1
|
Dullah S, Hazarika DJ, Parveen A, Kakoti M, Borgohain T, Gautom T, Bhattacharyya A, Barooah M, Boro RC. Fungal interactions induce changes in hyphal morphology and enzyme production. Mycology 2021; 12:279-295. [PMID: 34900382 PMCID: PMC8654418 DOI: 10.1080/21501203.2021.1932627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In nature, species interacts/competes with one other within their surrounding for food and space and the type of interactions are unique to each species. The interacting partners secrete different metabolites, which may have high importance in human welfare. Fungal-fungal interactions are complex mechanisms that need better understanding. Here, 14 fungal isolates were facilitated in 105 possible combinations to interact on potato dextrose agar. Morphologically, no changes were observed when the same fungal isolates were allowed to interact within them. However, 10 interactions between different fungal isolates showed mutual replacement with each fungus; capturing territory from the other. Contrastingly, 35 interactions resulted into complete replacement as one of the fungi was inhibited by rapid growth of the other fungus. In 46 interactions, formation of barrage was observed leading to deadlock type of interaction wherein both fungi have restricted growth. To study in details about the barrage formation, two fungal interactions were taken (i) T. coccinea vs. L. lactinea and (ii) T. coccinea vs. T. versicolor. Microscopic changes in the hyphal growth during interaction were observed. There was significant increase in the enzymatic activities including cellulase, xylanase and chitinase during in-vitro fungal-fungal interaction, suggesting the importance of such interactions for commercial enzyme production.
Collapse
Affiliation(s)
- Samim Dullah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Dibya Jyoti Hazarika
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Assma Parveen
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Merilin Kakoti
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Tanushree Borgohain
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Trishnamoni Gautom
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India.,Royal School of Bio-Sciences, Royal Global University, Guwahati, India
| | - Ashok Bhattacharyya
- Department of Plant Pathology, Assam Agricultural University, Jorhat, Assam, India
| | - Madhumita Barooah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Robin Chandra Boro
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| |
Collapse
|
2
|
Fukasawa Y, Gilmartin EC, Savoury M, Boddy L. Inoculum volume effects on competitive outcome and wood decay rate of brown- and white-rot basidiomycetes. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2020.100938] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Song Y, Wang Y, Guo D, Jing L. Selection of reference genes for quantitative real-time PCR normalization in the plant pathogen Puccinia helianthi Schw. BMC PLANT BIOLOGY 2019; 19:20. [PMID: 30634896 PMCID: PMC6329156 DOI: 10.1186/s12870-019-1629-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 01/02/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND Real-time RT-PCR has become a common and robust technique to detect and quantify low-abundance mRNA expression and is a prefered tool when examining fungal gene expression in infected host tissues. However, correct evaluation of gene expression data requires accurate and reliable normalization against a reference transcript. Thus, the identification of reference genes with stable expression during different conditions is of paramount importance. Here, we present a study where in vitro and in planta experiments were used to validate the expression stability of reference gene candidates of Puccinia helianthi Schw., an obligate pathogen that causes rust in sunflower (Helianthus annuus). RESULTS Eleven reference genes of P. helianthi were validated at different growth stages. Excel-based software geNorm, BestKeeper and NormFinder were used to evaluate the reference gene transcript stabilities. Of eleven reference gene candidates tested, three were stably expressed in urediniospores, germinating growth stage and in planta. Two of these genes (UBC, EF2), encoding ubiquitin-conjugating enzyme and elongation factor 2, proved to be the most stable set of reference genes under the experimental conditions used. CONCLUSION We found that UBC and EF2 are suitable candidates for for the standardization of gene expression studies in the plant pathogen P. helianthi and potentially other related pathogens.
