1
|
Wu J, Chu E, Paul B, Kang Y. Mechanistic Studies and a Retrospective Cohort Study: The Interaction between PPAR Agonists and Immunomodulatory Agents in Multiple Myeloma. Cancers (Basel) 2022; 14:cancers14215272. [PMID: 36358696 PMCID: PMC9657746 DOI: 10.3390/cancers14215272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 01/05/2023] Open
Abstract
Our previous study demonstrated that peroxisome proliferator-activated receptor (PPAR) agonists downregulated cereblon (CRBN) expression and reduced the anti-myeloma activity of lenalidomide in vitro and in vivo. We aimed to determine whether DNA methylation and protein degradation contribute to the effects of PPAR agonists. CRBN promoter methylation status was detected using methylation-specific polymerase chain reaction. The CRBN protein degradation rate was measured using a cycloheximide chase assay. Metabolomic analysis was performed in multiple myeloma (MM) cells treated with PPAR agonists and/or lenalidomide. Our retrospective study determined the effect of co-administration of PPAR agonists with immunomodulatory drugs on the outcomes of patients with MM. CpG islands of the CRBN promoter region became highly methylated upon treatment with PPAR agonists, whereas treatment with PPAR antagonists resulted in unmethylation. The CRBN protein was rapidly degraded after treatment with PPAR agonists. Lenalidomide and fenofibrate showed opposite effects on acylcarnitines and amino acids. Co-administration of immunomodulatory drugs and PPAR agonists was associated with inferior treatment responses and poor survival. Our study provides the first evidence that PPAR agonists reduce CRBN expression through various mechanisms including inducing methylation of CRBN promoter CpG island, enhancing CRBN protein degradation, and affecting metabolomics of MM cells.
Collapse
|
2
|
Brodie SA, Khincha PP, Giri N, Bouk AJ, Steinberg M, Dai J, Jessop L, Donovan FX, Chandrasekharappa SC, de Andrade KC, Maric I, Ellis SR, Mirabello L, Alter BP, Savage SA. Pathogenic germline IKZF1 variant alters hematopoietic gene expression profiles. Cold Spring Harb Mol Case Stud 2021; 7:mcs.a006015. [PMID: 34162668 PMCID: PMC8327879 DOI: 10.1101/mcs.a006015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/28/2021] [Indexed: 12/03/2022] Open
Abstract
IKZF1 encodes Ikaros, a zinc finger–containing transcription factor crucial to the development of the hematopoietic system. Germline pathogenic variants in IKZF1 have been reported in patients with acute lymphocytic leukemia and immunodeficiency syndromes. Diamond–Blackfan anemia (DBA) is a rare inherited bone marrow failure syndrome characterized by erythroid hypoplasia, associated with a spectrum of congenital anomalies and an elevated risk of certain cancers. DBA is usually caused by heterozygous pathogenic variants in genes that function in ribosomal biogenesis; however, in many cases the genetic etiology is unknown. We identified a germline IKZF1 variant, rs757907717 C > T, in identical twins with DBA-like features and autoimmune gastrointestinal disease. rs757907717 C > T results in a p.R381C amino acid change in the IKZF1 Ik-x isoform (p.R423C on isoform Ik-1), which we show is associated with altered global gene expression and perturbation of transcriptional networks involved in hematopoietic system development. These data suggest that this missense substitution caused a DBA-like syndrome in this family because of alterations in hematopoiesis, including dysregulation of networks essential for normal erythropoiesis and the immune system.
