1
|
Mishra SK, Wang H. SUDAZFLNC - a curated and searchable online database for zebrafish lncRNAs, mRNAs, miRNAs, and circadian expression profiles. Comput Struct Biotechnol J 2024; 23:1844-1853. [PMID: 38707541 PMCID: PMC11067007 DOI: 10.1016/j.csbj.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024] Open
Abstract
The zebrafish (Danio rerio) has emerged as a model organism for investigating lncRNAs-driven fundamental biological processes, such as circadian rhythms, physiology, metabolism, and various diseases. While state-of-the-art sequencing technologies have identified an increasing number of lncRNAs in zebrafish, their annotations are far from complete. In this study, we collect 28,925 lncRNAs from both the published studies and our own RNA-seq analyses and establish a novel webserver-based database called SUDAZFLNC (https://sudarna.website/). The database, containing 28,925 lncRNAs, 25,432 mRNAs, and 368 miRNAs, provides several crucial features and annotations for the zebrafish RNAs, such as sequence identifiers (IDs), sequence length, hexamer score, coding probabilities, GO and KEGG annotations, and micropeptides. SUDAZFLNC also includes time-course expression profiles of 3288 lncRNAs, 25,432 mRNAs, and 342 miRNAs generated from our RNA-seq experiments, and 149, 4407, and 43 rhythmically expressed lncRNAs, mRNAs, and miRNAs, respectively. Based on the peak expression patterns, we classified these RNAs into morning RNAs, evening RNAs, and night RNAs. Users of the database can access the RNA sequences and their expression profiles by searching the corresponding IDs from the Graphical User Interface (GUI) of the database. The database supports several features to investigate RNA sequences and expression profiles, including BLAST, search of sequence and data, ID conversion, and RNA-RNA interaction prediction. This is the largest curated database of zebrafish RNAs and their expression profiles to date.
Collapse
Affiliation(s)
- Shital Kumar Mishra
- Center for Circadian Clocks, Soochow University, Suzhou 215123, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou 215123, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
2
|
Mishra SK, Liu T, Wang H. Thousands of oscillating LncRNAs in the mouse testis. Comput Struct Biotechnol J 2024; 23:330-346. [PMID: 38205156 PMCID: PMC10776378 DOI: 10.1016/j.csbj.2023.11.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/12/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
The long noncoding RNAs (lncRNAs) are involved in numerous fundamental biological processes, including circadian regulation. Although recent studies have revealed insights into the functions of lncRNAs, how the lncRNAs regulate circadian rhythms still requires a deeper investigation. In this study, we generate two datasets of RNA-seq profiles of the mouse (Mus musculus) testis under light-dark (LD) cycle. The first dataset included 18,613 unannotated transcripts measured at 12 time points, each with duplicate samples, under LD conditions; while the second dataset included 21,414 unannotated transcripts measured at six time points, each with three replicates, under desynchronized and control conditions. We identified 5964 testicular lncRNAs in each dataset by BLASTing these transcripts against the known mouse lncRNAs from the NONCODE database. MetaCycle analyses were performed to identify 519, 475, and 494 rhythmically expressed mouse testicular lncRNAs in the 12-time-point dataset, the six-time-point control dataset, and the six-time-point desynchronized dataset, respectively. A comparison of the expression profiles of the lncRNAs under desynchronized and control conditions revealed that 427 rhythmically expressed lncRNAs from the control condition became arrhythmic under the desynchronized condition, suggesting a possible loss of rhythmicity. In contrast, 446 arrhythmic lncRNAs from the control condition became rhythmic under the desynchronized condition, suggesting a possible gain of rhythmicity. Interestingly, 48 lncRNAs were rhythmically expressed under both desynchronized and control conditions. These oscillating lncRNAs were divided into morning lncRNAs, evening lncRNAs, and night lncRNAs based on their time-course expression patterns. We interrogated the promoter regions of these rhythmically expressed mouse testicular lncRNAs to predict their possible regulation by the E-box, D-box, or RORE promoter motifs. GO and KEGG analyses were performed to identify the possible biological functions of these rhythmically expressed mouse testicular lncRNAs. Further, we conducted conservation analyses of the rhythmically expressed mouse testicular lncRNAs with lncRNAs from humans, rats, and zebrafish, and uncovered three mouse testicular lncRNAs conserved across these four species. Finally, we computationally predicted the conserved lncRNA-encoded peptides and their 3D structures from each of the four species. Taken together, our study revealed thousands of rhythmically expressed lncRNAs in the mouse testis, setting the stage for further computational and experimental validations.