Collapse
Affiliation(s)
- Yang Song
- College of Agronomy, Inner Mongolia Agricultural University, Hohhot, 010019 China
| | - Yan Wang
- College of Agronomy, Inner Mongolia Agricultural University, Hohhot, 010019 China
| | - Dandan Guo
- College of Agronomy, Inner Mongolia Agricultural University, Hohhot, 010019 China
| | - Lan Jing
- College of Agronomy, Inner Mongolia Agricultural University, Hohhot, 010019 China
| |
Collapse
|
4
|
Zhong Z, Li N, He B, Igarashi Y, Luo F. Transcriptome analysis of differential gene expression in Dichomitus squalens during interspecific mycelial interactions and the potential link with laccase induction. J Microbiol 2018; 57:127-137. [DOI: 10.1007/s12275-019-8398-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/10/2018] [Accepted: 09/13/2018] [Indexed: 10/27/2022]
|
5
|
Zhong Z, Li N, Liu L, He B, Igarashi Y, Luo F. Label-free differentially proteomic analysis of interspecific interaction between white-rot fungi highlights oxidative stress response and high metabolic activity. Fungal Biol 2018; 122:774-784. [PMID: 30007428 DOI: 10.1016/j.funbio.2018.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 03/31/2018] [Accepted: 04/09/2018] [Indexed: 10/17/2022]
Abstract
The laccase production by mycelial antagonistic interaction among white-rot fungi is a very important pathway for lignin degradation research. To gain a better understanding of competitive mechanisms under mycelial antagonistic interaction among three lignin-degrading white-rot basidiomycetes of Trametesversicolor (Tv), Pleurotusostreatus (Po) and Dichomitussqualens (Ds), mycelial morphology and proteins in three co-culture combinations TvPo (Tv cocultivated with Po), PoDs (Po cocultivated with Ds), TvDs (Tv cocultivated with Ds) were compared with corresponding each two mono-cultures. In this study, scanning electron microscopy detection of co-cultures indicated a highly close attachment of fungal hyphae with each other and conidiation could be inhibited under fungal interaction. In addition, a label-free proteomic analysis revealed changes on fungal proteomes existed in their counterpart competitors of co-culture. The maximum number of 1020 differentially expressed proteins (DEPs) were identified in PoDs relative to Po while the minimum number of 367 DEPs were identified in PoDs relative to Ds. Notably, we also found a large number of overexpressed proteins were oxidative stress-related proteins, followed by carbohydrate metabolism-related proteins and energy production-related proteins in all three co-culture combinations compared with control. These results were important for the future exploration of molecular mechanisms underlying lignin-degrading fungal interaction.
Collapse
Affiliation(s)
- Zixuan Zhong
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Beibei, Chongqing 400715, China
| | - Nannan Li
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Beibei, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Li Liu
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Beibei, Chongqing 400715, China
| | - Binghui He
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Beibei, Chongqing 400715, China
| | - Yasuo Igarashi
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Beibei, Chongqing 400715, China
| | - Feng Luo
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
6
|
Ujor VC, Adukwu EC, Okonkwo CC. Fungal wars: The underlying molecular repertoires of combating mycelia. Fungal Biol 2018; 122:191-202. [PMID: 29551193 DOI: 10.1016/j.funbio.2018.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/05/2018] [Accepted: 01/06/2018] [Indexed: 10/18/2022]
Abstract
Non-self contact between fungi elicits strong morphological and biochemical reactions in the mycelia of interacting species. Although these reactions appear to be species- and interaction-specific, some responses such as pigmentation, increased secretion of phenol-oxidases, barrage formation and sealing of the mycelia front are common responses in most interactions. Hence, some species recruit similar molecular machineries in response to non-self. Increasing number of fully sequenced and annotated fungal genomes and advances in genome-wide and global proteome analytical tools now allow researchers to use techniques such as RNA sequencing, micro and macroarray analysis, 2-dimensional protein gel profiling, and differential display of mRNA to probe the underlying molecular mechanisms of combative mycelial interactions. This review provides an overview of the genes and proteins found to be differentially expressed in conflicting fungal mycelia by the use of 'omics' tools. Connections between observed gene and protein repertoires of competing mycelia and the attendant morphological and biochemical changes are presented.
