1
|
Yang J, Li Z, Li A, Liu Y, Zhang X, Zhang Y, Gao Y. The tryptophan-aspartate (WD) repeat domain of bovine Coronin-1A promotes mycobacterial survival by inhibiting calcium signaling-mediated phagosome-lysosome fusion. Vet Res 2025; 56:33. [PMID: 39920838 PMCID: PMC11806767 DOI: 10.1186/s13567-025-01471-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/12/2024] [Indexed: 02/09/2025] Open
Abstract
Bovine tuberculosis is a chronic consumptive zoonosis, causing significant economic losses and critical public health risks. Coronin-1A is a host cytoskeleton-associated protein that is crucial for understanding the inhibition of phagosome-lysosome fusion by Mycobacterium tuberculosis (M.tb) to evade host innate immune clearance. However, the involvement of bovine Coronin-1A (bCoronin-1A) in M.tb infection and whether it can be manipulated so as to enhance host resistance against bovine tuberculosis remains to be seen. Here, we explored the role of bCoronin-1A in phagosome-lysosome fusion in M.tb-infected macrophages. We found that bCoronin-1A was upregulated at both the transcriptional and protein levels following M.tb infection of embryonic bovine lung (EBL) cells. Notably, bCoronin-1A was recruited to M.tb-containing phagosomes where it hindered phagosome-lysosome fusion, leading to increased intracellular mycobacterial survival. Further investigation revealed that mycobacterial lipoamide dehydrogenase C (LpdC) interacted with a single tryptophan-aspartate (WD) unit within the WD repeat domain of bCoronin-1A to sequester it on the phagosomes. The WD repeat domain mediated a decrease in intracellular calcium levels, which reduced levels of calmodulin-dependent kinase II (CaMKII) and its activated forms, thereby inhibiting lysosomal delivery. Overall, our findings revealed that bCoronin-1A had a critical impact on mycobacterial survival in macrophages by inhibiting calcium-mediated phagosome-lysosome fusion. This suggests that targeting bCoronin-1A as a key factor influencing mycobacterial survival may be an effective breeding strategy to develop tuberculosis-resistant dairy cows.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhunan Li
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Aicong Li
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yayi Liu
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xinyan Zhang
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yong Zhang
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Yuanpeng Gao
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
2
|
Zhang X, Han K, Kan L, Zhang Z, Gong Y, Xiao S, Bai Y, Liu N, Meng C, Qi H, Shen F. A Differential Protein Study on Bronchoalveolar Lavage Fluid at Different Stages of Silicosis. Comb Chem High Throughput Screen 2024; 27:2366-2401. [PMID: 38173059 DOI: 10.2174/0113862073260760231023055036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVES In this study, by comparing the difference in protein expression in bronchoalveolar lavage fluid between silicosis patients in different stages and healthy controls, the pathogenesis of pneumoconiosis was discussed, and a new idea for the prevention and treatment of pneumoconiosis was provided. METHODS The lung lavage fluid was pretreated by 10 K ultrafiltration tube, Agilent 1100 conventional liquid phase separation, strong cation exchange column (SCX) HPLC pre-separation, and C18 reverse phase chromatography desalting purification, and protein was labeled with isotope. GO, KEGG pathway, and PPI analysis of differential proteins were conducted by bioinformatics, and protein types and corresponding signal pathways were obtained. RESULTS Thermo Q-Exactive mass spectrometry identified 943 proteins. T-test analysis was used to evaluate the different significance of the results, and the different protein of each group was obtained by screening with the Ratio≥1.2 or Ratio≤0.83 and P<0.05. We found that there are 16 kinds of protein throughout the process of silicosis. There are different expressions of protein in stages III/control, stages II/control, stage I/control, stages III/ stages II, stages III/ stage I and stages II/ stage I groups. The results of ontology enrichment analysis of total differential protein genes show that KEGG pathway enrichment analysis of differential protein suggested that there were nine pathways related to silicosis. CONCLUSION The main biological changes in the early stage of silicosis are glycolysis or gluconeogenesis, autoimmunity, carbon metabolism, phagocytosis, etc., and microfibril-associated glycoprotein 4 may be involved in the early stage of silicosis. The main biological changes in the late stage of silicosis are autoimmunity, intercellular adhesion, etc. Calcium hippocampus binding protein may participate in the biological changes in the late stage of silicosis. It provides a new idea to understand the pathogenesis of silicosis and also raises new questions for follow-up research.