Collapse
Affiliation(s)
- Shital Kumar Mishra
- Center for Circadian Clocks, Soochow University, Suzhou 215123, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Taole Liu
- Center for Circadian Clocks, Soochow University, Suzhou 215123, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou 215123, Jiangsu, China
- School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
3
|
Hundreds of LncRNAs Display Circadian Rhythmicity in Zebrafish Larvae. Cells 2021; 10:cells10113173. [PMID: 34831396 PMCID: PMC8620895 DOI: 10.3390/cells10113173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/06/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been shown to play crucial roles in various life processes, including circadian rhythms. Although next generation sequencing technologies have facilitated faster profiling of lncRNAs, the resulting datasets require sophisticated computational analyses. In particular, the regulatory roles of lncRNAs in circadian clocks are far from being completely understood. In this study, we conducted RNA-seq-based transcriptome analysis of zebrafish larvae under both constant darkness (DD) and constant light (LL) conditions in a circadian manner, employing state-of-the-art computational approaches to identify approximately 3220 lncRNAs from zebrafish larvae, and then uncovered 269 and 309 lncRNAs displaying circadian rhythmicity under DD and LL conditions, respectively, with 30 of them are coexpressed under both DD and LL conditions. Subsequently, GO, COG, and KEGG pathway enrichment analyses of all these circadianly expressed lncRNAs suggested their potential involvement in numerous biological processes. Comparison of these circadianly expressed zebrafish larval lncRNAs, with rhythmically expressed lncRNAs in the zebrafish pineal gland and zebrafish testis, revealed that nine (DD) and twelve (LL) larval lncRNAs are coexpressed in the zebrafish pineal gland and testis, respectively. Intriguingly, among peptides encoded by these coexpressing circadianly expressed lncRNAs, three peptides (DD) and one peptide (LL) were found to have the known domains from the Protein Data Bank. Further, the conservation analysis of these circadianly expressed zebrafish larval lncRNAs with human and mouse genomes uncovered one lncRNA and four lncRNAs shared by all three species under DD and LL conditions, respectively. We also investigated the conserved lncRNA-encoded peptides and found one peptide under DD condition conserved in these three species and computationally predicted its 3D structure and functions. Our study reveals that hundreds of lncRNAs from zebrafish larvae exhibit circadian rhythmicity and should help set the stage for their further functional studies.
Collapse
|
4
|
Parnigoni A, Caon I, Moretto P, Viola M, Karousou E, Passi A, Vigetti D. The role of the multifaceted long non-coding RNAs: A nuclear-cytosolic interplay to regulate hyaluronan metabolism. Matrix Biol Plus 2021; 11:100060. [PMID: 34435179 PMCID: PMC8377009 DOI: 10.1016/j.mbplus.2021.100060] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
In the extracellular matrix (ECM), the glycosaminoglycan (GAG) hyaluronan (HA) has different physiological roles favouring hydration, elasticity and cell survival. Three different isoforms of HA synthases (HAS1, 2, and 3) are responsible for the production of HA. In several pathologies the upregulation of HAS enzymes leads to an abnormal HA accumulation causing cell dedifferentiation, proliferation and migration thus favouring cancer progression, fibrosis and vascular wall thickening. An intriguing new player in HAS2 gene expression regulation and HA production is the long non-coding RNA (lncRNA) hyaluronan synthase 2 antisense 1 (HAS2-AS1). A significant part of mammalian genomes corresponds to genes that transcribe lncRNAs; they can regulate gene expression through several mechanisms, being involved not only in maintaining the normal homeostasis of cells and tissues, but also in the onset and progression of different diseases, as demonstrated by the increasing number of studies published through the last decades. HAS2-AS1 is no exception: it can be localized both in the nucleus and in the cytosol, regulating cancer cells as well as vascular smooth muscle cells behaviour. Hyaluronan is a component of the extracellular matrix and is synthetised by three isoenzymes named HAS1, 2, and 3. In several pathologies an upregulation of HAS2 leads to an abnormal accumulation of HA. The long non-coding RNA is a new specific epigenetic regulator of HAS2. In the nucleus HAS2-AS1 modulates chromatin structure around HAS2 promoter increasing transcription. In the cytosol, HAS2-AS1 can interact with several miRNAs altering the expression of several genes as well as can stabilise HAS2 mRNA forming RNA: RNA duplex.