Collapse
Affiliation(s)
- Victor C Ujor
- Bioenergy and Biological Waste Management Program, Agricultural Technical Institute, The Ohio State University, 1328 Dover Road, Wooster, OH, USA.
| | - Emmanuel C Adukwu
- Department of Applied Sciences, University of the West of England, Frenchay Campus, Cold Harbour Lane, Bristol, BS16 1QY, United Kingdom
| | - Christopher C Okonkwo
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH, 44691, USA
| |
Collapse
|
7
|
Zhong Z, Li L, Chang P, Xie H, Zhang H, Igarashi Y, Li N, Luo F. Differential gene expression profiling analysis in Pleurotus ostreatus during interspecific antagonistic interactions with Dichomitus squalens and Trametes versicolor. Fungal Biol 2017; 121:1025-1036. [PMID: 29122174 DOI: 10.1016/j.funbio.2017.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/22/2017] [Accepted: 08/25/2017] [Indexed: 01/05/2023]
Abstract
This study provided analysis of differentially expressed genes (DEGs) in Pleurotus ostreatus under the interaction with Dichomitus squalens and Trametes versicolor, which is valuable for exploration on the fungal defence system against stressful condition caused by interspecific antagonistic interaction. Our result showed significant upregulation of abundant defence-related genes encoding laccase, manganese peroxidase, aldo-keto reductase, and glutathione S-transferase, which all play important roles in oxidative stress-resistant response. Importantly, Lacc2 and Lacc10 were found to be dominantly induced laccase genes in P. ostreatus under interspecific interaction. Meanwhile, a large number of carbohydrate metabolism-related and energy production-related genes involved in nutrient and territory competition were also enhanced. These genes were annotated as glycoside hydrolase, citrate synthase, malate dehydrogenase, succinate dehydrogenase, succinyl-CoA synthetase, NADH dehydrogenase, cytochrome c reductase/oxidase, and ATP synthase. Also, 12 DEGs were selected for validation by quantitative real-time PCR (qRT-PCR), all these genes showed consistent expression between the result of qRT-PCR and RNA-seq.
Collapse
Affiliation(s)
- Zixuan Zhong
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Liu Li
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Peng Chang
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Haiying Xie
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Huiting Zhang
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Yasuo Igarashi
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Nannan Li
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Beibei, Chongqing 400715, People's Republic of China.
| | - Feng Luo
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Beibei, Chongqing 400715, People's Republic of China.
| |
Collapse
|
8
|
|
9
|
Identification of genes differentially expressed during the interaction between the plant symbiont Suillus luteus and two plant pathogenic allopatric Heterobasidion species. Mycol Prog 2015. [DOI: 10.1007/s11557-015-1130-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Crowther TW, Maynard DS, Crowther TR, Peccia J, Smith JR, Bradford MA. Untangling the fungal niche: the trait-based approach. Front Microbiol 2014; 5:579. [PMID: 25400630 PMCID: PMC4215788 DOI: 10.3389/fmicb.2014.00579] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 10/14/2014] [Indexed: 11/26/2022] Open
Abstract
Fungi are prominent components of most terrestrial ecosystems, both in terms of biomass and ecosystem functioning, but the hyper-diverse nature of most communities has obscured the search for unifying principles governing community organization. In particular, unlike plants and animals, observational studies provide little evidence for the existence of niche processes in structuring fungal communities at broad spatial scales. This limits our capacity to predict how communities, and their functioning, vary across landscapes. We outline how a shift in focus, from taxonomy toward functional traits, might prove to be valuable in the search for general patterns in fungal ecology. We build on theoretical advances in plant and animal ecology to provide an empirical framework for a trait-based approach in fungal community ecology. Drawing upon specific characteristics of the fungal system, we highlight the significance of drought stress and combat in structuring free-living fungal communities. We propose a conceptual model to formalize how trade-offs between stress-tolerance and combative dominance are likely to organize communities across environmental gradients. Given that the survival of a fungus in a given environment is contingent on its ability to tolerate antagonistic competitors, measuring variation in combat trait expression along environmental gradients provides a means of elucidating realized, from fundamental niche spaces. We conclude that, using a trait-based understanding of how niche processes structure fungal communities across time and space, we can ultimately link communities with ecosystem functioning. Our trait-based framework highlights fundamental uncertainties that require testing in the fungal system, given their potential to uncover general mechanisms in fungal ecology.
