1
|
Teyssier V, Williamson CR, Shata E, Rosen SP, Jones N, Bisson N. Adapting to change: resolving the dynamic and dual roles of NCK1 and NCK2. Biochem J 2024; 481:1411-1435. [PMID: 39392452 DOI: 10.1042/bcj20230232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024]
Abstract
Adaptor proteins play central roles in the assembly of molecular complexes and co-ordinated activation of specific pathways. Through their modular domain structure, the NCK family of adaptor proteins (NCK1 and NCK2) link protein targets via their single SRC Homology (SH) 2 and three SH3 domains. Classically, their SH2 domain binds to phosphotyrosine motif-containing receptors (e.g. receptor tyrosine kinases), while their SH3 domains bind polyproline motif-containing cytoplasmic effectors. Due to these functions being established for both NCK1 and NCK2, their roles were inaccurately assumed to be redundant. However, in contrast with this previously held view, NCK1 and NCK2 now have a growing list of paralog-specific functions, which underscores the need to further explore their differences. Here we review current evidence detailing how these two paralogs are unique, including differences in their gene/protein regulation, binding partners and overall contributions to cellular functions. To help explain these contrasting characteristics, we then discuss SH2/SH3 structural features, disordered interdomain linker regions and post-translational modifications. Together, this review seeks to highlight the importance of distinguishing NCK1 and NCK2 in research and to pave the way for investigations into the origins of their interaction specificity.
Collapse
Affiliation(s)
- Valentine Teyssier
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Division Oncologie, Québec, QC, Canada
- Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada
- PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
| | - Casey R Williamson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Erka Shata
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Stephanie P Rosen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Nicolas Bisson
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Division Oncologie, Québec, QC, Canada
- Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada
- PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC, Canada
| |
Collapse
|
2
|
Stark K, Crowe O, Lewellyn L. Precise levels of the Drosophila adaptor protein Dreadlocks maintain the size and stability of germline ring canals. J Cell Sci 2021; 134:238107. [PMID: 33912915 PMCID: PMC8106954 DOI: 10.1242/jcs.254730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/15/2021] [Indexed: 01/24/2023] Open
Abstract
Intercellular bridges are essential for fertility in many organisms. The developing fruit fly egg has become the premier model system to study intercellular bridges. During oogenesis, the oocyte is connected to supporting nurse cells by relatively large intercellular bridges, or ring canals. Once formed, the ring canals undergo a 20-fold increase in diameter to support the movement of materials from the nurse cells to the oocyte. Here, we demonstrate a novel role for the conserved SH2/SH3 adaptor protein Dreadlocks (Dock) in regulating ring canal size and structural stability in the germline. Dock localizes at germline ring canals throughout oogenesis. Loss of Dock leads to a significant reduction in ring canal diameter, and overexpression of Dock causes dramatic defects in ring canal structure and nurse cell multinucleation. The SH2 domain of Dock is required for ring canal localization downstream of Src64 (also known as Src64B), and the function of one or more of the SH3 domains is necessary for the strong overexpression phenotype. Genetic interaction and localization studies suggest that Dock promotes WASp-mediated Arp2/3 activation in order to determine ring canal size and regulate growth. This article has an associated First Person interview with the first author of the paper. Summary:Drosophila Dock likely functions downstream of WASp and the Arp2/3 complex to regulate the size and stability of the germline ring canals in the developing egg chamber.
Collapse
Affiliation(s)
- Kara Stark
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Olivia Crowe
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Lindsay Lewellyn
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| |
Collapse
|
3
|
Ben-Shmuel A, Joseph N, Sabag B, Barda-Saad M. Lymphocyte mechanotransduction: The regulatory role of cytoskeletal dynamics in signaling cascades and effector functions. J Leukoc Biol 2019; 105:1261-1273. [DOI: 10.1002/jlb.mr0718-267r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/19/2018] [Accepted: 01/21/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Aviad Ben-Shmuel
- Laboratory of Molecular and Applied Immunology; Bar-Ilan University; The Mina and Everard Goodman Faculty of Life Sciences; Ramat-Gan Israel
| | - Noah Joseph
- Laboratory of Molecular and Applied Immunology; Bar-Ilan University; The Mina and Everard Goodman Faculty of Life Sciences; Ramat-Gan Israel
| | - Batel Sabag
- Laboratory of Molecular and Applied Immunology; Bar-Ilan University; The Mina and Everard Goodman Faculty of Life Sciences; Ramat-Gan Israel
| | - Mira Barda-Saad
- Laboratory of Molecular and Applied Immunology; Bar-Ilan University; The Mina and Everard Goodman Faculty of Life Sciences; Ramat-Gan Israel
| |
Collapse
|
4
|
A conformational change within the WAVE2 complex regulates its degradation following cellular activation. Sci Rep 2017; 7:44863. [PMID: 28332566 PMCID: PMC5362955 DOI: 10.1038/srep44863] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 02/08/2017] [Indexed: 11/08/2022] Open
Abstract
WASp family Verprolin-homologous protein-2 (WAVE2), a member of the Wiskott-Aldrich syndrome protein (WASp) family of actin nucleation promoting factors, is a central regulator of actin cytoskeleton polymerization and dynamics. Multiple signaling pathways operate via WAVE2 to promote the actin-nucleating activity of the actin-related protein 2/3 (Arp2/3) complex. WAVE2 exists as a part of a pentameric protein complex known as the WAVE regulatory complex (WRC), which is unstable in the absence of its individual proteins. While the involvement of WAVE2 in actin polymerization has been well documented, its negative regulation mechanism is poorly characterized to date. Here, we demonstrate that WAVE2 undergoes ubiquitylation in a T-cell activation dependent manner, followed by proteasomal degradation. The WAVE2 ubiquitylation site was mapped to lysine 45, located at the N-terminus where WAVE2 binds to the WRC. Using Förster resonance energy transfer (FRET), we reveal that the autoinhibitory conformation of the WRC maintains the stability of WAVE2 in resting cells; the release of autoinhibition following T-cell activation facilitates the exposure of WAVE2 to ubiquitylation, leading to its degradation. The dynamic conformational structures of WAVE2 during cellular activation dictate its degradation.