Collapse
Affiliation(s)
- Seth A Brodie
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 20850, USA
| | - Payal P Khincha
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Aaron J Bouk
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 20850, USA
| | - Mia Steinberg
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 20850, USA
| | - Jieqiong Dai
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 20850, USA
| | - Lea Jessop
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Frank X Donovan
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Settara C Chandrasekharappa
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kelvin C de Andrade
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Irina Maric
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Steven R Ellis
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky 40292, USA
| | - Lisa Mirabello
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Blanche P Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
3
|
The paradoxical pharmacological mechanisms of lenalidomide and bortezomib in the treatment of multiple myeloma. Anticancer Drugs 2021; 32:227-232. [PMID: 33534410 DOI: 10.1097/cad.0000000000001041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The combination of bortezomib (Velcade, PS-341) and lenalidomide (Revlimid) for the treatment of multiple myeloma was proved by USA Food and Drug Administration in 2006. Lenalidomide prevents the proliferation of multiple myeloma cells through binding to cereblon and promoting the ubiquitinational degradation of IKZF1 (Ikaros)/IKZF3 (Aiolos). However, the proteasome inhibitor bortezomib would inhibit the ubiquitinational degradation of IKZF1/IKZF3. How bortezomib could not block the antiproliferative effect of lenalidomide on multiple myeloma cells, which is the paradoxical pharmacological mechanisms in multiple myeloma. In this review, we summarized recent advances in molecular mechanisms underlying the combination of bortezomib and lenalidomide for the treatment multiple myeloma, discussed the paradoxical pharmacological mechanisms of lenalidomide and bortezomib in the treatment of multiple myeloma.
Collapse
|
4
|
Ganesan S, Palani HK, Balasundaram N, David S, Devasia AJ, George B, Mathews V. Combination Lenalidomide/Bortezomib Treatment Synergistically Induces Calpain-Dependent Ikaros Cleavage and Apoptosis in Myeloma Cells. Mol Cancer Res 2020; 18:529-536. [PMID: 31915234 DOI: 10.1158/1541-7786.mcr-19-0431] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/14/2019] [Accepted: 12/23/2019] [Indexed: 11/16/2022]
Abstract
Multiple myeloma had been successfully treated by combining lenalidomide and bortezomib with reports suggesting benefits of such a combination even in relapsed/refractory cases. Recently, it was demonstrated that Ikaros degradation by lenalidomide happens via proteasome-dependent pathway and this process is critical for the eradication of myeloma cells. On the basis of this, an antagonistic effect should be observed if a combination of both these agents were used, which however is not the observation seen in the clinical setting. Our study demonstrates that when these agents are combined they exhibit a synergistic activity against myeloma cells and degradation of Ikaros happens by a proteasome-independent calcium-induced calpain pathway. Our study identifies the crucial role of calcium-induced calpain pathway in inducing apoptosis of myeloma cells when this combination or lenalidomide and bortezomib is used. We also report that this combination enhanced the expression of CD38 compared with lenalidomide alone. Thus, data from our study would establish the rationale for the addition of daratumumab along with this combination to further enhance therapeutic activity against multiple myeloma. IMPLICATIONS: Lenalidomide and bortezomib combination degrades IKZF1 in multiple myeloma through a calcium-dependent calpain and caspase pathway. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/18/4/529/F1.large.jpg.
Collapse
Affiliation(s)
- Saravanan Ganesan
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Hamenth Kumar Palani
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Nithya Balasundaram
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Sachin David
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Anup J Devasia
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Biju George
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Vikram Mathews
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India.
| |
Collapse
|
5
|
Cucè M, Gallo Cantafio ME, Siciliano MA, Riillo C, Caracciolo D, Scionti F, Staropoli N, Zuccalà V, Maltese L, Di Vito A, Grillone K, Barbieri V, Arbitrio M, Di Martino MT, Rossi M, Amodio N, Tagliaferri P, Tassone P, Botta C. Trabectedin triggers direct and NK-mediated cytotoxicity in multiple myeloma. J Hematol Oncol 2019; 12:32. [PMID: 30898137 PMCID: PMC6429746 DOI: 10.1186/s13045-019-0714-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/26/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Genomic instability is a feature of multiple myeloma (MM), and impairment in DNA damaging response (DDR) has an established role in disease pathobiology. Indeed, a deregulation of DNA repair pathways may contribute to genomic instability, to the establishment of drug resistance to genotoxic agents, and to the escape from immune surveillance. On these bases, we evaluated the role of different DDR pathways in MM and investigated, for the first time, the direct and immune-mediated anti-MM activity of the nucleotide excision repair (NER)-dependent agent trabectedin. METHODS Gene-expression profiling (GEP) was carried out with HTA2.0 Affymetrix array. Evaluation of apoptosis, cell cycle, and changes in cytokine production and release have been performed in 2D and 3D Matrigel-spheroid models through flow cytometry on MM cell lines and patients-derived primary MM cells exposed to increasing nanomolar concentrations of trabectedin. DNA-damage response has been evaluated through Western blot, immunofluorescence, and DNA fragmentation assay. Trabectedin-induced activation of NK has been assessed by CD107a degranulation. miRNAs quantification has been done through RT-PCR. RESULTS By comparing GEP meta-analysis of normal and MM plasma cells (PCs), we observed an enrichment in DNA NER genes in poor prognosis MM. Trabectedin triggered apoptosis in primary MM cells and MM cell lines in both 2D and 3D in vitro assays. Moreover, trabectedin induced DDR activation, cellular stress with ROS production, and cell cycle arrest. Additionally, a significant reduction of MCP1 cytokine and VEGF-A in U266-monocytes co-cultures was observed, confirming the impairment of MM-promoting milieu. Drug-induced cell stress in MM cells led to upregulation of NK activating receptors ligands (i.e., NKG2D), which translated into increased NK activation and degranulation. Mechanistically, this effect was linked to trabectedin-induced inhibition of NKG2D-ligands negative regulators IRF4 and IKZF1, as well as to miR-17 family downregulation in MM cells. CONCLUSIONS Taken together, our findings indicate a pleiotropic activity of NER-targeting agent trabectedin, which appears a promising candidate for novel anti-MM therapeutic strategies.