Collapse
Affiliation(s)
- Thomas W. Crowther
- Yale School of Forestry and Environmental Studies, Yale UniversityNew Haven, CT, USA
| | - Daniel S. Maynard
- Yale School of Forestry and Environmental Studies, Yale UniversityNew Haven, CT, USA
| | | | - Jordan Peccia
- Department of Chemical and Environmental Engineering, Yale UniversityNew Haven, CT, USA
| | - Jeffrey R. Smith
- Yale School of Forestry and Environmental Studies, Yale UniversityNew Haven, CT, USA
| | - Mark A. Bradford
- Yale School of Forestry and Environmental Studies, Yale UniversityNew Haven, CT, USA
| |
Collapse
|
11
|
Gene expression associated with intersterility in Heterobasidion. Fungal Genet Biol 2014; 73:104-19. [PMID: 25459536 DOI: 10.1016/j.fgb.2014.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/10/2014] [Accepted: 10/08/2014] [Indexed: 12/18/2022]
Abstract
Intersterility (IS) is thought to prevent mating compatibility between homokaryons that belong to different species. Although IS in Heterobasidion is regulated by the genes located at the IS loci, it is not yet known how the IS genes influence sexual compatibility and heterokaryon formation. To increase our understanding of the molecular events underlying IS, we studied mRNA abundance changes during IS compatible and incompatible interactions over time. The clustering of the transcripts into expression profiles, followed by the application of Gene Ontology (GO) enrichment pathway analysis of each of the clusters, allowed inference of biological processes participating in IS. These analyses identified events involved in mating and sexual development (i.e., linked with IS compatibility), which included processes associated with cell-cell adhesion and recognition, cell cycle control and signal transduction. We also identified events potentially involved in overriding mating between individuals belonging to different species (i.e., linked with IS incompatibility), which included reactive oxygen species (ROS) production, responses to stress (especially to oxidative stress), signal transduction and metabolic biosynthesis. Our findings thus enabled detection and characterization of gene expression changes associated with IS in Heterobasidion, as well as identification of important processes and pathways associated with this phenomenon. Overall, the results of this study increase current knowledge regarding the molecular mechanisms underpinning IS in Heterobasidion and allowed for the establishment of a vital baseline for further studies.
Collapse
|
12
|
Differential gene expression in Pycnoporus coccineus during interspecific mycelial interactions with different competitors. Appl Environ Microbiol 2013; 79:6626-36. [PMID: 23974131 DOI: 10.1128/aem.02316-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Fungi compete against each other for environmental resources. These interspecific combative interactions encompass a wide range of mechanisms. In this study, we highlight the ability of the white-rot fungus Pycnoporus coccineus to quickly overgrow or replace a wide range of competitor fungi, including the gray-mold fungus Botrytis cinerea and the brown-rot fungus Coniophora puteana. To gain a better understanding of the mechanisms deployed by P. coccineus to compete against other fungi and to assess whether common pathways are used to interact with different competitors, differential gene expression in P. coccineus during cocultivation was assessed by transcriptome sequencing and confirmed by quantitative reverse transcription-PCR analysis of a set of 15 representative genes. Compared with the pure culture, 1,343 transcripts were differentially expressed in the interaction with C. puteana and 4,253 were differentially expressed in the interaction with B. cinerea, but only 197 transcripts were overexpressed in both interactions. Overall, the results suggest that a broad array of functions is necessary for P. coccineus to replace its competitors and that different responses are elicited by the two competitors, although a portion of the mechanism is common to both. However, the functions elicited by the expression of specific transcripts appear to converge toward a limited set of roles, including detoxification of secondary metabolites.
