1
|
di Rienzo V, Imanifard Z, Mascio I, Gasser CS, Skinner DJ, Pierri CL, Marini M, Fanelli V, Sabetta W, Montemurro C, Bellin D. Functional conservation of the grapevine candidate gene INNER NO OUTER for ovule development and seed formation. HORTICULTURE RESEARCH 2021; 8:29. [PMID: 33518713 PMCID: PMC7848007 DOI: 10.1038/s41438-021-00467-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 05/06/2023]
Abstract
Seedlessness represents a highly appreciated trait in table grapes. Based on an interesting case of seedless fruit production described in the crop species Annona squamosa, we focused on the Vitis vinifera INNER NO OUTER (INO) gene as a candidate. This gene encodes a transcription factor belonging to the YABBY family involved in the determination of abaxial identity in several organs. In Arabidopsis thaliana, this gene was shown to be essential for the formation and asymmetric growth of the ovule outer integument and its mutation leads to a phenotypic defect of ovules and failure in seed formation. In this study, we identified in silico the V. vinifera orthologue and investigated its phylogenetic relationship to INO genes from other species and its expression in different organs in seeded and seedless varieties. Applying cross-species complementation, we have tested its functionality in the Arabidopsis ino-1 mutant. We show that the V. vinifera INO successfully rescues the ovule outer integument growth and seeds set and also partially complements the outer integument asymmetric growth in the Arabidopsis mutant, differently from orthologues from other species. These data demonstrate that VviINO retains similar activity and protein targets in grapevine as in Arabidopsis. Potential implications for grapevine breeding are discussed.
Collapse
Affiliation(s)
- Valentina di Rienzo
- Department of Soil, Plant and Food Sciences, Section of Genetics and Breeding, University of Bari Aldo Moro, via Amendola 165/A, 70125, Bari, Italy
- Spin off Sinagri s.r.l., University of Bari Aldo Moro, via Amendola 165/A, 70125, Bari, Italy
| | - Zahra Imanifard
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Isabella Mascio
- Department of Soil, Plant and Food Sciences, Section of Genetics and Breeding, University of Bari Aldo Moro, via Amendola 165/A, 70125, Bari, Italy
| | - Charles S Gasser
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave., Davis, CA, 95616, USA
| | - Debra J Skinner
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave., Davis, CA, 95616, USA
| | - Ciro Leonardo Pierri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry Molecular and Structural Biology, University of Bari Aldo Moro, Via E. Orabona 4, 70126 Bari, Italy
- Spin off BROWSer S.r.l. (https://browser-bioinf.com/) c/o Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona 4, 70126, Bari, Italy
| | - Martina Marini
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Valentina Fanelli
- Department of Soil, Plant and Food Sciences, Section of Genetics and Breeding, University of Bari Aldo Moro, via Amendola 165/A, 70125, Bari, Italy
| | - Wilma Sabetta
- Institute of Biosciences and Bioresources of the National Research Council (IBBR-CNR), Via Amendola 165/A, 70125, Bari, Italy
| | - Cinzia Montemurro
- Department of Soil, Plant and Food Sciences, Section of Genetics and Breeding, University of Bari Aldo Moro, via Amendola 165/A, 70125, Bari, Italy.
- Spin off Sinagri s.r.l., University of Bari Aldo Moro, via Amendola 165/A, 70125, Bari, Italy.