Collapse
Affiliation(s)
- Xiaoxuan Zhang
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, P.R. China
| | - Ke Han
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, P.R. China
| | - Linhui Kan
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, P.R. China
| | - Zheng Zhang
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, P.R. China
| | - Yihong Gong
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, P.R. China
| | - Shuyu Xiao
- Tangshan Center of Disease Control and Prevention, Tangshan, Hebei, 063000, P.R. China
| | - Yuping Bai
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, P.R. China
| | - Nan Liu
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, P.R. China
| | - Chunyan Meng
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, P.R. China
| | - Huisheng Qi
- Tangshan City workers' Hospital, Tangshan, Hebei, 063000, P.R. China
| | - Fuhai Shen
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, P.R. China
| |
Collapse
|
3
|
Zhou Q, He L, Hu J, Gao Y, Shen D, Ni Y, Qin Y, Liang H, Liu J, Le W, Chen S. Increased expression of coronin-1a in amyotrophic lateral sclerosis: a potential diagnostic biomarker and therapeutic target. Front Med 2022; 16:723-735. [PMID: 35648369 DOI: 10.1007/s11684-021-0905-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 11/01/2021] [Indexed: 11/04/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease. At present, no definite ALS biomarkers are available. In this study, exosomes from the plasma of patients with ALS and healthy controls were extracted, and differentially expressed exosomal proteins were compared. Among them, the expression of exosomal coronin-1a (CORO1A) was 5.3-fold higher than that in the controls. CORO1A increased with disease progression at a certain proportion in the plasma of patients with ALS and in the spinal cord of ALS mice. CORO1A was also overexpressed in NSC-34 motor neuron-like cells, and apoptosis, oxidative stress, and autophagic protein expression were evaluated. CORO1A overexpression resulted in increased apoptosis and oxidative stress, overactivated autophagy, and hindered the formation of autolysosomes. Moreover, CORO1A activated Ca2+-dependent phosphatase calcineurin, thereby blocking the fusion of autophagosomes and lysosomes. The inhibition of calcineurin activation by cyclosporin A reversed the damaged autolysosomes. In conclusion, the role of CORO1A in ALS pathogenesis was discovered, potentially affecting the disease onset and progression by blocking autophagic flux. Therefore, CORO1A might be a potential biomarker and therapeutic target for ALS.
Collapse
Affiliation(s)
- Qinming Zhou
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lu He
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jin Hu
- Department of Neurology, the First Hospital of Jiaxing & the Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Yining Gao
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Dingding Shen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226007, China
| | - You Ni
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuening Qin
- Department of Dermatology, The People's Hospital of Rushan, Weihai, 264500, China
| | - Huafeng Liang
- Department of Neurology, Xinrui Hospital, Wuxi, 214000, China
| | - Jun Liu
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Weidong Le
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial Hospital, Chengdu, 610072, China.
| | - Sheng Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226007, China.
| |
Collapse
|
4
|
Kalra R, Tiwari D, Dkhar HK, Bhagyaraj E, Kumar R, Bhardwaj A, Gupta P. Host factors subverted by Mycobacterium tuberculosis: Potential targets for host directed therapy. Int Rev Immunol 2021; 42:43-70. [PMID: 34678117 DOI: 10.1080/08830185.2021.1990277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Despite new approaches in the diagnosis and treatment of tuberculosis (TB), it continues to be a major health burden. Several immunotherapies that potentiate the immune response have come up as adjuncts to drug therapies against drug resistant TB strains; however, there needs to be an urgent appraisal of host specific drug targets for improving their clinical management and to curtail disease progression. Presently, various host directed therapies (HDTs) exist (repurposed drugs, nutraceuticals, monoclonal antibodies and immunomodulatory agents), but these mostly address molecules that combat disease progression. AREAS COVERED The current review discusses major Mycobacterium tuberculosis (M. tuberculosis) survival paradigms inside the host and presents a plethora of host targets subverted by M. tuberculosis which can be further explored for future HDTs. The host factors unique to M. tuberculosis infection (in humans) have also been identified through an in-silico interaction mapping. EXPERT OPINION HDTs could become the next-generation adjunct therapies in order to counter antimicrobial resistance and virulence, as well as to reduce the duration of existing TB treatments. However, current scientific efforts are largely directed toward combatants rather than host molecules co-opted by M. tuberculosis for its survival. This might drive the immune system to a hyper-inflammatory condition; therefore, we emphasize that host factors subverted by M. tuberculosis, and their subsequent neutralization, must be considered for development of better HDTs.