Collapse
|
13
|
Raffaello T, Asiegbu FO. Evaluation of potential reference genes for use in gene expression studies in the conifer pathogen (Heterobasidion annosum). Mol Biol Rep 2013; 40:4605-11. [PMID: 23645035 DOI: 10.1007/s11033-013-2553-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 04/29/2013] [Indexed: 11/25/2022]
Abstract
The basidiomycete Heterobasidion annosum is the causative agent of butt and root rot disease of conifer trees and it's one of the most destructive conifer pathogen in the northern hemisphere. Because of the intrinsic difficulties in genome manipulation in this fungus, most studies have been focused on gene expression analysis using quantitative real time polymerase chain reaction (qPCR). qPCR is a powerful technique but its reliability resides in the correct selection of a set of reference genes used in the data normalization. In this study, we determined the expression stability of 11 selected reference genes in H. annosum. Almost nothing has so far been published about validation of a set of reference genes to be used in gene expression experiments in this fungus. Eleven reference genes were validated in H. annosum which was grown on three different substrates: pine bark, pine heartwood, and pine sapwood. Bestkeeper and NormFinder Excel-based software were used to evaluate the reference gene transcripts' stability. The results from these two programs indicated that three reference genes namely Tryp metab, RNA Pol3 TF, and Actin were stable in H. annosum in the conditions studied. Interestingly, the GAPDH transcript which has been extensively used in qPCR data normalization is not the best choice when a wide reference gene selection is available. This work represents the first extensive validation of reference genes in H. annosum providing support for gene expression studies and benefits for the wider forest pathology community.
Collapse
Affiliation(s)
- Tommaso Raffaello
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland.
| | | |
Collapse
|
14
|
Lind M, van der Nest M, Olson Å, Brandström-Durling M, Stenlid J. A 2nd generation linkage map of Heterobasidion annosum s.l. based on in silico anchoring of AFLP markers. PLoS One 2012; 7:e48347. [PMID: 23139779 PMCID: PMC3489678 DOI: 10.1371/journal.pone.0048347] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 09/24/2012] [Indexed: 11/18/2022] Open
Abstract
In this study, we present a 2nd generation genetic linkage map of a cross between the North American species Heterobasidion irregulare and H. occidentale, based on the alignment of the previously published 1st generation map to the parental genomes. We anchored 216 of the original 308 AFLP markers to their respective restriction sites using an in silico-approach. The map resolution was improved by adding 146 sequence-tagged microsatellite markers and 39 sequenced gene markers. The new markers confirmed the positions of the anchored AFLP markers, fused the original 39 linkage groups together into 17, and fully expanded 12 of these to single groups covering entire chromosomes. Map coverage of the genome increased from 55.3% to 92.8%, with 96.3% of 430 markers collinearly aligned with the genome sequence. The anchored map also improved the H. irregulare assembly considerably. It identified several errors in scaffold arrangements and assisted in reducing the total number of major scaffolds from 18 to 15. This denser, more comprehensive map allowed sequence-based mapping of three intersterility loci and one mating type locus. This demonstrates the possibility to utilize an in silico procedure to convert anonymous markers into sequence-tagged ones, as well as the power of a sequence-anchored linkage map and its usefulness in the assembly of a whole genome sequence.