Collapse
Key Words
- 4-MU, 4-methylubelliferone
- 4-MUG, 4-methylumbelliferyl glucuronide
- Atherosclerosis
- Cancer
- ECM, extracellular matrix
- EMT, epithelial to mesenchymal transition
- Epigenetics
- Extracellular matrix
- GAG, glycosaminoglycans
- Glycosaminoglycans
- HA, hyaluronan
- HAS2
- HAS2, hyaluronan synthase 2
- HAS2-AS1
- HAS2–AS1, hyaluronan synthase 2 natural antisense 1
- HIFs, hypoxia-inducible factors
- NF-κB, nuclear factor κ–light-chain enhancer of activated B cell
- PG, proteoglycan
- PTM, post-translational modification
- Proteoglycans
- RBP, RNA-binding protein
- SIRT1, sirtuin 1
- SMCs, smooth muscle cells
- TNF-α, tumour necrosis factor alpha
- UDP-GlcNAc, UDP-N-acetylglucosamine
- UDP-GlcUA, UDP-glucuronic acid
- ceRNA, competitive endogenous RNA
- lncRNA, long non-coding RNA
- miRNA, micro-RNA
Collapse
Affiliation(s)
- Arianna Parnigoni
- Department of Medicine and Surgery, University of Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| | - Ilaria Caon
- Department of Medicine and Surgery, University of Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| | - Paola Moretto
- Department of Medicine and Surgery, University of Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| | - Manuela Viola
- Department of Medicine and Surgery, University of Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| | - Evgenia Karousou
- Department of Medicine and Surgery, University of Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| |
Collapse
|
5
|
Mishra SK, Liu T, Wang H. Identification of Rhythmically Expressed LncRNAs in the Zebrafish Pineal Gland and Testis. Int J Mol Sci 2021; 22:7810. [PMID: 34360576 PMCID: PMC8346003 DOI: 10.3390/ijms22157810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
Noncoding RNAs have been known to contribute to a variety of fundamental life processes, such as development, metabolism, and circadian rhythms. However, much remains unrevealed in the huge noncoding RNA datasets, which require further bioinformatic analysis and experimental investigation-and in particular, the coding potential of lncRNAs and the functions of lncRNA-encoded peptides have not been comprehensively studied to date. Through integrating the time-course experimentation with state-of-the-art computational techniques, we studied tens of thousands of zebrafish lncRNAs from our own experiments and from a published study including time-series transcriptome analyses of the testis and the pineal gland. Rhythmicity analysis of these data revealed approximately 700 rhythmically expressed lncRNAs from the pineal gland and the testis, and their GO, COG, and KEGG pathway functions were analyzed. Comparative and conservative analyses determined 14 rhythmically expressed lncRNAs shared between both the pineal gland and the testis, and 15 pineal gland lncRNAs as well as 3 testis lncRNAs conserved among zebrafish, mice, and humans. Further, we computationally analyzed the conserved lncRNA-encoded peptides, and revealed three pineal gland and one testis lncRNA-encoded peptides conserved among these three species, which were further investigated for their three-dimensional (3D) structures and potential functions. Our computational findings provided novel annotations and regulatory mechanisms for hundreds of rhythmically expressed pineal gland and testis lncRNAs in zebrafish, and set the stage for their experimental studies in the near future.
Collapse
Affiliation(s)
- Shital Kumar Mishra
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China; (S.K.M.); (T.L.)
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
| | - Taole Liu
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China; (S.K.M.); (T.L.)
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China; (S.K.M.); (T.L.)
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
| |
Collapse
|
6
|
Yuan X, Zhang Y, Yu Z. Expression and clinical significance of miR-3615 in hepatocellular carcinoma. J Int Med Res 2021; 49:300060520981547. [PMID: 33435769 PMCID: PMC7809312 DOI: 10.1177/0300060520981547] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To investigate the association between microRNA-3615 (miR-3615) expression and the prognosis and clinicopathological features in patients with hepatocellular carcinoma (HCC). METHODS We obtained clinicopathological and genomic data and prognostic information on HCC patients from The Cancer Genome Atlas (TCGA) database. We then analyzed differences in miR-3615 expression levels between HCC and adjacent tissues using SPSS software, and examined the relationships between miR-3615 expression levels and clinicopathological characteristics. We also explored the influence of miR-3615 expression levels on the prognosis of HCC patients using Kaplan-Meier survival curve analysis. RESULTS Based on data for 345 HCC and 50 adjacent normal tissue samples, expression levels of miR-3615 were significantly higher in HCC tissues compared with adjacent tissues. MiR-3615 expression levels in HCC patients were negatively correlated with overall survival time and positively correlated with high TNM stage, serum Ki-67 expression level, and serum alpha-fetoprotein level. There were no significant correlations between miR-3615 expression and age, sex, and pathological grade. CONCLUSION MiR-3615 may be a promising new biomarker and prognostic factor for HCC.
Collapse
Affiliation(s)
- Xin Yuan
- Gene Hospital of Henan Province, Precision Medicine Center, Zhengzhou, Henan Province, China.,Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yize Zhang
- Gene Hospital of Henan Province, Precision Medicine Center, Zhengzhou, Henan Province, China.,Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zujiang Yu
- Gene Hospital of Henan Province, Precision Medicine Center, Zhengzhou, Henan Province, China.,Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
7
|
Yang H, Gao L, Zhang M, Ning N, Wang Y, Wu D, Li X. Identification and Analysis of An Epigenetically Regulated Five-lncRNA Signature Associated With Outcome and Chemotherapy Response in Ovarian Cancer. Front Cell Dev Biol 2021; 9:644940. [PMID: 33708773 PMCID: PMC7940383 DOI: 10.3389/fcell.2021.644940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
The deregulation of long non-coding RNAs (lncRNAs) by epigenetic alterations has been implicated in cancer initiation and progression. However, the epigenetically regulated lncRNAs and their association with clinical outcome and therapeutic response in ovarian cancer (OV) remain poorly investigated. This study performed an integrative analysis of DNA methylation data and transcriptome data and identified 419 lncRNAs as potential epigenetically regulated lncRNAs. Using machine-learning and multivariate Cox regression analysis methods, we identified and developed an epigenetically regulated lncRNA expression signature (EpiLncRNASig) consisting of five lncRNAs from the list of 17 epigenetically regulated lncRNAs significantly associated with outcome. The EpiLncRNASig could stratify patients into high-risk groups and low-risk groups with significantly different survival and chemotherapy response in different patient cohorts. Multivariate Cox regression analyses, after adjusted by other clinical features and treatment response, demonstrated the independence of the DEpiLncSig in predicting survival. Functional analysis for relevant protein-coding genes of the DEpiLncSig indicated enrichment of known immune-related or cancer-related biological pathways. Taken together, our study not only provides a promising prognostic biomarker for predicting outcome and chemotherapy response but also will improve our understanding of lncRNA epigenetic regulation mechanisms in OV.