Collapse
Affiliation(s)
- Rashi Kalra
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Drishti Tiwari
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Hedwin Kitdorlang Dkhar
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Ella Bhagyaraj
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Rakesh Kumar
- Bioinformatics Center, CSIR-Institute of Microbial Technology, Chandigarh-160036, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Anshu Bhardwaj
- Bioinformatics Center, CSIR-Institute of Microbial Technology, Chandigarh-160036, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Pawan Gupta
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh-160036, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
5
|
Saha S, Hazra A, Ghatak D, Singh AV, Roy S, BoseDasgupta S. A Bumpy Ride of Mycobacterial Phagosome Maturation: Roleplay of Coronin1 Through Cofilin1 and cAMP. Front Immunol 2021; 12:687044. [PMID: 34630380 PMCID: PMC8495260 DOI: 10.3389/fimmu.2021.687044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Phagosome-lysosome fusion in innate immune cells like macrophages and neutrophils marshal an essential role in eliminating intracellular microorganisms. In microbe-challenged macrophages, phagosome-lysosome fusion occurs 4 to 6 h after the phagocytic uptake of the microbe. However, live pathogenic mycobacteria hinder the transfer of phagosomes to lysosomes, up to 20 h post-phagocytic uptake. This period is required to evade pro-inflammatory response and upregulate the acid-stress tolerant proteins. The exact sequence of events through which mycobacteria retards phagolysosome formation remains an enigma. The macrophage coat protein Coronin1(Cor1) is recruited and retained by mycobacteria on the phagosome membrane to retard its maturation by hindering the access of phagosome maturation factors. Mycobacteria-infected macrophages exhibit an increased cAMP level, and based on receptor stimulus, Cor1 expressing cells show a higher level of cAMP than non-Cor1 expressing cells. Here we have shown that infection of bone marrow-derived macrophages with H37Rv causes a Cor1 dependent rise of intracellular cAMP levels at the vicinity of the phagosomes. This increased cAMP fuels cytoskeletal protein Cofilin1 to depolymerize F-actin around the mycobacteria-containing phagosome. Owing to reduced F-actin levels, the movement of the phagosome toward the lysosomes is hindered, thus contributing to the retarded phagosome maturation process. Additionally, Cor1 mediated upregulation of Cofilin1 also contributes to the prevention of phagosomal acidification, which further aids in the retardation of phagosome maturation. Overall, our study provides first-hand information on Cor1 mediated retardation of phagosome maturation, which can be utilized in developing novel peptidomimetics as part of host-directed therapeutics against tuberculosis.