Collapse
Affiliation(s)
- Maria Cucè
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
| | - Maria Eugenia Gallo Cantafio
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
| | - Maria Anna Siciliano
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
| | - Caterina Riillo
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
| | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
| | - Francesca Scionti
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
| | - Nicoletta Staropoli
- Medical and Translational Oncology Units, AOU Mater Domini, Catanzaro, Italy
| | | | | | - Anna Di Vito
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
| | - Vito Barbieri
- Medical and Translational Oncology Units, AOU Mater Domini, Catanzaro, Italy
| | - Mariamena Arbitrio
- Institute of Neurological Sciences, UOS of Pharmacology, Catanzaro, Italy
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
- Medical and Translational Oncology Units, AOU Mater Domini, Catanzaro, Italy
| | - Marco Rossi
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
- Medical and Translational Oncology Units, AOU Mater Domini, Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
- Medical and Translational Oncology Units, AOU Mater Domini, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy.
- Medical and Translational Oncology Units, AOU Mater Domini, Catanzaro, Italy.
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.
| | - Cirino Botta
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
| |
Collapse
|
6
|
Kinoshita S, Ri M, Kanamori T, Aoki S, Yoshida T, Narita T, Totani H, Ito A, Kusumoto S, Ishida T, Komatsu H, Iida S. Potent antitumor effect of combination therapy with sub-optimal doses of Akt inhibitors and pomalidomide plus dexamethasone in multiple myeloma. Oncol Lett 2018; 15:9450-9456. [PMID: 29928335 DOI: 10.3892/ol.2018.8501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 01/22/2018] [Indexed: 01/04/2023] Open
Abstract
Afuresertib (AFU), a novel inhibitor of the serine/threonine kinase AKT, has clinical efficacy as a monotherapy against hematological malignancies and is expected to be used in combination with standard therapies for multiple myeloma (MM). To develop a more effective and less toxic combination of immunomodulatory drugs (IMiDs) for therapy, the antitumor effect of sub-optimal doses of AFU, pomalidomide plus dexamethasone (PD), and the AFU-PD combination on MM cells were examined in the present study. Two MM cell lines, XG-7 and U266, with low sensitivity to both PD and AFU monotherapies, were subjected to these combinations and analyzed. Although the cell lines showed a slight reduction in viability with the sub-optimal doses of each monotherapy, the combination of the treatments resulted in a reduction in cell viability and the progression of apoptosis. Co-treatment with sub-optimal doses of PD and AFU enhanced caspase activation and highly suppressed the expression of IKZF1 and IKZF3. In addition, this combination promoted the dephosphorylation and stabilization of 4EBP1, an inhibitor of eIF4E activation, which led to the impairment of eIF4E-mediated translational activity. Furthermore, AFU showed a sufficient inhibitory effect on the phosphorylation of FOXO1, a tumor suppressor, in monotherapy or in combination with PD, which may be attributable to the activation of FOXO1, the subsequent inhibition of tumor growth, and the induction of cell death. In conclusion, the combination therapy with sub-optimal doses of PD and AFU exhibited potent antitumor activity in MM cells and may provide a novel strategy for the treatment of patients who experienced intolerable toxicity or insufficient response during IMiD therapy.