Collapse
Affiliation(s)
- Hao Yang
- Department of Radiation Oncology, Inner Mongolia Cancer Hospital and The Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Lin Gao
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
| | - Meiling Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ning Ning
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Di Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaomei Li
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
8
|
Katsushima K, Jallo G, Eberhart CG, Perera RJ. Long non-coding RNAs in brain tumors. NAR Cancer 2021; 3:zcaa041. [PMID: 34316694 PMCID: PMC8210177 DOI: 10.1093/narcan/zcaa041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/09/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been found to be central players in the epigenetic, transcriptional and post-transcriptional regulation of gene expression. There is an accumulation of evidence on newly discovered lncRNAs, their molecular interactions and their roles in the development and progression of human brain tumors. LncRNAs can have either tumor suppressive or oncogenic functions in different brain cancers, making them attractive therapeutic targets and biomarkers for personalized therapy and precision diagnostics. Here, we summarize the current state of knowledge of the lncRNAs that have been implicated in brain cancer pathogenesis, particularly in gliomas and medulloblastomas. We discuss their epigenetic regulation as well as the prospects of using lncRNAs as diagnostic biomarkers and therapeutic targets in patients with brain tumors.
Collapse
Affiliation(s)
- Keisuke Katsushima
- Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans St., Baltimore, MD 21231, USA
| | - George Jallo
- Johns Hopkins All Children's Hospital, 600 5th St. South, St Petersburg, FL 33701, USA
| | - Charles G Eberhart
- Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans St., Baltimore, MD 21231, USA
| | - Ranjan J Perera
- Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans St., Baltimore, MD 21231, USA
| |
Collapse
|
9
|
Characterization of complete lncRNAs transcriptome reveals the functional and clinical impact of lncRNAs in multiple myeloma. Leukemia 2021; 35:1438-1450. [PMID: 33597729 PMCID: PMC8102198 DOI: 10.1038/s41375-021-01147-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/03/2020] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
Multiple myeloma (MM) is an incurable disease, whose clinical heterogeneity makes its management challenging, highlighting the need for biological features to guide improved therapies. Deregulation of specific long non-coding RNAs (lncRNAs) has been shown in MM, nevertheless, the complete lncRNA transcriptome has not yet been elucidated. In this work, we identified 40,511 novel lncRNAs in MM samples. lncRNAs accounted for 82% of the MM transcriptome and were more heterogeneously expressed than coding genes. A total of 10,351 overexpressed and 9,535 downregulated lncRNAs were identified in MM patients when compared with normal bone-marrow plasma cells. Transcriptional dynamics study of lncRNAs in the context of normal B-cell maturation revealed 989 lncRNAs with exclusive expression in MM, among which 89 showed de novo epigenomic activation. Knockdown studies on one of these lncRNAs, SMILO (specific myeloma intergenic long non-coding RNA), resulted in reduced proliferation and induction of apoptosis of MM cells, and activation of the interferon pathway. We also showed that the expression of lncRNAs, together with clinical and genetic risk alterations, stratified MM patients into several progression-free survival and overall survival groups. In summary, our global analysis of the lncRNAs transcriptome reveals the presence of specific lncRNAs associated with the biological and clinical behavior of the disease.
Collapse
|
10
|
Xiao Y, Hu J, Yin W. Systematic Identification of Non-coding RNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1094:9-18. [PMID: 30191483 DOI: 10.1007/978-981-13-0719-5_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Non-coding RNAs (ncRNAs) are biologically significant in variable ways. They modulate gene expression at the levels of transcription and post-transcription. MiRNAs and lncRNAs are two major classes of non-coding RNAs and have been extensively characterized. They are implicated in various biological processes and diseases. Thus, identification of miRNAs and lncRNAs are fundamental to further understand their roles and dissect their mechanisms. Here, we overviewed pipelines of identifying miRNAs and lncRNAs based on next-generation sequencing technologies. We applied the pipelines to identify miRNAs in multiple cell lines and perform expression quantification of mature, precursor and primary miRNAs. In addition, we provided an alternative way to re-annotate lncRNAs from microarray data. We summarized multiple resources and databases for lncRNA annotation and compared their annotation processes and specific parameters. Finally, we utilized RNA-seq and miRNA-seq data to construct a comprehensive transcriptome containing miRNAs, lncRNAs and protein-coding genes in heart failure.