Collapse
Affiliation(s)
- Mårten Lind
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
15
|
Co-cultured Production of Lignin-Modifying Enzymes with White-Rot Fungi. Appl Biochem Biotechnol 2011; 165:700-18. [DOI: 10.1007/s12010-011-9289-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 05/16/2011] [Indexed: 10/18/2022]
|
16
|
Vujanovic V, Goh YK. Sphaerodes mycoparasitica biotrophic mycoparasite of 3-acetyldeoxynivalenol- and 15-acetyldeoxynivalenol-producing toxigenic Fusarium graminearum chemotypes. FEMS Microbiol Lett 2011; 316:136-43. [PMID: 21204935 DOI: 10.1111/j.1574-6968.2010.02201.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Fusarium spp. are economically important crop pathogens and causal agents of Fusarium head blight (FHB) of cereals worldwide. Of the FHB pathogens, Fusarium graminearum 3-acetyldeoxynivalenol (3-ADON) and 15-acetyldeoxynivalenol (15-ADON) are the most aggressive mycotoxigenic chemotypes, threatening food and feed quality as well as animal and human health. The objective of the study was to evaluate host specificity and fungal-fungal interactions of Sphaerodes mycoparasitica- a recently described mycoparasite - with F. graminearum 3- and 15-ADON strains by employing in vitro, microscopic and PCR techniques. Results obtained in this study show that the germination of mycoparasite ascospore in the presence of F. graminearum 3- and 15-ADON filtrates was greatly improved compared with Fusarium proliferatum and Fusarium sporotrichioides filtrates, suggesting a compatible interaction. Using quantitative real-time PCR with Fusarium-specific (Fg16N) and trichothecene Tri5 (Tox5-1/2)-specific primer sets, S. mycoparasitica was found to reduce the amount of F. graminearum 3-ADON and 15-ADON DNAs under separate coinoculation assays. Sphaerodes mycoparasitica was not only able to germinate in the presence of F. graminearum filtrates, but also established biotrophic mycoparasitic relations with two F. graminearum chemotypes and suppressed Fusarium growth.
Collapse
Affiliation(s)
- Vladimir Vujanovic
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada.
| | | |
Collapse
|
17
|
Microarray analysis of differential gene expression elicited in Trametes versicolor during interspecific mycelial interactions. Fungal Biol 2010; 114:646-60. [PMID: 20943176 DOI: 10.1016/j.funbio.2010.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 05/14/2010] [Accepted: 05/20/2010] [Indexed: 11/20/2022]
Abstract
Trametes versicolor is an important white rot fungus of both industrial and ecological interest. Saprotrophic basidiomycetes are the major decomposition agents in woodland ecosystems, and rarely form monospecific populations, therefore interspecific mycelial interactions continually occur. Interactions have different outcomes including replacement of one species by the other or deadlock. We have made subtractive cDNA libraries to enrich for genes that are expressed when T. versicolor interacts with another saprotrophic basidiomycete, Stereum gausapatum, an interaction that results in the replacement of the latter. Expressed sequence tags (ESTs) (1920) were used for microarray analysis, and their expression compared during interaction with three different fungi: S. gausapatum (replaced by T. versicolor), Bjerkandera adusta (deadlock) and Hypholoma fasciculare (replaced T. versicolor). Expression of significantly more probes changed in the interaction between T. versicolor and S. gausapatum or B. adusta compared to H. fasciculare, suggesting a relationship between interaction outcome and changes in gene expression.
Collapse
|
18
|
Hiscox J, Baldrian P, Rogers HJ, Boddy L. Changes in oxidative enzyme activity during interspecific mycelial interactions involving the white-rot fungus Trametes versicolor. Fungal Genet Biol 2010; 47:562-71. [PMID: 20371297 DOI: 10.1016/j.fgb.2010.03.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/16/2010] [Accepted: 03/21/2010] [Indexed: 11/29/2022]
Abstract
Interspecific fungal antagonism leads to biochemical changes in competing mycelia, including up-regulation of oxidative enzymes. Laccase, manganese peroxidase (MnP), manganese-repressed peroxidase (MRP) and lignin peroxidase (LiP) gene expression and enzyme activity were compared during agar interactions between Trametes versicolor and five other wood decay fungi resulting in a range of interaction outcomes from deadlock to replacement of one fungus by another. Increased laccase and Mn-oxidising activities were detected at all interaction zones, but there were few changes in activity in regions away from the interaction zone in T. versicolor mycelia compared to self-pairings. Whilst no LiP activity was detected in any pairing, low level LiP gene expression was detected. MnP activity was detected but not expression of MnP genes; instead, MRP could explain the observed activity. No relationship was found between extent of enzyme activity increase and interaction outcome. Similarities between patterns of gene expression and enzyme activity are discussed.