Collapse
Affiliation(s)
- Saradindu Saha
- Molecular Immunology and Cellular Microbiology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Arnab Hazra
- Molecular Immunology and Cellular Microbiology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Debika Ghatak
- Molecular Immunology and Cellular Microbiology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Ajay Vir Singh
- Department of Microbiology and Molecular Biology, ICMR-National JALMA Institute of Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Sadhana Roy
- Molecular Immunology and Cellular Microbiology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Somdeb BoseDasgupta
- Molecular Immunology and Cellular Microbiology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
6
|
Saha S, Das P, BoseDasgupta S. "It Takes Two to Tango": Role of Neglected Macrophage Manipulators Coronin 1 and Protein Kinase G in Mycobacterial Pathogenesis. Front Cell Infect Microbiol 2020; 10:582563. [PMID: 33194820 PMCID: PMC7606305 DOI: 10.3389/fcimb.2020.582563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 08/31/2020] [Indexed: 01/08/2023] Open
Abstract
Macrophages being the connecting link between innate and adaptive immune system plays a crucial role in microbial antigen presentation and orchestrates the subsequent clearance of microorganisms. Microbial invasion of macrophages trigger a plethora of signaling cascades, which interact among them to generate a dynamically altered hostile environment, that ultimately leads to disruption of microbial pathogenesis. Paradoxically, Mycobacterium sp. exploits macrophage proteins such as Coronin 1, Calcineurin, LRG47, SOCS1, CISH, Gbp5 etc. and secretes virulence proteins such as PknG, PtpA, SapM, Eis etc. to hijack these intra-macrophage, signaling cascades and thereby develop its own niche. Coronin 1, being a cortical protein is transiently recruited to all mycobacteria containing phagosomes, but only pathogenic mycobacteria can retain it on the phagosome, to hinder its maturation. Additionally, mycobacterial infection linked secretion of virulence factor Protein Kinase G through its phosphorylation, manipulates several macrophage signaling pathways and thus promotes pathogenesis at various stages, form early infection to latency to granuloma formation. Here we discuss the present status of mycobacteria engaged Coronin 1-dependent signaling cascades and secreted PknG related sequence of events promoting mycobacterial pathogenesis. Current knowledge about these two proteins in context of macrophage signaling manipulation encompassing diverse mechanisms like calcium-calcineurin signaling, reduced proinflamtory cytokine secretion, cytoskeletal changes, and adaptation in acidic environment, which ultimately converge toward mycobacterial survival inside the macrophages has been discussed.
Collapse
Affiliation(s)
- Saradindu Saha
- Molecular Immunology and Cellular Microbiology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Payel Das
- Molecular Immunology and Cellular Microbiology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Somdeb BoseDasgupta
- Molecular Immunology and Cellular Microbiology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
7
|
Chen Y, Xu J, Zhang Y, Ma S, Yi W, Liu S, Yu X, Wang J, Chen Y. Coronin 2B regulates dendrite outgrowth by modulating actin dynamics. FEBS Lett 2020; 594:2975-2987. [PMID: 32692409 DOI: 10.1002/1873-3468.13886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/13/2020] [Accepted: 07/06/2020] [Indexed: 01/31/2023]
Abstract
Cytoskeletal remodeling is indispensable for the development and maintenance of neuronal structures and functions. However, the molecular machinery that controls the balance between actin polymerization and depolymerization during these processes is incompletely understood. Here, we report that coronin 2B, a conserved actin-binding protein, is concentrated at the tips of developing dendrites and that knockdown of coronin 2B inhibits the growth of dendrites. Importantly, coronin 2B interacts with actin and reduces the F-actin/G-actin ratio. Furthermore, the coiled-coil domain of coronin 2B is required for its oligomerization, thus confining coronin 2B to neurite tips. Our findings collectively suggest that coronin 2B is important for promoting dendrite outgrowth by limiting the speed of actin polymerization at growth cones.
Collapse
Affiliation(s)
- Yuewen Chen
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science - Shenzhen Fundamental Research Institutions, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Jinying Xu
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science - Shenzhen Fundamental Research Institutions, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yulin Zhang
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Shuangshuang Ma
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Wanying Yi
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Saijuan Liu
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Xiaojun Yu
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Jiali Wang
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Yu Chen
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science - Shenzhen Fundamental Research Institutions, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
8
|
Fiedler T, Fabrice TN, Studer V, Vinet A, Faltova L, Kammerer RA, Steinmetz MO, Sharpe T, Pieters J. Homodimerization of coronin A through the C-terminal coiled-coil domain is essential for multicellular differentiation of Dictyostelium discoideum. FEBS Lett 2020; 594:2116-2127. [PMID: 32298460 DOI: 10.1002/1873-3468.13787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 11/09/2022]
Abstract
Coronin proteins are widely expressed among eukaryotic organisms. Most coronins consist of a WD-repeat domain followed by a C-terminal coiled coil. Dictyostelium discoideum expresses a single short coronin coronin A, which has been implicated in both actin modulation and multicellular differentiation. Whether coronin A's coiled coil is important for functionality, as well as the oligomeric state of coronin A is not known. Here, we show that the coiled-coil domain in Dictyostelium coronin A functions in homodimerization, is dispensable for coronin A stability and localization but essential for multicellular differentiation. These results allow a better understanding of the role for the coiled-coil domain of coronin A in oligomerization and demonstrate that its presence is essential for multicellular differentiation.