Collapse
Affiliation(s)
- Yun Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
| | - Jing Hu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wenkang Yin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
11
|
Chen X, Zhu X, Wei Z, Lv Q. Integrated mRNA‐Seq and miRNA‐Seq analysis of PLCγ2‐overexpressing hepatocarcinoma cells and identification of the associated miRNA‐mRNA network. J Cell Biochem 2019; 120:19878-19890. [DOI: 10.1002/jcb.29294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/27/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Xiaoguang Chen
- Animal Science and Technology School Henan University of Science and Technology Luoyang China
| | - Xuemin Zhu
- Animal Science and Technology School Henan University of Science and Technology Luoyang China
| | - Zhiguo Wei
- Animal Science and Technology School Henan University of Science and Technology Luoyang China
| | - Qiongxia Lv
- Animal Science and Technology School Henan University of Science and Technology Luoyang China
| |
Collapse
|
12
|
Has2 natural antisense RNA and Hmga2 promote Has2 expression during TGFβ-induced EMT in breast cancer. Matrix Biol 2019; 80:29-45. [DOI: 10.1016/j.matbio.2018.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 12/16/2022]
|
13
|
Yi J, Chen B, Yao X, Lei Y, Ou F, Huang F. Upregulation of the lncRNA MEG3 improves cognitive impairment, alleviates neuronal damage, and inhibits activation of astrocytes in hippocampus tissues in Alzheimer's disease through inactivating the PI3K/Akt signaling pathway. J Cell Biochem 2019; 120:18053-18065. [PMID: 31190362 DOI: 10.1002/jcb.29108] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 04/18/2019] [Accepted: 04/29/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The purpose of this study was to elucidate the expression of the long noncoding RNA (lncRNA) maternally expressed gene 3 (MEG3) in rats with Alzheimer's disease (AD) and to explore its potential mechanisms. METHODS An AD rat model was induced by microinjection of Aβ25-35 . On the first day after successful modeling, pcDNA3.1 plasmid and pcDNA3.1-MEG3 plasmid were continuously infused into the third ventricle through a micro-osmotic pump to interfere with the expression level of MEG3. The spatial learning ability and memory ability, the histopathological changes of hippocampus tissues, the ultrastructure of hippocampal neurons, astrocyte activation as well as the survival and apoptosis of hippocampal neurons in each group was observed. The expression of apoptosis, PI3/Akt signaling pathway-related proteins, glial fibrillary acidic protein, inflammatory factors, malondialdehyde, glutathione-peroxidase, and superoxide dismutase levels were determined. The deposition of amyloid beta (Aβ) in the hippocampus of rats by was observed by Aβ immunohistochemical staining. RESULTS Downregulated MEG3 was detected in the tissues of AD rats. In addition, upregulation of MEG3 contributed to an improvement of spatial learning ability and memory ability, inhibited the pathological injury and its apoptosis of hippocampal neurons, decreased Aβ positive expression, inhibited oxidative stress injury and inflammatory injury as well as the activated astrocytes in AD rats via inactivation of the PI3/Akt pathway. CONCLUSION Our study highlights that upregulation of the lncRNA MEG3 improves cognitive impairment, alleviates neuronal damage, and inhibits activation of astrocytes in hippocampus tissues in AD through inhibiting the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Jiping Yi
- Department of Neurology, Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, P.R. China
| | - Bin Chen
- Department of Spinal Surgery, Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, P.R. China
| | - Xiaoxi Yao
- Department of Neurology, Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, P.R. China
| | - Yuanbiao Lei
- Department of Neurology, Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, P.R. China
| | - Fuyong Ou
- Department of Neurology, Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, P.R. China
| | - Fengzhen Huang
- Department of Neurology, Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, P.R. China
| |
Collapse
|
14
|
Yang K, Feng S, Ren J, Zhou W. Upregulation of microRNA-196a improves cognitive impairment and alleviates neuronal damage in hippocampus tissues of Alzheimer's disease through downregulating LRIG3 expression. J Cell Biochem 2019; 120:17811-17821. [PMID: 31119777 DOI: 10.1002/jcb.29047] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/18/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE This study is launched to uncover the inner function of microRNA-196a (miR-196a) on cognitive dysfunction and neuronal damage in Alzheimer's disease (AD) rats through regulating the PI3K/Akt signaling pathway. METHODS The establishment of AD rat model was performed by a microinjection of Aβ25-35 . miR-196a and LRIG3 expression was detected, and the putative binding site between them was also determined. The spatial learning and memory capability, the hippocampal neurons ultrastructure as well as the survival, and apoptosis of hippocampal neurons of rats were observed. The expression of apoptosis-associated protein, oxidative stress index, and inflammatory factors as well as the PI3K/Akt pathway-related factors was determined. RESULTS Initially, decreased miR-196a and increased LRIG3 were exhibited in hippocampus tissues of AD rats. In addition, restored miR-196a and deleted LRIG3 ameliorated spatial learning and memory capability, suppressed the pathological injury, induced the survival, and suppressed the apoptosis of hippocampal neurons, as well as inhibited oxidative stress injury together with inflammatory injury in AD rats. Furthermore, upregulation of miR-196a activated the PI3/Akt pathway in AD rats. CONCLUSION This current study suggests that upregulation of miR-196a and downregulation of LRIG3 improve cognitive impairment and alleviate neuronal damage in hippocampus tissues in AD rats via the modulation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Ke Yang
- Department of Neurology, Zhengzhou People's Hospital, Zhengzhou, China
| | - Shutao Feng
- Department of Neurology, Zhengzhou People's Hospital, Zhengzhou, China
| | - Jun Ren
- Department of Neurology, Zhengzhou People's Hospital, Zhengzhou, China
| | - Wenbin Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Xu J, Shi A, Long Z, Xu L, Liao G, Deng C, Yan M, Xie A, Luo T, Huang J, Xiao Y, Li X. Capturing functional long non-coding RNAs through integrating large-scale causal relations from gene perturbation experiments. EBioMedicine 2018; 35:369-380. [PMID: 30177244 PMCID: PMC6156711 DOI: 10.1016/j.ebiom.2018.08.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/15/2018] [Accepted: 08/22/2018] [Indexed: 02/06/2023] Open
Abstract