- Institute for Sustainable Plant Protection-Support Unit Bari, National Research Council of Italy (CNR), Via Amendola 165/A, 70125 Bari, Italy.
| | - Diana Bellin
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|
3
|
Zhou LW, Wei YL, Dai YC. Phylogenetic analysis of ligninolytic peroxidases: preliminary insights into the alternation of white-rot and brown-rot fungi in their lineage. Mycology 2014; 5:29-42. [PMID: 24772372 PMCID: PMC3979444 DOI: 10.1080/21501203.2014.895784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 02/14/2014] [Indexed: 11/04/2022] Open
Abstract
White-rot and brown-rot fungi employ different mechanisms to degrade lignocellulose. These fungi are not monophyletic and even alternate in their common lineage. To explore the reason for this, seventy-six ligninolytic peroxidases (LPs), including 14 sequences newly identified from available basidiomycetous whole-genome and EST databases in this study, were utilized for phylogenetic and selective pressure analyses. We demonstrate that LPs were subjected to the mixed process of concerted and birth-and-death evolution. After the duplication events of original LPs, various LP types may originate from mutation events of several key residues driven by positive selection, which may change LP types and even rot types in a small fraction of wood-decaying fungi. Our findings provide preliminary insights into the cause for the alternation of the two fungal rot types within the same lineage.
Collapse
Affiliation(s)
- Li-Wei Zhou
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, P. R. China
| | - Yu-Lian Wei
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, P. R. China
| | - Yu-Cheng Dai
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, P. R. China
| |
Collapse
|
4
|
Bugg TDH, Ahmad M, Hardiman EM, Rahmanpour R. Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep 2011; 28:1883-96. [PMID: 21918777 DOI: 10.1039/c1np00042j] [Citation(s) in RCA: 487] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lignin is a heterogeneous aromatic polymer found as 10-35% of lignocellulose, found in plant cell walls. The bio-conversion of plant lignocellulose to glucose is an important part of second generation biofuel production, but the resistance of lignin to breakdown is a major obstacle in this process, hence there is considerable interest in the microbial breakdown of lignin. White-rot fungi are known to break down lignin with the aid of extracellular peroxidase and laccase enzymes. There are also reports of bacteria that can degrade lignin, and recent work indicates that bacterial lignin breakdown may be more significant than previously thought. The review will discuss the enzymes for lignin breakdown in fungi and bacteria, and the catabolic pathways for breakdown of the β-aryl ether, biphenyl and other components of lignin in bacteria and fungi. The review will also discuss small molecule phenolic breakdown products from lignin that have been identified from lignin-degrading microbes, and includes a bioinformatic analysis of the occurrence of known lignin-degradation pathways in Gram-positive and Gram-negative bacteria.
Collapse
|
5
|
Morgenstern I, Robertson DL, Hibbett DS. Characterization of three mnp genes of Fomitiporia mediterranea and report of additional class II peroxidases in the order hymenochaetales. Appl Environ Microbiol 2010; 76:6431-40. [PMID: 20675443 PMCID: PMC2950472 DOI: 10.1128/aem.00547-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 07/23/2010] [Indexed: 11/20/2022] Open
Abstract
We report the sequence-based characterization and expression patterns of three manganese peroxidase genes from the white rot fungus and grape vine pathogen Fomitiporia mediterranea (Agaricomycotina, Hymenochaetales), termed Fmmnp1, Fmmnp2, and Fmmnp3. The predicted open reading frames (ORFs) are 1,516-, 1,351-, and 1,345-bp long and are interrupted by seven, four, and four introns, respectively. The deduced amino acid sequences encode manganese peroxidases (EC 1.11.1.13) containing 371, 369, and 371 residues, respectively, and are similar to the manganese peroxidases of the model white rot organism Phanerochaete chrysosporium. The expression of the genes is most likely differentially regulated, as revealed by real-time PCR analysis. Phylogenetic analysis reveals that other members of the order Hymenochaetales harbor mnp genes encoding proteins that are related only distantly to those of F. mediterranea. Furthermore, multiple partial lip- and mnp-like sequences obtained for Pycnoporus cinnabarinus (Agaricomycotina, Polyporales) suggest that lignin degradation by white rot taxa relies heavily on ligninolytic peroxidases and is not efficiently achieved by laccases only.