Collapse
Affiliation(s)
| | | | - Vera Studer
- Biozentrum, University of Basel, Switzerland
| | | | - Lenka Faltova
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
| | - Richard A Kammerer
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
| | - Michel O Steinmetz
- Biozentrum, University of Basel, Switzerland
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
| | | | | |
Collapse
|
9
|
Feng J, Chen S, Wang Y, Liu Q, Yang M, Li X, Nie C, Qin J, Chen H, Yuan X, Huang Y, Zhang Q. Maternal exposure to cadmium impairs cognitive development of male offspring by targeting the Coronin-1a signaling pathway. CHEMOSPHERE 2019; 225:765-774. [PMID: 30903850 DOI: 10.1016/j.chemosphere.2019.03.094] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Direct exposure to cadmium (Cd) may induce persistent impairment in learning and memory. However, the outcomes of maternal exposure on the neurological development of offspring are much less clear, and the underlying mechanism leading to toxicity remains undisclosed. Following chronic exposure of female rats during gestation and lactation, low level of Cd was detectable in the cerebral cortex but not in the hippocampus of F1 male offspring. The synapses and neurites in hippocampus were destroyed by high Cd exposure level as evidenced by abnormal morphology and cognitive behavior deficit lasting from childhood to adulthood. The membrane glycoprotein M6a (GPM6A) regulates the filopodium formation, neurite outgrowth and synaptogenesis, and is a possible target which Cd acts upon. The signaling pathway Coronin-1a (CORO1A), Ras-related C3 botulinum toxin substrate 1 (RAC1) and p21-activated kinase 1 (PAK1) promotes GPM6A-induced filopodium formation. Our results showed that maternal exposure dramatically down-regulated the level of CORO1A as well as the expression of downstream effectors RAC1, PAK1 and GPM6A. CORO1A-knockdown by siRNA caused decreases in the expression of RAC1, PAK1 and GPM6A; and siRNA targeting combined with Cd insult further decreased the expression of these proteins. Following CORO1A overexpression, the neurites were lengthened with increased expression of all the effector proteins in SH-SY5Y cells exposed to Cd, confirming the significance of CORO1A in mediating the Cd neurotoxicity. These findings may help to disclose how Cd impairs the learning and cognitive development in children, and facilitate finding of potential therapeutic targets for the treatment of Cd poisoning.
Collapse
Affiliation(s)
- Jianfeng Feng
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Shaomin Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Youjin Wang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Qunxing Liu
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Mengqi Yang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xin Li
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Chuan Nie
- Guangdong Women and Children Hospital, Guangzhou, 510000, China
| | - Jianxiang Qin
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Hongxia Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiaohui Yuan
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China; National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China
| | - Yadong Huang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China; National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China
| | - Qihao Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China; National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
10
|
BoseDasgupta S, Pieters J. Macrophage-microbe interaction: lessons learned from the pathogen Mycobacterium tuberculosis. Semin Immunopathol 2018; 40:577-591. [PMID: 30306257 DOI: 10.1007/s00281-018-0710-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 02/07/2023]
Abstract
Macrophages, being the cornerstone of the immune system, have adapted the ancient nutrient acquisition mechanism of phagocytosis to engulf various infectious organisms thereby helping to orchestrate an appropriate host response. Phagocytosis refers to the process of internalization and degradation of particulate material, damaged and senescent cells and microorganisms by specialized cells, after which the vesicle containing the ingested particle, the phagosome, matures into acidic phagolysosomes upon fusion with hydrolytic enzyme-containing lysosomes. The destructive power of the macrophage is further exacerbated through the induction of macrophage activation upon a variety of inflammatory stimuli. Despite being the end-point for many phagocytosed microbes, the macrophage can also serve as an intracellular survival niche for a number of intracellular microorganisms. One microbe that is particularly successful at surviving within macrophages is the pathogen Mycobacterium tuberculosis, which can efficiently manipulate the macrophage at several levels, including modulation of the phagocytic pathway as well as interfering with a number of immune activation pathways that normally would lead to eradication of the internalized bacilli. M. tuberculosis excels at circumventing destruction within macrophages, thus establishing itself successfully for prolonged times within the macrophage. In this contribution, we describe a number of general features of macrophages in the context of their function to clear an infection, and highlight the strategies employed by M. tuberculosis to counter macrophage attack. Interestingly, research on the evasion tactics employed by M. tuberculosis within macrophages not only helps to design strategies to curb tuberculosis, but also allows a better understanding of host cell biology.
