crick-based secondary structures, most G-quadruplexes display highly redundant structural characteristics. However, numerous reports of G-quadruplex motifs/structures with unique features (e.g. bulges, long loops, vacancy) have recently surfaced, expanding the repertoire of G-quadruplex scaffolds. This review addresses G-quadruplex formation and structure, including recent reports of non-canonical G-quadruplex structures. Improved methods of detection will likely further expand this collection of novel structures and ultimately change the face of quadruplex-RNA targeting as a therapeutic strategy.
Collapse
Affiliation(s)
- Helen L Lightfoot
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| | - Timo Hagen
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| | - Natalie J Tatum
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| |
Collapse
|
4
|
Lightfoot HL, Hagen T, Cléry A, Allain FHT, Hall J. Control of the polyamine biosynthesis pathway by G 2-quadruplexes. eLife 2018; 7:e36362. [PMID: 30063205 PMCID: PMC6067879 DOI: 10.7554/elife.36362] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/13/2018] [Indexed: 12/16/2022] Open
Abstract
G-quadruplexes are naturally-occurring structures found in RNAs and DNAs. Regular RNA G-quadruplexes are highly stable due to stacked planar arrangements connected by short loops. However, reports of irregular quadruplex structures are increasing and recent genome-wide studies suggest that they influence gene expression. We have investigated a grouping of G2-motifs in the UTRs of eight genes involved in polyamine biosynthesis, and concluded that several likely form novel metastable RNA G-quadruplexes. We performed a comprehensive biophysical characterization of their properties, comparing them to a reference G-quadruplex. Using cellular assays, together with polyamine-depleting and quadruplex-stabilizing ligands, we discovered how some of these motifs regulate and sense polyamine levels, creating feedback loops during polyamine biosynthesis. Using high-resolution 1H-NMR spectroscopy, we demonstrated that a long-looped quadruplex in the AZIN1 mRNA co-exists in salt-dependent equilibria with a hairpin structure. This study expands the repertoire of regulatory G-quadruplexes and demonstrates how they act in unison to control metabolite homeostasis.
Collapse
Affiliation(s)
- Helen Louise Lightfoot
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical SciencesETH ZurichZurichSwitzerland
| | - Timo Hagen
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical SciencesETH ZurichZurichSwitzerland
| | - Antoine Cléry
- Department of Biology, Institute of Molecular Biology and BiophysicsETH ZurichZurichSwitzerland
- Biomolecular NMR spectroscopy platformETH ZurichZurichSwitzerland
| | | | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical SciencesETH ZurichZurichSwitzerland
| |
Collapse
|
5
|
Chang T, Gong H, Ding P, Liu X, Li W, Bing T, Cao Z, Shangguan D. Activity Enhancement of G-Quadruplex/Hemin DNAzyme by Flanking d(CCC). Chemistry 2016; 22:4015-21. [PMID: 26813684 DOI: 10.1002/chem.201504797] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Indexed: 12/17/2022]
Abstract
G-quadruplex (G4)/hemin DNAzymes have been extensively applied in bioanalysis and molecular devices. However, their catalytic activity is still much lower than that of proteinous enzymes. The G4/hemin DNAzyme activity is correlated with the G4 conformations and the solution conditions. However, little is known about the effect of the flanking sequences on the activity, though they are important parts of G4s. Here, we report sequences containing d(CCC), flanked on both ends of the G4-core sequences remarkably enhance their DNAzyme activity. By using circular dichroism and UV-visible spectroscopy, the d(CCC) flanking sequences were demonstrated to improve the hemin binding affinity to G4s instead of increasing the parallel G4 formation, which might explain the enhanced DNAzyme activity. Meanwhile, the increased hemin binding ability promoted the degradation of hemin within the DNAzyme by H2O2. Furthermore, the DNAzyme with d(CCC) flanking sequences showed strong tolerance to pH value changes, which makes it more suitable for applications requiring wide pH conditions. The results highlight the influence of the flanking sequences on the DNAzyme activity and provide insightful information for the design of highly active DNAzymes.
Collapse
Affiliation(s)
- Tianjun Chang
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, P.R. China
| | - Hongmei Gong
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, P.R. China
| | - Pi Ding
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, P.R. China
| | - Xiangjun Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Weiguo Li
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, P.R. China
| | - Tao Bing
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Zehui Cao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
| |
Collapse
|
6
|
Abstract
Recent progress with techniques for monitoring RNA structure in cells such as ‘DMS-Seq’ and ‘Structure-Seq’ suggests that a new era of RNA structure-function exploration is on the horizon. This will also include systematic investigation of the factors required for the structural integrity of RNA. In this context, much evidence accumulated over 50 years suggests that polyamines play important roles as modulators of RNA structure. Here, we summarize and discuss recent literature relating to the roles of these small endogenous molecules in RNA function. We have included studies directed at understanding the binding interactions of polyamines with polynucleotides, tRNA, rRNA, mRNA and ribozymes using chemical, biochemical and spectroscopic tools. In brief, polyamines bind RNA in a sequence-selective fashion and induce changes in RNA structure in context-dependent manners. In some cases the functional consequences of these interactions have been observed in cells. Most notably, polyamine-mediated effects on RNA are frequently distinct from those of divalent cations (i.e. Mg2+) confirming their roles as independent molecular entities which help drive RNA-mediated processes.
Collapse
Affiliation(s)
- Helen L Lightfoot
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, CH-8093, Zürich, Switzerland
| |
Collapse
|