Collapse
Affiliation(s)
- Shiori Kinoshita
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Masaki Ri
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Takashi Kanamori
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Sho Aoki
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Takashi Yoshida
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Tomoko Narita
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Haruhito Totani
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Asahi Ito
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Shigeru Kusumoto
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Takashi Ishida
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Hirokazu Komatsu
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Shinsuke Iida
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| |
Collapse
|
7
|
Chen S, Chen S, Duan Q, Xu G. Site-Specific Acetyl Lysine Antibodies Reveal Differential Regulation of Histone Acetylation upon Kinase Inhibition. Cell Biochem Biophys 2016; 75:119-129. [PMID: 27990613 DOI: 10.1007/s12013-016-0777-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 12/09/2016] [Indexed: 12/14/2022]
Abstract
Lysine acetylation regulates diverse biological functions for the modified proteins. Mass spectrometry-based proteomic approaches have identified thousands of lysine acetylation sites in cells and tissues. However, functional studies of these acetylation sites were limited by the lack of antibodies recognizing the specific modification sites. Here, we generated 55 site-specific acetyl lysine antibodies for the detection of this modification in cell lysates and evaluated the quality of these antibodies. Based on the immunoblotting analyses, we found that the nature of amino acid sequences adjacent to the modification sites affected the specificity of the site-specific acetyl lysine antibodies. Amino acids with charged, hydrophilic, small, or flexible side chains adjacent to the modification sites increase the likelihood of obtaining high quality site-specific acetyl lysine antibodies. This result may provide valuable insights in fine-tuning the amino acid sequences of the epitopes for the generation of site-specific acetyl lysine antibodies. Using the site-specific acetyl lysine antibodies, we further discovered that acetylation of histone 3 at four lysine residues was differentially regulated by kinase inhibitors. This result demonstrates the potential application of these antibodies in the study of new signaling pathways that lysine acetylation may participate in.
Collapse
Affiliation(s)
- Shi Chen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, China.,Cohesion Biosciences Limited, 5 Weihua Road, Suzhou, Jiangsu, China
| | - Suping Chen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Qianqian Duan
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
8
|
Duan W, Chen S, Zhang Y, Li D, Wang R, Chen S, Li J, Qiu X, Xu G. Protein C-terminal enzymatic labeling identifies novel caspase cleavages during the apoptosis of multiple myeloma cells induced by kinase inhibition. Proteomics 2015; 16:60-9. [PMID: 26552366 DOI: 10.1002/pmic.201500356] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/12/2015] [Accepted: 11/04/2015] [Indexed: 11/08/2022]
Abstract
Caspase activation and proteolytic cleavages are the major events in the early stage of apoptosis. Identification of protein substrates cleaved by caspases will reveal the occurrence of the early events in the apoptotic process and may provide potential drug targets for cancer therapy. Although several N-terminal MS-based proteomic approaches have been developed to identify proteolytic cleavages, these methods have their inherent drawbacks. Here we apply a previously developed proteomic approach, protein C-terminal enzymatic labeling (ProC-TEL), to identify caspase cleavage events occurring in the early stage of the apoptosis of a myeloma cell line induced by kinase inhibition. Both previously identified and novel caspase cleavage sites are detected and the reduction of the expression level of several proteins is confirmed biochemically upon kinase inhibition although the current ProC-TEL procedure is not fully optimized to provide peptide identifications comparable to N-terminal labeling approaches. The identified cleaved proteins form a complex interaction network with central hubs determining morphological changes during the apoptosis. Sequence analyses show that some ProC-TEL identified caspase cleavage events are unidentifiable when traditional N-terminomic approaches are utilized. This work demonstrates that ProC-TEL is a complementary approach to the N-terminomics for the identification of proteolytic cleavage events such as caspase cleavages in signaling pathways.
Collapse
Affiliation(s)
- Wenwen Duan
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Suping Chen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Yang Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Dan Li
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Rong Wang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Shi Chen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Junbei Li
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Xiaoyan Qiu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, P. R. China
| |
Collapse
|