Collapse
Affiliation(s)
- Ingo Morgenstern
- Clark University, Department of Biology, Worcester, Massachusetts 01610, USA.
| | | | | |
Collapse
|
7
|
Sensitive detection of lip genes by electrochemical DNA sensor and its application in polymerase chain reaction amplicons from Phanerochaete chrysosporium. Biosens Bioelectron 2008; 24:1474-9. [PMID: 19010661 DOI: 10.1016/j.bios.2008.09.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2008] [Revised: 09/21/2008] [Accepted: 09/24/2008] [Indexed: 11/23/2022]
Abstract
An electrochemical DNA sensor based on the sandwich hybridization recognition of target sequence of lignin peroxidase (lip) genes on a gold electrode was developed. A monolayer of thiolated capture probe was formed on a gold electrode through self-assembling. Following hybridizations with target nucleic acid and biotinylated detection probe, streptavidin-horseradish peroxidase (HRP) conjugate was applied to the electrode. The DNA conformation and surface coverage on electrode were characterized by impedance spectroscopy and square wave voltammetry. The experimental variables were optimized to maximize the hybridization efficiency, detection sensitivity and speed up the assay time. The amperometric current response to HRP-catalyzed reaction was linearly related to the natural logarithm of the target nucleic acid concentration in the range from 0.6 to 30 nM, with the correlation coefficient of 0.9722. The detection limit was 0.03 nM. Synthesized oligonucleotide as well as Phanerochaete chrysosporium lip gene fragments amplified using polymerase chain reaction and digested by restriction endonucleases were tested. The DNA sensor exhibited good precision, stability, sensitivity, and selectivity, and discriminated satisfactorily against mismatched nucleic acid samples of similar lengths.
Collapse
|
8
|
Costanzo S, Ospina-Giraldo MD, Deahl KL, Baker CJ, Jones RW. Alternate intron processing of family 5 endoglucanase transcripts from the genus Phytophthora. Curr Genet 2007; 52:115-23. [PMID: 17661047 DOI: 10.1007/s00294-007-0144-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 07/03/2007] [Accepted: 07/09/2007] [Indexed: 10/23/2022]
Abstract
Twenty-one homologs of family 5 endo-(1-4)-beta-glucanase genes (EGLs) were identified and characterized in the oomycete plant pathogens Phytophthora infestans, P. sojae, and P. ramorum, providing the first comprehensive analysis of this family in Phytophthora. Phylogenetic analysis revealed that these genes constitute a unique eukaryotic group, with closest similarity to bacterial endoglucanases. Many of the identified EGL copies were clustered in a few genomic regions, and contained from zero to three introns. Using reverse transcription PCR to study in vitro and in planta gene expression levels of P. sojae, we detected partially processed RNA transcripts retaining one or more of their introns. In some cases, the positions of intron/exon splicing sites were also found to be variable. The relative proportions of these transcripts remain apparently unchanged under various growing conditions, but differ among orthologous copies of the three Phytophthora species. The alternate processing of introns in this group of EGLs generates both coding and non-coding RNA isoforms. This is the first report on Phytophthora family 5 endoglucanases, and the first record for alternative intron processing of oomycete transcripts.
Collapse
Affiliation(s)
- Stefano Costanzo
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | |
Collapse
|
9
|
Giardina P, Autore F, Faraco V, Festa G, Palmieri G, Piscitelli A, Sannia G. Structural characterization of heterodimeric laccases from Pleurotus ostreatus. Appl Microbiol Biotechnol 2007; 75:1293-300. [PMID: 17429621 DOI: 10.1007/s00253-007-0954-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 03/15/2007] [Accepted: 03/16/2007] [Indexed: 10/23/2022]
Abstract
The subfamily of POXA3 laccase isoenzymes produced by the fungus Pleurotus ostreatus has been characterized as an example of the complexity and heterogeneity of fungal isoenzyme patterns. Two isoenzymes, POXA3a and POXA3b, were previously purified, exhibiting an unusual heterodimeric structure composed of a large (67 kDa) and a small (18 or 16 kDa) subunit. A unique gene encodes the large subunit of both POXA3a and POXA3b, but alternative splicing produces two variants--differing for an insertion of four amino acids--for each isoenzyme. Two genes encoding POXA3a and POXA3b small subunits have been identified, and the corresponding amino acid sequences show only two amino acid substitutions. The 18- and 16-kDa subunits of both POXA3a and POXA3b differ for N-glycosylation at Asn150 of the 16-kDa subunit. The POXA3 large subunit 3D model allows us to highlight peculiarities of this molecule with respect to the laccases whose 3D structures are known.