Collapse
Affiliation(s)
- Somdeb BoseDasgupta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - Jean Pieters
- Department of Biochemistry, Biozentrum, University of Basel, 50-70 Klingelbergstrasse, 4056, Basel, Switzerland.
| |
Collapse
|
11
|
Gannoun-Zaki L, Pätzold L, Huc-Brandt S, Baronian G, Elhawy MI, Gaupp R, Martin M, Blanc-Potard AB, Letourneur F, Bischoff M, Molle V. PtpA, a secreted tyrosine phosphatase from Staphylococcus aureus, contributes to virulence and interacts with coronin-1A during infection. J Biol Chem 2018; 293:15569-15580. [PMID: 30131335 DOI: 10.1074/jbc.ra118.003555] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/16/2018] [Indexed: 11/06/2022] Open
Abstract
Secretion of bacterial signaling proteins and adaptation to the host, especially during infection, are processes that are often linked in pathogenic bacteria. The human pathogen Staphylococcus aureus is equipped with a large arsenal of immune-modulating factors, allowing it to either subvert the host immune response or to create permissive niches for its survival. Recently, we showed that one of the low-molecular-weight protein tyrosine phosphatases produced by S. aureus, PtpA, is secreted during growth. Here, we report that deletion of ptpA in S. aureus affects intramacrophage survival and infectivity. We also observed that PtpA is secreted during macrophage infection. Immunoprecipitation assays identified several host proteins as putative intracellular binding partners for PtpA, including coronin-1A, a cytoskeleton-associated protein that is implicated in a variety of cellular processes. Of note, we demonstrated that coronin-1A is phosphorylated on tyrosine residues upon S. aureus infection and that its phosphorylation profile is linked to PtpA expression. Our results confirm that PtpA has a critical role during infection as a bacterial effector protein that counteracts host defenses.
Collapse
Affiliation(s)
- Laila Gannoun-Zaki
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and
| | - Linda Pätzold
- the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany
| | - Sylvaine Huc-Brandt
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and
| | - Grégory Baronian
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and
| | - Mohamed Ibrahem Elhawy
- the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany
| | - Rosmarie Gaupp
- the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany
| | - Marianne Martin
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and
| | - Anne-Béatrice Blanc-Potard
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and
| | - François Letourneur
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and
| | - Markus Bischoff
- the Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany
| | - Virginie Molle
- From the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier 34000, France and
| |
Collapse
|
12
|
Martorella M, Barford K, Winkler B, Deppmann CD. Emergent Role of Coronin-1a in Neuronal Signaling. VITAMINS AND HORMONES 2016; 104:113-131. [PMID: 28215292 DOI: 10.1016/bs.vh.2016.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Coronin family of proteins were first noted for their role in pathogen-host interactions and for modulating actin dynamics. Recently, however, Coronins have been found in a greater variety of cell types, and novel roles for the Coronins within the nervous system have been discovered. In the immune system, Coronin-1a enables Mycobacterium tuberculosis to evade lysosomal destruction. This activity appears to be analogous to protection of the NGF-TrkA signaling endosome during sympathetic nervous system development that is required for survival signaling. Similarly, others have implicated Coronin-1a in GPCR signaling during the formation of excitatory connections in the central nervous system. Its role in multiple signaling pathways suggests that it may influence cross talk between key pathways (TrkA, GPCRs) during neurodevelopment. Here, we review the role of Coronin-1a in neural development and function.
Collapse
Affiliation(s)
- M Martorella
- University of Virginia, Charlottesville, VA, United States
| | - K Barford
- University of Virginia, Charlottesville, VA, United States
| | - B Winkler
- University of Virginia, Charlottesville, VA, United States
| | - C D Deppmann
- University of Virginia, Charlottesville, VA, United States.
| |
Collapse
|
13
|
Jayachandran R, Pieters J. Regulation of immune cell homeostasis and function by coronin 1. Int Immunopharmacol 2015; 28:825-8. [DOI: 10.1016/j.intimp.2015.03.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/28/2015] [Indexed: 12/24/2022]
|