Characterizing functions of long noncoding RNAs (lncRNAs) remains a major challenge, mostly due to the lack of lncRNA-involved regulatory relationships. A wide array of genome-wide expression profiles generated by gene perturbation have been widely used to capture causal links between perturbed genes and response genes. Through annotating >600 gene perturbation profiles, over 354,000 causal relationships between perturbed genes and lncRNAs were identified. This large-scale resource of causal relations inspired us to develop a novel computational approach LnCAR for inferring lncRNAs' functions, which showed a higher accuracy than the co-expression based approach. By application of LnCAR to the cancer hallmark processes, we identified 38 lncRNAs involved in distinct carcinogenic processes. The "activating invasion & metastasis" related lncRNAs were strongly associated with metastatic progression in various cancer types and could act as a predictor of cancer metastasis. Meanwhile, the "evading immune destruction" related lncRNAs showed significant associations with immune infiltration of various immune cells and, importantly, can predict response to anti-PD-1 immunotherapy, suggesting their potential roles as biomarkers for immune therapy. Taken together, our approach provides a novel way to systematically reveal functions of lncRNAs, which will be helpful for further experimental exploration and clinical translational research of lncRNAs.
Collapse
Affiliation(s)
- Jinyuan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Aiai Shi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Zhilin Long
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Liwen Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Gaoming Liao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Chunyu Deng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Min Yan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Aiming Xie
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Tao Luo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Jian Huang
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Yun Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Harbin, Heilongjiang 150086, China.
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China; Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Harbin, Heilongjiang 150086, China.
| |
Collapse
|
16
|
Pop S, Enciu AM, Necula LG, Tanase C. Long non-coding RNAs in brain tumours: Focus on recent epigenetic findings in glioma. J Cell Mol Med 2018; 22:4597-4610. [PMID: 30117678 PMCID: PMC6156469 DOI: 10.1111/jcmm.13781] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/07/2018] [Indexed: 02/07/2023] Open
Abstract
Glioma biology is a major focus in tumour research, primarily due to the aggressiveness and high mortality rate of its most aggressive form, glioblastoma. Progress in understanding the molecular mechanisms behind poor prognosis of glioblastoma, regardless of treatment approaches, has changed the classification of brain tumours after nearly 100 years of relying on anatomopathological criteria. Expanding knowledge in genetic, epigenetic and translational medicine is also beginning to contribute to further elucidating molecular dysregulation in glioma. Long non‐coding RNAs (lncRNAs) and their main representatives, large intergenic non‐coding RNAs (lincRNAs), have recently been under scrutiny in glioma research, revealing novel mechanisms of pathogenesis and reinforcing others. Among those confirmed was the reactivation of events significant for foetal brain development and neuronal commitment. Novel mechanisms of tumour suppression and activation of stem‐like behaviour in tumour cells have also been examined. Interestingly, these processes involve lncRNAs that are present both during normal brain development and in brain malignancies and their reactivation might be explained by epigenetic mechanisms, which we discuss in detail in the present review. In addition, the review discusses the lncRNAs‐induced changes, as well as epigenetic changes that are consequential for tumour formation, affecting, in turn, the expression of various types of lncRNAs.
Collapse
Affiliation(s)
- Sevinci Pop
- "Victor Babes" National Institute of Pathology, Bucharest, Romania
| | - Ana-Maria Enciu
- "Victor Babes" National Institute of Pathology, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Laura G Necula
- "Victor Babes" National Institute of Pathology, Bucharest, Romania.,"Stefan N. Nicolau" National Institute of Virology, Bucharest, Romania.,Faculty of Medicine, "Titu Maiorescu" University, Bucharest, Romania
| | - Cristiana Tanase
- "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Faculty of Medicine, "Titu Maiorescu" University, Bucharest, Romania
| |
Collapse
|
17
|
Jiang R, Zhao C, Gao B, Xu J, Song W, Shi P. Mixomics analysis of breast cancer: Long non-coding RNA linc01561 acts as ceRNA involved in the progression of breast cancer. Int J Biochem Cell Biol 2018; 102:1-9. [PMID: 29890225 DOI: 10.1016/j.biocel.2018.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/26/2018] [Accepted: 06/04/2018] [Indexed: 12/30/2022]
Abstract
OBJECTIVE This study aimed at finding the long non-coding RNA (lncRNA), miRNA and mRNA which played critical roles in breast cancer (BrCa) by using mixOmics R package. METHOD The BrCa dataset were obtained from TCGA and then analyzed using "DESeq2" R package. Multivariate analyses were performed with the "mixOmics" R package and the first component of the stacked partial least-Squares discriminant analysis results were used for searching the interested lncRNA, miRNA and mRNA. qRT-PCR was applied to identify the bioinformatics results in four BrCa cell lines (MCF7, BT-20, ZR-75-1, and MX-1) and the breast epithelial cell line MCF-10 A. Then cells (MCF-1 and MX-1) were transfected with si-linc01561, miR-145-5p mimics and si-MMP11 to further investigate the effects of linc01561, miR-145-5p and MMP11 on the BrCa cells proliferation and apoptosis. RESULTS MixOmics results showed that linc01561, miR-145-5p and MMP11 might play important roles in BrCa. qRT-PCR results identified that in BrCa cell lines, linc01561 and MMP11 were higher expressed while miR-145-5p was lower expressed compared with those in epithelial cell line. The linc01561 inhibition elevated miR-145-5p expression and then suppressed MMP11 expression. Moreover, linc01561 inhibition suppressed the BrCa cells proliferation and promoted the apoptosis, which was realized by up-regulating expression of miR-145-5p and down-regulating expression of MMP11. CONCLUSION In summary, the findings of this study, based on ceRNA theory, combining the research foundation of miR-145-5p and MMP11, and taking linc01561 as a new study point, provide new insight into molecular-level reversing proliferation and apoptosis of BrCa.