Collapse
Affiliation(s)
- Paola Giardina
- Dipartimento di Chimica Organica e Biochimica, Università di Napoli "Federico II," Complesso Universitario Monte S. Angelo, via Cintia, Naples 80126, Italy.
| | | | | | | | | | | | | |
Collapse
|
10
|
Zhang Y, Lin SM, Zhu YJ, Liu CJ, Dong Y, Li FF, Wu GF, Wang HY, Zhang JH. Protoplast Fusion between Geotrichum candidium and Phanerochaete chrysosporium to Produce Fusants for Corn Stover Fermentation. Biotechnol Lett 2006; 28:1351-9. [PMID: 16820977 DOI: 10.1007/s10529-006-9097-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/03/2006] [Accepted: 05/03/2006] [Indexed: 11/25/2022]
Abstract
Lignin impedes the digestion of corn stover when used as an animal feed. Phanerochaete chrysosporium is an efficient lignindegrader. Geotrichum candidum can be used to produce single-cell protein. In this study, protoplasts of the two fungi were prepared and fused. After screening, one of the fusants, Fusant R1, was selected for corn stover fermentation. It decreased lignin from 109 to 54 g/kg and increased protein from 48 to 67 g/kg in corn stover. Comparison with their parental strains indicated that the fusant obtained the lignin-degrading ability from P. chrysosporium and the protein-accumulating ability from G. candidium.
Collapse
Affiliation(s)
- Yong Zhang
- School of Animal Science and Veterinary, Shenyang Agricultural University, Shenyang, China 110161.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kilaru S, Hoegger PJ, Kües U. The laccase multi-gene family in Coprinopsis cinerea has seventeen different members that divide into two distinct subfamilies. Curr Genet 2006; 50:45-60. [PMID: 16775746 DOI: 10.1007/s00294-006-0074-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2005] [Revised: 03/27/2006] [Accepted: 03/29/2006] [Indexed: 10/24/2022]
Abstract
Seventeen non-allelic laccase genes and one gene footprint are present in the genome of Coprinopsis cinerea. Two gene subfamilies were defined by intron positions and similarity of deduced gene products, one with 15 members (lcc1-lcc15) and one with 2 members (lcc16, lcc17). The first subfamily divides in the phylogenetic tree of deduced proteins into smaller clusters that probably reflect recent gene duplication events. Different laccase genes diverged from each other both by frequent synonymous and non-synonymous codon changes. Mainly synonymous codon changes accumulate in alleles, with up to 12% total codon differences between given pairs of alleles. Overexpression of the 17 laccase genes under the control of a constitutive promoter identified nine active enzymes from subfamily 1. All of these showed laccase activities with DMP (2,6-dimethoxy phenol) as substrate but only eight of them also with ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)]. Lcc16 and Lcc17 share certain sequence features with ferroxidases but enzyme assays failed to show such activity. Lcc15 is expected to be non-functional in laccase activity due to an internal deletion of about 150 amino acids. Transcripts were obtained from all genes but splice junctions for three genes were not congruent with translation into a functional protein.
Collapse
Affiliation(s)
- Sreedhar Kilaru
- Molecular Wood Biotechnology, Institute of Forest Botany, Georg-August-University of Göttingen, Germany
| | | | | |
Collapse
|