Collapse
|
5
|
Matalon O, Barda-Saad M. Cbl ubiquitin ligases mediate the inhibition of natural killer cell activity. Commun Integr Biol 2016; 9:e1216739. [PMID: 28042374 PMCID: PMC5193043 DOI: 10.1080/19420889.2016.1216739] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 07/19/2016] [Indexed: 11/12/2022] Open
Abstract
Natural killer (NK) cells are essential for killing transformed and virally infected cells. To prevent auto-reactivity, NK cell activation is inhibited by inhibitory receptors that activate the tyrosine phosphatase SHP-1, which dephosphorylates signaling molecules crucial for NK cell activation. Initially, only a single SHP-1 substrate was identified in NK cells, the GEF VAV1. We recently demonstrated that under inhibitory conditions, LAT, PLCγ1 and PLCγ2 serve as novel SHP-1 substrates in NK cells. Furthermore, we showed that during NK cell inhibition, LAT is ubiquitylated by c-Cbl and Cbl-b, leading to its proteasomal degradation, abolishing NK cell cytotoxicity. Here, we address the mechanism through which the Cbl proteins are activated following inhibitory receptor engagement. We demonstrate that during NK cell inhibition, the expression level of the Cbl proteins significantly increases. These data suggest that inhibitory KIR receptors regulate the stability of the Cbl proteins, thereby enabling Cbl-mediated inhibition of NK cell cytotoxicity.
Collapse
Affiliation(s)
- Omri Matalon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University , Ramat-Gan, Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University , Ramat-Gan, Israel
| |
Collapse
|
6
|
Matalon O, Fried S, Ben-Shmuel A, Pauker MH, Joseph N, Keizer D, Piterburg M, Barda-Saad M. Dephosphorylation of the adaptor LAT and phospholipase C-γ by SHP-1 inhibits natural killer cell cytotoxicity. Sci Signal 2016; 9:ra54. [PMID: 27221712 DOI: 10.1126/scisignal.aad6182] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Natural killer (NK) cells discriminate between healthy cells and virally infected or transformed self-cells by tuning activating and inhibitory signals received through cell surface receptors. Inhibitory receptors inhibit NK cell function by recruiting and activating the tyrosine phosphatase Src homology 2 (SH2) domain-containing protein tyrosine phosphatase-1 (SHP-1) to the plasma membrane. However, to date, the guanine nucleotide exchange factor VAV1 is the only direct SHP-1 substrate identified in NK cells. We reveal that the adaptor protein linker for activation of T cells (LAT) as well as phospholipase C-γ1 (PLC-γ1) and PLC-γ2 are SHP-1 substrates. Dephosphorylation of Tyr(132) in LAT by SHP-1 in NK cells abrogated the recruitment of PLC-γ1 and PLC-γ2 to the immunological synapse between the NK cell and a cancer cell target, which reduced NK cell degranulation and target cell killing. Furthermore, the ubiquitylation of LAT by the E3 ubiquitin ligases c-Cbl and Cbl-b, which was induced by LAT phosphorylation, led to the degradation of LAT in response to the engagement of inhibitory receptors on NK cells, which abrogated NK cell cytotoxicity. Knockdown of the Cbl proteins blocked LAT ubiquitylation, which promoted NK cell function. Expression of a ubiquitylation-resistant mutant LAT blocked inhibitory receptor signaling, enabling cells to become activated. Together, these data identify previously uncharacterized SHP-1 substrates and inhibitory mechanisms that determine the response of NK cells.
Collapse
Affiliation(s)
- Omri Matalon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Sophia Fried
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Aviad Ben-Shmuel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Maor H Pauker
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Noah Joseph
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Danielle Keizer
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Marina Piterburg
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|