Collapse
Affiliation(s)
- Rui Jiang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Chunming Zhao
- Department of Opthalmology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Binbin Gao
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Jiawen Xu
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Wei Song
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Peng Shi
- Department of Thyroid and Breast Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China.
| |
Collapse
|
18
|
Xu JH, Chang WH, Fu HW, Yuan T, Chen P. The mRNA, miRNA and lncRNA networks in hepatocellular carcinoma: An integrative transcriptomic analysis from Gene Expression Omnibus. Mol Med Rep 2018; 17:6472-6482. [PMID: 29512731 PMCID: PMC5928629 DOI: 10.3892/mmr.2018.8694] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 10/23/2017] [Indexed: 01/01/2023] Open
Abstract
Research advances and analysis in the non-protein coding part of the human genome have suggested that microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are associated with tumor initiation, growth and metastasis. Accumulating studies have demonstrated that a class of miRNAs and lncRNAs are dysregulated in hepatocellular carcinoma (HCC) and closely associated with tumorigenesis, diagnosis and prognosis. In the present study, integrative analysis of published data on multi-level Gene Expression Omnibus (GEO) and a bioinformatics computational approach were used to predict regulatory mechanism networks among differentially expressed mRNAs, miRNAs, and lncRNAs. Firstly, nine microarray expression data sets of mRNAs, miRNAs, and lncRNAs associated with HCC were collected from GEO datasets. Secondly, a total of 628 mRNAs, 15 miRNAs, and 49 lncRNAs were differentially expressed in this integrative analysis. Following this, mRNA, miRNA and lncRNA regulatory or co-expression networks were constructed. From the construction of the regulatory networks, five miRNAs and ten lncRNAs were identified as key differentially expressed noncoding RNAs associated with HCC progression. Finally, the regulatory effects of ten lncRNAs and miRNAs were validated. The study provides a novel insight into the understanding of the transcriptional regulation of HCC, and differentially expressed lncRNAs targeted and regulated by miRNAs were identified and validated in HCC specimens and cell lines.
Collapse
Affiliation(s)
- Jian-Hua Xu
- Department of Hepatobiliary Surgery, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, P.R. China
| | - Wei-Hua Chang
- Department of Hepatobiliary Surgery, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, P.R. China
| | - Hang-Wei Fu
- Department of Hepatobiliary Surgery, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, P.R. China
| | - Tao Yuan
- Department of Hepatobiliary Surgery, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, P.R. China
| | - Ping Chen
- Department of Hepatobiliary Surgery, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
19
|
Li K, Wei Q, Liu FF, Hu F, Xie AJ, Zhu LQ, Liu D. Synaptic Dysfunction in Alzheimer's Disease: Aβ, Tau, and Epigenetic Alterations. Mol Neurobiol 2017; 55:3021-3032. [PMID: 28456942 DOI: 10.1007/s12035-017-0533-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/06/2017] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized in the early stages by loss of learning and memory. However, the mechanism underlying these symptoms remains unclear. The best correlation between cognitive decline and pathological changes is in synaptic dysfunction. Histopathological hallmarks of AD are the abnormal aggregation of Aβ and Tau. Evidence suggests that Aβ and Tau oligomers contribute to synaptic loss in AD. Recently, direct links between epigenetic alterations, such as dysfunction in non-coding RNAs (ncRNAs), and synaptic pathologies have emerged, raising interest in exploring the potential roles of ncRNAs in the synaptic deficits in AD. In this paper, we summarize the potential roles of Aβ, Tau, and epigenetic alterations (especially by ncRNAs) in the synaptic dysfunction of AD and discuss the novel findings in this area.