Collapse
Affiliation(s)
- Jennifer Hiscox
- BIOSI 2, Cardiff University, King Edward VII Avenue, Cardiff, UK.
| | | | | | | |
Collapse
|
19
|
Caracterización morfológica y molecular del antagonismo entre el endofito Diaporthe sp. aislado de frailejón (Espeletia sp.) y el fitopatógeno Phytophthora infestans. Rev Iberoam Micol 2009; 26:198-201. [DOI: 10.1016/j.riam.2009.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 01/28/2009] [Indexed: 11/20/2022] Open
|
20
|
Woodward S, Boddy L. Chapter 7 Interactions between saprotrophic fungi. BRITISH MYCOLOGICAL SOCIETY SYMPOSIA SERIES 2008. [DOI: 10.1016/s0275-0287(08)80009-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
21
|
Zhang C, Cao Y, Wang Z, Yin Y, Peng G, Xia Y. A method to construct cDNA library of the entomopathogenic fungus, Metarhizium anisopliae, in the hemolymph of the infected locust. Mol Biotechnol 2007; 36:23-31. [PMID: 17827534 DOI: 10.1007/s12033-007-0022-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 10/23/2022]
Abstract
A method was developed to construct cDNA library of pathogenic fungus in the blood of the infected insect for cloning the fungal genes expressed in the host. This method is designed to take advantage of the obvious difference between the cell structures and components of the pathogen cells and that of the host cells. The host blood cells only have cell membrane, which can be disrupted by using SDS/proteinase K (PK). The fungal cells grown in the animal blood have cell wall, which can protect the fungal cell from the disruption of SDS/proteinase K (PK). By this method, the blood cells were disrupted by SDS/proteinase K (PK) and then the released animal RNA and DNA were digested completely with RNase and DNase. Therefore, the fungi grown in the blood were harvested without any contamination of host RNA and DNA. The pure fungi harvested from the infected blood can be used for mRNA extraction and cDNA library construction. The purity of the fungal mRNA was confirmed by PCR and RT-PCR with specific primer pairs for the host and specific primer pairs for the fungus, respectively, and the clones of cDNA library constructed by using the fungal mRNA was also analyzed. The results showed that there was no detectable contaminated insect DNA or RNA existing in the fungal mRNA. Randomly selected cDNA clones from cDNA library were sequenced and analyzed against GenBank using Blastx; no selected sequences had significant similarity with insects' genes in comparison with the data of GenBank. The results further confirmed that the method to purify the pathogenic fungus from the host animal is reliable and the mRNA extracted from the fungus is eligible for cDNA library construction, and other molecular analysis including RT-PCR. This method may be applied to other pathogenic fungi and their host animals.
Collapse
Affiliation(s)
- Cangsang Zhang
- Genetic Engineering Research Center, School of Bioengineering, Chongqing University, Chongqing, 400030, P. R. China
| | | | | | | | | | | |
Collapse
|
22
|
Massart S, Jijakli HM. Use of molecular techniques to elucidate the mechanisms of action of fungal biocontrol agents: a review. J Microbiol Methods 2006; 69:229-41. [PMID: 17084929 DOI: 10.1016/j.mimet.2006.09.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 09/12/2006] [Accepted: 09/12/2006] [Indexed: 11/17/2022]
Abstract
Biological control of fungal plant pathogens appears as an attractive and realistic approach, and numerous microorganisms have been identified as biocontrol agents. There have been many efforts to understand the mechanisms of action of fungal biocontrol agents. Microbiological, microscopic, and biochemical techniques applied over many years have shed light on these mechanisms without fully demonstrating them. More recently, the development of molecular techniques has yielded innovative alternative tools for understanding and demonstrating the mechanisms underlying biocontrol properties. To date, more than 70 publications describe the use of molecular techniques for this purpose. They describe work exploiting targeted or non-targeted gene isolation, gene expression profiling, gene inactivation and/or overexpression, the study of regulatory factors. This work has shed considerable light on mechanisms underlying biocontrol properties. It has also fully demonstrated a number of targeted action mechanisms of some biocontrol agents. This review describes the techniques used in such studies, with their potential and limitations. It should provide a guide for researchers wanting to study the molecular basis of the biocontrol in diverse biocontrol agents.