Collapse
Affiliation(s)
- Ke Li
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Qing Wei
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Fang-Fang Liu
- Department of Pathology, Central Hospital of Wuhan, Wuhan, 430014, People's Republic of China
| | - Fan Hu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ao-Ji Xie
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Dan Liu
- Department of Medical Genetics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
20
|
Yang JJ, Tao H, Deng ZY, Lu C, Li J. Non-coding RNA-mediated epigenetic regulation of liver fibrosis. Metabolism 2015; 64:1386-94. [PMID: 26362725 DOI: 10.1016/j.metabol.2015.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/06/2015] [Accepted: 08/08/2015] [Indexed: 12/27/2022]
Abstract
Hepatic stellate cells (HSC) activation plays a key role in liver fibrosis. Numerous studies have indicated that non-coding RNAs (ncRNAs) control liver fibrosis and fibroblasts proliferation. Greater knowledge of the role of the ncRNAs-mediated epigenetic mechanism in liver fibrosis could improve understanding of the liver fibrosis pathogenesis. The aim of this review is to describe the present knowledge about the ncRNAs significantly participating in liver fibrosis and HSC activation, and look ahead on new perspectives of ncRNAs-mediated epigenetic mechanism research. Moreover, we will discuss examples of non-coding RNAs that interact with histone modification or DNA methylation to regulate gene expression in liver fibrosis. Diverse classes of ncRNAs, ranging from microRNAs (miRs) to long non-coding RNAs (LncRNAs), have emerged as key regulators of several important aspects of function, including cell proliferation, activation, etc. In addition, recent advances suggest the important role of ncRNAs transcripts in epigenetic gene regulation. Targeting the miRs and LncRNAs can be a promising direction in liver fibrosis treatment. We discuss new perspectives of miRs and LncRNAs in liver fibrosis and HSC activation, mainly including interaction with histone modification or DNA methylation to regulate gene expression. These epigenetic mechanisms form powerful ncRNAs surveillance systems that may represent new targets for liver fibrosis therapeutic intervention.
Collapse
Affiliation(s)
- Jing-Jing Yang
- Department of Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China, 230601
| | - Hui Tao
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, China, 230601
| | - Zi-Yu Deng
- Department of Scientific and Educational, The Second Hospital of Anhui Medical University, Hefei, China, 230601.
| | - Chao Lu
- Department of Scientific and Educational, The Second Hospital of Anhui Medical University, Hefei, China, 230601
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, China, 230032.
| |
Collapse
|
21
|
Butler AA, Webb WM, Lubin FD. Regulatory RNAs and control of epigenetic mechanisms: expectations for cognition and cognitive dysfunction. Epigenomics 2015; 8:135-51. [PMID: 26366811 DOI: 10.2217/epi.15.79] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The diverse functions of noncoding RNAs (ncRNAs) can influence virtually every aspect of the transcriptional process including epigenetic regulation of genes. In the CNS, regulatory RNA networks and epigenetic mechanisms have broad relevance to gene transcription changes involved in long-term memory formation and cognition. Thus, it is becoming increasingly clear that multiple classes of ncRNAs impact neuronal development, neuroplasticity, and cognition. Currently, a large gap exists in our knowledge of how ncRNAs facilitate epigenetic processes, and how this phenomenon affects cognitive function. In this review, we discuss recent findings highlighting a provocative role for ncRNAs including lncRNAs and piRNAs in the control of epigenetic mechanisms involved in cognitive function. Furthermore, we discuss the putative roles for these ncRNAs in cognitive disorders such as schizophrenia and Alzheimer's disease.
Collapse
Affiliation(s)
- Anderson A Butler
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| | - William M Webb
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| | - Farah D Lubin
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| |
Collapse
|
22
|
Predicting the functions of long noncoding RNAs using RNA-seq based on Bayesian network. BIOMED RESEARCH INTERNATIONAL 2015; 2015:839590. [PMID: 25815337 PMCID: PMC4359839 DOI: 10.1155/2015/839590] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 02/01/2023]
Abstract
Long noncoding RNAs (lncRNAs) have been shown to play key roles in various biological processes. However, functions of most lncRNAs are poorly characterized. Here, we represent a framework to predict functions of lncRNAs through construction of a regulatory network between lncRNAs and protein-coding genes. Using RNA-seq data, the transcript profiles of lncRNAs and protein-coding genes are constructed. Using the Bayesian network method, a regulatory network, which implies dependency relations between lncRNAs and protein-coding genes, was built. In combining protein interaction network, highly connected coding genes linked by a given lncRNA were subsequently used to predict functions of the lncRNA through functional enrichment. Application of our method to prostate RNA-seq data showed that 762 lncRNAs in the constructed regulatory network were assigned functions. We found that lncRNAs are involved in diverse biological processes, such as tissue development or embryo development (e.g., nervous system development and mesoderm development). By comparison with functions inferred using the neighboring gene-based method and functions determined using lncRNA knockdown experiments, our method can provide comparable predicted functions of lncRNAs. Overall, our method can be applied to emerging RNA-seq data, which will help researchers identify complex relations between lncRNAs and coding genes and reveal important functions of lncRNAs.
Collapse
|
23
|
Li F, Xiao Y, Huang F, Deng W, Zhao H, Shi X, Wang S, Yu X, Zhang L, Han Z, Luo L, Zhu Q, Jiang W, Cheng S, Li X, Zhang K. Spatiotemporal-specific lncRNAs in the brain, colon, liver and lung of macaque during development. MOLECULAR BIOSYSTEMS 2015; 11:3253-63. [DOI: 10.1039/c5mb00474h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Identification of spatiotemporal-specific lncRNAs during the development of multiple tissues in rhesus.
Collapse
|