Collapse
Affiliation(s)
- Sébastien Massart
- Plant Pathology Unit, Faculté Universitaire des Sciences Agronomiques de Gembloux, Passage des déportés, 2-5030 Gembloux, Belgium
| | | |
Collapse
|
23
|
Adomas A, Eklund M, Johansson M, Asiegbu FO. Identification and analysis of differentially expressed cDNAs during nonself-competitive interaction between Phlebiopsis gigantea and Heterobasidion parviporum. FEMS Microbiol Ecol 2006; 57:26-39. [PMID: 16819947 DOI: 10.1111/j.1574-6941.2006.00094.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The molecular factors regulating interspecific interaction between the saprotrophic biocontrol fungus Phlebiopsis gigantea and the conifer pathogen Heterobasidion parviporum were investigated. We constructed cDNA libraries and used expressed sequence tag analysis for the identification and characterization of genes expressed during the self and nonself-hyphal interaction. cDNA clones from either the pathogen or biocontrol agent were arrayed on nylon membrane filters and differentially screened with cDNA probes made from mycelia forming the barrage zone during nonself-interactions, mycelia growing outside the barrage zones or monocultures. BlastX analysis of the differentially expressed clones led to the identification of genes with diverse functions, including those with potential as virulence factors, such as hydrophobins. Because of the high sequence conservation (r2 = 0.81) between P. gigantea and H. parviporum, a selected number of genes from either fungus were used to monitor the expression profile under varying interaction conditions by virtual northern blot. The results are discussed with respect to the potential role of the induced genes during the nonself-competitive interaction for space and nutrients between P. gigantea and H. parviporum.
Collapse
Affiliation(s)
- Aleksandra Adomas
- Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | | | | |
Collapse
|
24
|
Sempere F, Santamarina MP. Microscopic and macroscopic study of the interaction betweenAlternaria alternata (Fr.) Keissler andNigrospora oryzae (Berk. & Broome) Petch. ANN MICROBIOL 2006. [DOI: 10.1007/bf03174989] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
25
|
Massart S, Jijakli MH. Identification of Differentially Expressed Genes by cDNA-Amplified Fragment Length Polymorphism in the Biocontrol Agent Pichia anomala (Strain Kh5). PHYTOPATHOLOGY 2006; 96:80-86. [PMID: 18944207 DOI: 10.1094/phyto-96-0080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT cDNA-amplified fragment length polymorphism (cDNA-AFLP) analysis was used to identify genes potentially involved in biological control, by strain Kh5 (Pichia anomala), of Botrytis cinerea, an important post-harvest pathogen on apples. Strain Kh5 was grown in yeast nitrogen base (YNB) plus glucose (G medium) or YNB plus cell walls of B. cinerea (B medium). Thirty-five primer pairs were used in AFLP amplifications, resulting in a total of more than 2,450 bands derived from the mRNA of strain Kh5 grown in B medium. Eighty-six bands (3.5%) corresponded to genes upregulated in B medium compared with G medium. Of these 86 bands, 28 were selected, cloned, sequenced, and subjected to real-time reverse transcription-polymerase chain reaction (RT-PCR) to confirm their differential expression. An appropriate housekeeping gene, G2, was selected and used to normalize the results of RT-PCR. Eleven genes presented an increased gene expression in the presence of B. cinerea cell walls (expression >1). Statistical analysis showed a significant increase for 5 of these 11 genes. The overexpressed genes show homologies to yeast genes with various functions, including beta-glucosidase, transmembrane transport, citrate synthase, and external amino acid sensing and transport. Some of these functions could be related to cell wall metabolism and potentially involved in mycoparasitic properties.
Collapse
Affiliation(s)
- Sébastien Massart
- Plant Pathology Unit, FacultéUniversitaire des Sciences Agronomiques de Gembloux, Belgium
| | | |
Collapse
|